若干挥发性有机化合物在大气中消除、转化机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过生物源和人为来源释放到大气中的不饱和醇、有机硫化合物、烯烃和环烯烃等几类挥发性有机化合物在对流层化学中扮演着重要的角色。这些挥发性有机化合物及其在大气中的氧化产物,对次级有机气溶胶的形成和生长、对区域性和全球性酸雨的形成起到关键性的作用。另外,它们对大气云浓缩核(CCN)的形成和生长有着重要的贡献,而大气云浓缩核(CCN)则深刻地影响着地球辐射平衡和全球气候调节。
     为了更好的评价这些挥发性有机化合物对大气环境的影响,研究它们在大气中的转化过程是很有必要的。与大气中的一些重要的氧化剂如OH自由基、N03自由基、03和C1原子等发生反应被认为是大多数有机化合物的主要的消除途径。近二十年来,这些挥发性有机化合物与大气中的氧化剂的反应动力学一直受到广泛的关注。与这些挥发性有机化合物的实验研究相比,其理论研究发展明显滞后。因此,从理论上深入研究它们在大气条件下的微观反应机理和动力学行为,对进一步揭示它们对大气环境的影响,对控制大气环境污染等方面有着深刻的意义。
     本论文利用从头算和密度泛函方法,对大气中几种典型的挥发性有机化合物,包括2-甲基-3-丁烯-2-醇((CH3)2C(OH)CH=CH2)、二乙烯基亚砜(DVSO, CH2=CHS(O)CH=CH2)和环己烯等,在大气中的消除、转化机理进行了系统的理论研究,通过计算给出了他们与大气中一些活性自由基(如羟基自由基和氯原子)反应的势能面信息,讨论了各种可能的反应通道、反应机理和主要产物,预测了环己烯与OH自由基反应的速率常数及其对温度的依赖关系,为进一步实验研究提供有价值的理论指导和线索。本论文的主要研究内容和创新性成果如下:
     1.研究了2-甲基-3-丁烯-2-醇(MB0232)在02存在下与Cl原子的反应机理,计算了反应的热力学和动力学性质。在MP2(full)/6-311G(d,p)理论水平下对反应中各入口、异构化和解离通道中所涉及的各物种的几何构型进行了优化,并在CCSD(T)/6-311+G(d,p)理论水平下构建了反应的势能面剖面图。计算结果表明,该反应最有利的反应通道涉及MB0232与Cl原子在反应入口通过无势垒的过程形成初始加合物(CH3)2C(OH)CHCH2Cl(IM2)和(CH3)2C(OH)CHClCH2(IM2)直接H-抽提反应通道和IM1、IM2发生一系列异构化或解离的反应途径发生的可能性不大;新形成的加合物IMl和IM2可以与大气中的02发生反应,分别形成两个过氧自由基(CH3)2C(OH)CH(OO·)CH2Cl和(CH3)2C(OH)CHClCH2(OO·),并继而与大气中的CH302的发生反应分别生成两个烷氧自由基(CH3)2C(OH)CH(O·)CH2Cl和(CH3)2C(OH)CHClCH2O·。
     我们发现两个烷氧自由基在大气中进一步转化的机理是不相同的。第一个烷氧自由基(CH3)2C(OH)CH(O·)CH2Cl最有利的转化途径是通过C-C键断裂生成CH2CICHO和(CH3)2C(OH),随后(CH3)2C(OH)继续与大气中的O2发生反应生成CH3C(O)CH3。另一个烷氧自由基(CH3)2C(OH)CHClCH2O则是通过异构化反应产生形成异构体(CH3)2C(O·)CHClCH2OH,然后发生解离反应生成CH3C(O)CH3和HOCH2C·HCl。
     理论研究结果表明MB0232在O2存在下与氯原子反应的主要产物是CH2CICHO和CH3C(O)CH3,与实验结果非常吻合。实验中观测到的其它产物如HCHO、HC(O)Cl和HOCH2CHO则是由HOCH2CHCl在大气中发生的次级反应所致。
     2.研究了二乙烯基亚砜(DVSO)在O2/NO存在的情况下与OH自由基反应,构建了反应的详细势能剖面图。在BH&HLYP/6-311++G(d,p)水平上优化了反应物、中间体、过渡态和产物的构型,在CCSD(T)/6-311+G(d,p)理论水平上计算了势能面上各驻点的相对能量。该反应体系的势能面上存在多个可能的反应途径,包括直接H-抽提通道和加成-消除通道。计算结果表明:加成-消除机制支配OH自由基与DVSO的整个反应。在OH自由基与DVSO反应的初始阶段,OH自由基与DVSO首先通过一个无能垒的过程形成一个反应物复合物RC,随后OH自由基加成到DVSO中的不饱和双键生成中间体CH2(OH)CHS(O)CH=CH2)和CH2CH(OH)S(O)CH=CH2(IM2)。计算结果表明,IM1比IM2更容易形成。在大气环境下,中间体IM1可与O2/NO进一步发生反应生成烷氧自由基CH2(OH)C(O·)HS(O)CH=CH2,烷氧自由基在大气中最可能发生的反应是解离成C(O)HS(O)CH=CH2和·CH2OH自由基,随后·CH20H自由基与O2发生反应生成HCHO。计算结果表明HCHO和C(O)HS(O)CH=CH2是反应的主要产物,与实验结果一致。
     3.在CCSD(T)/6-311+G(d,p)//M06-2X/6-311++G(d,p)水平上研究了在O2/NO存在的情况下,环己烯与OH自由基的详细反应机理及其产物。在反应的初始阶段,最有利的反应通道是OH自由基与环己烯的不饱和C原子发生加成反应,生成加合物IM2((?))。大气环境下,该加合物IM2先后与O2和NO反应生成过氧亚硝酸酯随后脱去一分子NO2生成烷氧自由基((?))。烷氧自由基在大气中的命运是先发生开环反应,然后进一步与O2反应生成最终的主要产物1,6-己二醛((C(O)H(CH2)4C(O)H),这与实验中检测到的主要产物是一致的。另外,计算表明,2-羟基-环己酮是次要产物。在此基础上利用Wigner隧道因子校正的经典过渡态理论计算了OH自由基与环己烯在298-498K温度范围内的速率常数。在298K计算的速率常数值与实验值非常吻合。在整个温度范围内,反应的速率常数呈现一个负温度效应,预测速率常与温度的关系式可表示为k=1.71×10-12×exp(905.7/T) cm3molecule-1
Volatile organic compounds (VOCs) such as unsaturated alcohols, organosulfur compounds, alkenes and cycloalkenes are emitted into the atmosphere from biogenic and anthropogenic sources, which are expected to play an important role on tropospheric chemistry. These VOCs together with their oxidation products are known to exert a profound influence on the formation and growth of secondary organic aerosol, and the formation of acid rain in urban and regional areas as well as in the global areas. Moreover, they may significantly contribute to the formation and growth of CCN (Cloud Condensation Nuclei), which may have a significant influence on the Earth's radiation budget and possibly in climate regulation.
     It is necessary to know the atmospheric transformations in order to better evaluate the atmospheric and environmental impact of these VOCs. Reactions with the main atmospheric oxidants such as hydroxyl radicals (OH), nitrate radicals (NO3), ozone (O3), and chlorine atoms (Cl) are considered as the predominant removal processes for the majority of the organics compounds. Kinetics and mechanisms of the gas-phase reactions of the main atmospheric oxidants with volatile organic compounds have received much attention in the past two decade. Compared with the experimental studies on VOCs, their theoretical investigations are relatively laggard. Therefore, detailed theoretical studies on the mechanisms and kinetics of those reactions in the atmospheric conditions are profound significance to further reveal their impact on atmospheric environment and also to control atmospheric pollutions.
     Using ab initio and density function theory (DFT) chemistry methods, detailed theoretical studies have been done for the atmospheric degradation and transformation of several typical volatile organic compounds, including2-methyl-3-buten-2-ol (MBO232,(CH3)2C(OH)CH=CH2), divinyl sulfoxide (DVSO, CH2=CHS(O)CH=CH2) and cyclohexene. Important information of potential energy surfaces of these VOCs reactions with active radicals (such as OH radicals and Cl atoms) are obtained from the theoretical investigations. Then, possible reaction channels, reaction mechanisms and major products have been discussed. The rate constants and the temperature dependence are also predicted for the reaction of cyclohexene with OH radicals. The calculations in the present thesis may be helpful for further experimental studies of this kind of reactions. The main research contents and innovative production in this thesis are summarized as follows:
     1. The reacion mechanism of2-methyl-3-buten-2-ol (MBO232) with Cl atoms in the presence O2has been investigated. The thermodynamic and kinetic properties have been calculated for the reaction of MBO232+Cl+O2. The geometries of various species involved in the entrance, isomerization, and decomposition pathways have been optimized at the MP2(full)/6-311G(d,p) level of theory. The potential energy surfaces have been constructed at the CCSD(T)/6-311+G(d,p) level of theory. The calculations show that the most feasible channels are to barrierlessly form the nascent adducts (CH3)2C(OH)CHCH2C1(IM1) and (CH3)2C(OH)CHClCH2(IM2) in the entrance pathways of MBO232+Cl. The direct H-abstraction pathways as well as a complex series of isomerization and decomposition pathways of IMl and IM2are kinetically much less competitive. The newly formed adducts IM1and IM2can then react with O2in the atmosphere, followed by the formation of two alkyl peroxy radicals (CH3)2C(OH)CH(OO·)CH2Cl and (CH3)2C(OH)CHClCH2(OO·), respectively. Then, the alkyl peroxy radicals can further react with CH3O2in the atmosphere to give rise to two alkoxy radicals (CH3)2C(OH)CH(O·)CH2Cl and (CH3)2C(OH)CHClCH2O·, respectively.
     We found that the further transformation mechanisms of two alkoxy radicals are much different in the atmosphere. The most favorable pathway of alkoxy radical (CH3)2C(OH)CH(O·)CH2Cl is the formation of CH2ClCHO+(CH3)2C(OH) by C-C bond rupture, followed by reaction with O2to give CH2ClCHO and CH3C(O)CH3. However, another alkoxy radical (CH3)2C(OH)CHClCH2O·isomerizes preferentially to form isomer (CH3)2C(O·)CHClCH2OH, then undergo C-C bond scission to produce CH3C(O)CH3and HOCH2CHCl.
     The theoretical results indicate that the products CH2ClCHO and CH3C(O)CH3are major and predominant on the potential energy surface, which is in good agreement with the experimental finding. The other observed products HCHO, HC(O)Cl and HOCH2CHO can then be formed from secondary reactions of HOCH2CHC1.
     2. The reaction of OH radicals with divinyl sulfoxide (DVSO) in the presence of O2/NO has been studied theoretically. The potential energy surfaces for the OH+DVSO+O2/NO have been constructed. The geometric parameters of reactants, intermediates, transition states and products have been optimized at the BH&HLYP/6-311++g(d,p) level of theory. The relative energies of all stationary points have been calculated at the CCSD(T)/6-311+G(d,p) level of theory. There are large number of possible product channels covering the H-abstraction and the addition-elimination reaction pathways on the potential energy surface. The calculations illustrate that the addition-elimination mechanism dominates the OH+divinyl sulfoxide reaction. The addition reactions between OH radicals and divinyl sulfoxide begin with the barrierless formation of a reactant complex (RC) in the entrance channel, and subsequently the CH2(OH)CHS(O)CH=CH2(IM1) and the CH2CH(OH)S(O)CH=CH2(IM2) are formed by OH radicals'electrophilic additions to the double bond. It is found that the formation of IM1is kinetically more favored than the formation of IM2. Under atmospheric conditions, IM1can further combine with O2/NO to form CH2(OH)C(OONO)HS(O)CH=CH2, then CH2(OH)C(OONO)HS(O)CH=CH2dissociates to alkoxy radical CH2(OH)C(O·)HS(O)CH=CH2. The optimal channel from alkoxy radical CH2(OH)C(O·)HS(O)CH=CH2is the formation of C(O)HS(O)CH=CH2+·CH2OH through C-C cleavage. The resulting radical·CH2OH then reacts with O2to yield HCHO. The results show that the formation of HCHO+C(O)HS(O)CH=CH2is dominant, which is consistent with the recent experimental findings.
     3. The products and detailed mechanism of the reaction of cyclohexene with OH radicals in the presence of O2/NO have been studied at the CCSD(T)/6-311+G(d,p)//M06-2X/6-311++G(d,p) levels of theory. The calculations indicate that the optimal pathway is the formation of adduct IM2((?)) by initial addition of OH radicals to the unsaturated carbon atom of cyclohexene. Under atmospheric conditions, i.e., in the presence of O2and NO, the nascent activated IM2, will successively react with O2and NO to yield peroxy nitrite ((?)). Then, the peroxy nitrite can directly decompose to alkoxy radicals ((?)--) by NO2elimination. The ultimate fate of alkoxy radicals in the atmosphere is to generate the dicarbonyls1,6-hexanedial((C(O)H(CH2)4C(O)H) via first ring opening reaction and further reaction with O2. The calculated results are consistent with the available experimental observations. Furthermore, the additional product2-hydroxy-cyclohexanone is also predicted as secondary product. The rate constants at the temperature range298-498K for the reaction of OH radicals with cyclohexene have been calculated using the conventional transition state theory with Wigner's tunneling correction. The theoretical rate constant at the temperature298K matches well with the experimental value. The rate constants calculated at the temperature range298-498K can be represented by the following expression k=1.71×10-12×exp(905.7/T) cm3molecule-1s-1. Clearly, the reaction of OH radicals with cyclohexene shows a negative temperature dependence of the rate constants.
引文
[1]Scientific Assessment of Ozone Depletion:World Meterolological Organization Global Ozone Research and Monitoring Project; Report No.37; Geneva, Switzerland, 1994; February 1995.
    [2]Guenther, A.; Hewitt, C. N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W. A.; Pierce, T.; Scholes, B.; Steinbrecher, R.; Tallamraju, R.; Taylor, J.; Zimmermann, P. A global model of natural volatile organic compound emissions. J. Geophys. Res.1995,100,8873-8892.
    [3]Guenther, A.; Geron, C.; Pierce, T.; Lamb, B.; Harley, P.; Fall, R. Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmos. Environ.2000,34,2205-2230.
    [4]Sawyer, R. F.; Harley, R. A.; Cadle, S. H.; Norbeck, J. M.; Slott, R.; Bravo, H. A. Mobile sources critical review:1998 NARSTO assessment. Atmos. Environ.2000,34, 2161-2181.
    [5]Placet, M.; Mann, C. O.; Gilbert, R. O.; Niefer, M. J. Emissions of ozone precursors from stationary sources:A critical review. Atmos. Environ.2000,34,2183-2204.
    [6]Fall, R. Biogenic Emissions of Volatile Organic Compounds from Higher Plants. In Reactive Hydroxcarbons in the Atmosphere; Hewitt, C. N., Ed.; Academic Press:San Diego, CA,1999; p 43-96.
    [7]Lurmann, F. W.; Main, H. H. Analysis of the Ambient VOC Data Collected in the Southern California Air Quality Study; Final Report to California Air Resources Contract A832-130; Sacramento, CA, February 1992.
    [8]Calvert, J. G.; Atkinson, R.; Becker, K. H.; Kamens, R. M.; Seinfeld, J. H.; Wallington, T. J.; Yarwood, G. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons; Oxford University Press:New York,2002.
    [9]Logan, J.A. Tropospheric ozone:Seasonal behavior, trends, and anthropogenic influence.J.Geophy. Res.1985,90,10463-10482.
    [10]Schwartz, S.E. Acid deposition:Unraveling a regional phenomenon. Science 1989, 243,753-763.
    [11]Pankow, J.F. Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos. Environ. 1987,21,2275-2283.
    [12]Bidleman, T.F. Atmospheric processes. Environ. Sci. Technol.1988,22,361-367.
    [13]Odum, J.R.; Hoffmann, T.; Bowman, F.;Collins, D.; Flagan, R.C.; Seinfeld, J.H. Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol. 1996,30,2580-2585.
    [14]Odum, J.R.; Jungkamp, T.P.W.; Griffin, R.J.; Flagan, R.C.; Seinfeld, J.H. The atmospheric aerosol-forming potential of whole gasoline vapor. Science 1997,276, 96-99.
    [15]Andreae, M.O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar. Chem.1990,30,1-29.
    [16]Bates, T. S.; Lamb, B. K.; Guenther, A.; Dignon, J.; Stoiber, R. E. Sulfur emissions to the atmosphere from natural source. J. Atmos. Chem.1992,14,315-337.
    [17]Spiro, P.A.; Jacob, D.J.; Logan, J.A. Global inventory of sulfur emissions with 1°x1° resolution. J. Geophys. Res.1992,97,6023-6036.
    [18]Bates, T. S.; Kiene, R. P.; Wolfe, G. V.; Matrai, P. A.; Chavez, F. P.; Buck, K. R. Blomquist, B. W.; Cunel, R. L. The cycling of sulfur in surface seawater of the Northeast Pacific. J. Geophys. Res.1994,99,7835-7843.
    [19]Jonas, P. R.; Charlson, R. J.; Rodhe, H. In Climate Change 1994. Radiative Forcing of Climate Change, Intergovernmental Panel on Climate Change, Eds.; Cambridge University Press:Cambridge,1995; pp 133-157.
    [20]Shaw, G. E. Bio-controlled thermostasis involving the sulfur cycle. Clim. Change 1983,5,297-303.
    [21]Charlson, R. J.; Lovelock, J. E.; Andreae, M. O.; Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987,326, 655-661.
    [22]Berresheim, H.; Eisele, F. L.; Tanner, D. J.; McInnes, L. M.; Ramsey-Bell, D. C.; Covert, D. S. Atmospheric sulfur chemistry and cloud condensation nuclei (CCN) concentrations over the northeastern Pacific Coast. J. Geophys. Res.1993,98, 12701-12711.
    [23]Bandy, A. R.; Thornton, D. C.; Blomquist, B. W.; Chen, S.; Wade, T. P.; Ianni, J. C.; Mitchell, G. M.; Nadler, W. Chemistry of dimethyl sulfide in the equatorial Pacific atmosphere. Geophys. Res. Lett.1996,23,741-744.
    [24]Berresheim, H.; Huey, J. W.; Thorn, R. P.; Eisele, F. L.; Tanner, D. J.; Jefferson, A. Measurements of dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, and aerosol ions at Palmer Station, Antarctica. J. Geophys. Res.1998,103,1629-1637.
    [25]Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ.2000,34, 2063-2101.
    [26]Bidleman, T. F. Atmospheric processes. Environ. Sci. Technol.1988,22,361-367.
    [27]Wesely, M. L.; Hicks, B. B. A review of the current status of knowledge on dry deposition. Atmos. Environ.2000,34,2261-2282.
    [28]Atkinson, R. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Ref. Data,1989, Monograph 1, 1-246.
    [29]Atkinson, R. Gas-phase tropospheric chemistry of organic compounds. J. Phys. Chem. Ref. Data,1994, Monograph 2,1-216.
    [30]DeMore, W.B.; Sander, S.P.; Golden, D.M.; Hampson, R.F.; Kurylo, M.J.; Howard, C.J.; Ravishankara, A.R.; Kolb, C.E.; Molina, M.J. Chemical Kinetics and Photochemical Data for use in Stratospheric Modeling, Evaluation No.12, NASA Panel for Data Evaluation, Jet Propulsion Laboratory Publication 97-4, Pasadena, CA, January 15,1997.
    [31]Atkinson, R. Gas-phase tropospheric chemistry of volatile organic compounds.1. Alkanes and alkenes. J. Phys. Chem. Ref. Data 1997,26,215-290.
    [32]Atkinson, R. Atmospheric reactions of alkoxy and β-hydroxyalkoxy radicals. Int. J. Chem. Kinet.1997,29,99-111.
    [33]Paulson, S.E., Orlando, J.J. The reactions of ozone with alkenes:an important source of HOx in the boundary layer. Geophys. Res. Lett.1996,23,3727-3730.
    [34]Atkinson, R.; Winer, A.M.; Pitts Jr., J.N. Estimation of night-time N2O5 concentrations from ambient NO2 and NO3 radical concentrations and the role of N2O5 in nighttime chemistry. Atmos. Environ.1986,20,331-339.
    [35]Mihelcic, D.; Klemp, D.; Musgen, P.; Patz, H.W.; Volz-Thomas, A. Simultaneous measurements of peroxy and nitrate radicals at Schauinsland. J. Atmos. Chem.1993, 16,313-335.
    [36]Platt, U.; Heintz, F. Nitrate radicals in tropospheric chemistry. Israel J. Chem.1994, 34,289-300.
    [37]Singh, H. B. (ed.), Composition, Chemistry and Climate of the Atmosphere, Van Nostrand Reinhold, New York,1995.
    [38]Singh, H.B.; Kasting, J.F. Chlorine-hydrocarbon photochemistry in the marine troposphere and lower stratosphere. J. Atmos. Chem.1988,7,261-285.
    [39]Clegg, S.L.; Brimblecombe, P. Potential degassing of HCl from acidified NaCl droplets. Atmos. Environ.1985,19,465-470.
    [40]Knipping, E.M.; Dabdub, D. Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. Environ. Sci.Technol.2003,37,275-284.
    [41]Konig, G.; Brunda, M.; Puxbaum, H. et al. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species. Atmos. Environ.1995,29,861-874
    [42]Mellouki, A.; Le Bras, G.; Sidebottom, H. Kinetics and mechanisms of the oxidation of oxygenated organic compounds in the gas phase. Chem. Rev.2003,103, 5077-5096.
    [43]Grosjean, D.; Grosjean, E.; Williams Ⅱ, E. L. Atmospheric chemistry of unsaturated alcohols. Environ. Sci. Technol.1993,27,2478-2485.
    [44]Upadhyaya, H.P.; Kumar, A.; Naik, P.D.; Sapre, A.V.; Mittal, J.P. Kinetics of OH radical reaction with allyl alcohol (H2C=CHCH2OH) and propargyl alcohol (HC=CCH2OH) studied by LIF. Chem.Phys.Lett.2001,349,279-285.
    [45]Holloway, A.-L.; Treacy, J.; Sidebottom, H.; Mellouki, A.; Daele, V.; Bras, G. Le; Barnes, I. Rate coefficients for the reactions of OH radicals with the keto/enol tautomers of 2,4-pentanedione and 3-methyl-2,4-pentanedione, allyl alcohol and methyl vinyl ketone using the enols and methyl nitrite as photolytic sources of OH. J. Photochem. Photobiol, A 2005,176,183-190.
    [46]Parker, J.K.; Espada-Jallad, C. Kinetics of the gas-phase reactions of OH and NO3 radicals and O3 with allyl alcohol and allyl isocyanate. J. Phys. Chem. A 2009,113, 9814-9824.
    [47]Le Person, A.; Solignac, G.; Oussar, F.; Daele, V.; Mellouki, A.; Winterhalter, R.; Moortgat, G. K. Gas phase reaction of allyl alcohol (2-propen-l-ol) with OH radicals and ozone. Phys. Chem. Chem. Phys.2009,11,7619-7628.
    [48]Rudich, Y.; Talukdar, R.; Burkholder, J. B.; Ravishankara, A. R. Reaction of methylbutenol with hydroxyl radical:Mechanism and atmospheric implications. J. Phys. Chem.1995,99,12188-12194.
    [49]Fantechi, G.; Jensen, N.R.; Hjorth, J.; Peeters, J. Mechanistic studies of the atmospheric oxidation of mechyl butenol by OH radicals, ozone and NO3 radicals. Atmos. Environ.1998,32,3547-3556.
    [50]Alvarado, A.; Tuazon, E. C.; Aschmann, S. M.; Arey, J.; Atkinson, R. Products and mechanisms of the gas-phase reactions of OH radicals and O3 with 2-methyl-3-buten-2-ol. Atmos. Environ.1999,33,2893-2905.
    [51]Cometto, P. M.; Dalmasso, P. R.; Taccone, R.A.; Lane, S.I.; Oussar, F.; Daele, V.; Mellouki, A.; Le Bras, G. Rate coefficients for the reaction of OH with a series of unsaturated alcohols between 263 and 371 K. J. Phys. Chem. A 2008,112, 4444-4450.
    [52]Orlando, J.J.; Tyndall, G.S.; Ceazan, N. Rate coefficients and product yields from reaction of OH with 1-penten-3-ol, (Z)-2-penten-l-ol, and allyl alcohol (2-propen-l-ol). J. Phys. Chem. A 2001,105,3564-3569.
    [53]Jimenez, E.; Lanza, B.; Antinolo.M.; Albaladejo, J. Photooxidation of leaf-wound oxygenated compounds, 1-penten-3-ol, (Z)-3-hexen-l-ol, and 1-penten-3-one, initiated by OH radicals and sunlight. Environ. Sci. Technol.2009,43,1831-1837.
    [54]Fantechi, G.; Jensen, N.R.; Saastad, O.; Hjorth, J.; Peeters, J. Reactions of Cl atoms with selected VOCs:Kinetics, products and mechanisms. J. Atmos. Chem.1998,31, 247-267.
    [55]Fantechi, G.; Jensen, N.R.; Hjorth, J.; Peeters, J. Determination of the rate constants for the gas-phase reactions of methyl butenol with OH radicals, ozone, NO3 radicals, and Cl atoms. Int. J. Chem. Kinet.1998,30,589-594.
    [56]Ferronato, C.; Orlando, J.J.; Tyndall, G.S. Rate and mechanism of the reactions of OH and Cl with 2-methyl-3-buten-2-ol. J. Geophys. Res.1998,103,25579-25586.
    [57]Aranda, A.; Martinez, E.; Diaz-de-Mera, Y.; Rodriguez, A.; Rodriguez, D.; Cuartero, J. Low-pressure study of the reactions of Cl atoms with acrylic acid and allyl alcohol. Atmos. Environ.2003,37,4361-4369.
    [58]Rodriguez, A.; Rodriguez, D.; Soto, A.; Notario, A.; Aranda, A.; Diaz-de-Mera, Y.; Bravo, I. Relative rate measurements of reactions of unsaturated alcohols with atomic chlorine as a function of temperature. Atmos. Environ.2007,41,4693-4702.
    [59]Rodriguez, D.; Rodriguez, A.; Soto, A.; Aranda, A.; Diaz-de-Mera, Y.; Notario, A. Kinetics of the reactions of Cl atoms with 2-buten-1-ol,2-methyl-2-propen-1-ol, and 3-methyl-2-buten-1-ol as a function of temperature. J. Atmos. Chem.2008,59, 187-197.
    [60]Wang, L.; Ge M.F.; Wang, W.G. Kinetic study of the reaction of chlorine atoms with 3-methyl-3-buten-1-ol. Chinese Sci. Bull.2009,54,3808-3812.
    [61]Takahashi, K.; Xing, J.H.; Hurley, M.D.; Wallington, T.J. Kinetics and mechanism of chlorine-atom-initiated oxidation of allyl alcohol,3-buten-2-ol, and 2-methyl-3-buten-2-ol. J. Phys. Chem. A 2010,114,4224-4231.
    [62]Barnes, I.; Hjorth, J.; Mihalopoulos, N. Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere. Chem. Rev.2006,106,940-975.
    [63]Tyndall, G. S.; Ravishankara, A. R. Atmospheric oxidation of reduced sulfur species. Int. J. Chem. Kinet.1991,23,483-527.
    [64]Oksdath-Mansilla, G.; Penenry, A.B.; Albu, M.; Barnes, I.; Wiesen, P.; Teruel, M. A. FTIR relative kinetic study of the reactions of CH3CH2SCH2CH3 and CH3CH2SCH3 with OH radicals and Cl atoms at atmospheric pressure. Chem. Phys. Lett.2009,477, 22-27.
    [65]IUPAC, http://www.iupac-kinetic.ch.cam.ac.uk/(2007).
    [66]Barone, S. B.; Turnipseed, A. A.; Ravishankara, A. R. Reaction of OH with dimethyl sulfide (DMS).1. Equilibrium constant for OH+DMS reaction and the kinetics of the OH·DMS+O2 reaction.J. Phys.Chem.1996,100,14694-14702.
    [67]Turnipseed, A. A.; Barone, S. B.; Ravishankara, A. R. Reaction of OH with dimethyl sulfide.2. Products and mechanisms. J. Phys.Chem.1996,100,14703-14713.
    [68]Hynes, A. J.; Wine, P. H.; Semmes, D. H. Kinetics and mechanism of hydroxyl reactions with organic sulfides. J. Phys. Chem.1986,90,4148-4156.
    [69]Wine, P. H.; Kreutter, N. M.; Gump, C. A.; Ravishankara, A. R. Kinetics of hydroxyl radical reactions with the atmospheric sulfur compounds hydrogen sulfide, methanethiol, ethanethiol, and dimethyl disulfide. J. Phys. Chem.1981,85, 2660-2665.
    [70]Atkinson, R.; Perry, R. A.; Pitts, J. N. Rate constants for the reaction of OH radicals with COS, CS2 and CH3SCH3 over the temperature range 299-430 K. Chem. Phys. Lett.1978,54,14-18.
    [71]Arsene, C.; Barnes, I.; Becker, K. H.; Mocanu, R. FT-IR product study on the photo-oxidation of dimethyl sulphide in the presence of NOx-temperature dependence. Atmos. Environ.2001,35,3769-3780.
    [72]Arsene, C.; Barnes, I.; Becker, K. H. FT-IR product study of the photo-oxidation of dimethyl sulfide:Temperature and O2 partial pressure dependence. Phys. Chem. Chem. Phys.1999,1,5463-5470.
    [73]S(?)rensen, S.; Falbe-Hansen, H.; Mangoni, M.; Hjorth, J.; Jensen, N. R. Observation of DMSO and CH3S(O)OH from the gas phase reaction between DMS and OH. J. Atmos. Chem.1996,24,299-315.
    [74]Barnes, I.; Bastian, V.; Becker, K. H.; Martin, D. Fourier-transform Ir studies of the reactions of dimethyl-sulfoxide with OH, NO3, and Cl radicals. ACS Symp. Ser. 1989, 393,476-488.
    [75]El-Nahas, A. M.; Uchimaru, T.; Sugie, M.; Tokuhashi, K.; Sekiya, A. Hydrogen abstraction from dimethyl ether (DME) and dimethyl sulfide (DMS) by OH radical: a computational study. J. Mol. Struct. THEOCHEM.2005,722,9-19.
    [76]Gonzalez-Garcia, N.; Gonzalez-Lafont, A.; Lluch, J. M. Electronic structure study of the initiation routes of the dimethyl sulfide oxidation by OH. J. Comput. Chem.2005, 26,569-583.
    [77]Aloisio, S. Theoretical study of adducts of dimethyl sulfide with hydroperoxyl and hydroxyl radicals. Chem. Phys.2006,326,335-343.
    [78]Gonzalez-Garcia, N.; Gonzalez-Lafont, A.; Lluch, J. M. Kinetic study on the reaction of OH radical with dimethyl sulfide in the absence of oxygen. Chem. Phys. Chem.2007,8,255-263.
    [79]Hynes, A.J.; Wine, P.H. The atmospheric chemistry of dimethylsulfoxide (DMSO) kinetics and mechanism of the OH+DMSO reaction. J. Atmos. Chem.1996,24, 23-37.
    [80]Urbanski, S.P.; Stickel, R.E.; Wine, P.H. Mechanistic and kinetic atudy of the gas-phase reaction of hydroxyl radical with dimethyl sulfoxide. J. Phys. Chem. A 1998,102,10522-10529.
    [81]Falbe-Hansen, H.; Sorensen, S.; Jensen, N.R.; Pedersen, T.; Hjorth, J. Atmospheric gas-phase reactions of dimethylsulphoxide and dimethylsulphone with OH and NO3 radicals, Cl atoms and ozone. Atmos. Environ.2000,34,1543-1551.
    [82]Arsene, C.; Barnes, I.; Becker, K.H.; Schneider, W.F.; Wallington, T.T. Mihalopoulos, N.; Patroescu-Klotz, I.V. Formation of methane sulfinic acid in the gas-phase OH-radical initiated oxidation of dimethyl sulfoxide. Environ. Sci. Technol.2002,36,5155-5163.
    [83]Wang, L.M.; Zhang, J.S. Ab initio study of reaction of dimethyl sulfoxide (DMSO) with OH radical. Chem. Phys. Lett.2002,356,490-496.
    [84]Kukui, A.; Borissenko, D.; Laverdet, G.; Le Bras, G. Gas-phase reactions of OH radicals with dimethyl sulfoxide and methane sulfinic acid using turbulent flow reactor and chemical ionization mass spectrometry. J. Phys. Chem. A 2003,107, 5732-5742.
    [85]Resende, S.M.; de Bona, J.C.; de Souza Sombrio, P. Theoretical study of the role of adducts in the atmospheric oxidation of dimethyl sulfoxide by OH, O2 and O3 and the kinetics of the reaction DMSO+OH.Chem. Phys.2005,309,283-289.
    [86]Gonzalez-Garcia, N.; Gonzalez-Lafont, A.; Lluch, J. M. Variational transition-state theory study of the dimethyl sulfoxide (DMSO) and OH reaction J. Phys. Chem. A 2006,110,798-808.
    [87]J(?)rgensen, S.; Kjaergaard, H.G. Effect of hydration on the hydrogen abstraction reaction by HO in DMS and its oxidation products. J. Phys. Chem. A 2010,114, 4857-4863.
    [88]Aschmann, S.M.; Tuazon, E.C.; Long, W.D.; Atkinson, R. Kinetics and products of the gas-phase reactions of divinyl sulfoxide with OH and NO3 radicals and O3. J. Phys. Chem. A 2008,112,8723-8730.
    [89]Atkinson, R.; Tuazon, E. C.; Aschmann, S. M. Products of the gas-phase reactions of a series of 1-alkenes and 1-methylcyclohexene with the OH radical in the presence of NO. Environ. Sci. Technol.1995,29,1674-1680.
    [90]National Research Council. Ozone and other photochemical oxidants; National Academy of Sciences:Washington, DC,1977.
    [91]Grosjean, D.; Seinfeld, J. H. Parameterization of the formation potential of secondary organic aerosols. Atmos. Environ.1989,23,1733-1747.
    [92]Grosjean, D. In situ organic aerosol formation during a smog episode:Estimated production and chemical functionality. Atmos. Environ.1992,26A,953-963.
    [93]Bowman, F. M.; Pilinis, C.; Seinfeld, J. H. Ozone and aerosol productivity of reactive organics. Atmos. Environ.1995,29,579-589.
    [94]Grosjean, D.; Van Cauwenberghe, K.; Schmid, J.; Kelley, P. E.; Pitts, J. N., Jr. Identification of C3-C10 aliphatic dicarboxylic acids in airborne particulate matter. Environ. Sci. Technol.1978,12,313-317.
    [95]Grosjean, D.; Williams, E. L., H; Grosjean, E.; Andino, J. M.; Seinfeld, J. H. Atmospheric oxidation of biogenic hydrocarbons:Reaction of ozone with beta-pinene, D-limonene and trans-caryophyllene. Environ. Sci. Technol.1993,27, 2754-2758.
    [96]Grosjean, D.; Williams, E. L., H; Seinfeld, J. H. Atmospheric oxidation of selected terpenes and related carbonyls:Gas-phase carbonyl products. Environ. Sci. Technol. 1992,26,1526-1533.
    [97]Grosjean, D.; Williams, E. L., II; Grosjean, E.; Novakov, T. Evolved gas analysis of secondary organic aerosols. Aerosol Sci. Technol.1994,21,306-324.
    [98]Hansen, N.; Klippenstein, S. J.; Miller, J. A.; Wang, J.; Cool, T. A.; Law, M. E.; Westmoreland, P. R.; Kasper, T.; Kohse-Hoinghaus, K. Identification of C5Hx isomers in fuel-rich flames by photoionization mass spectrometry and electronic structure calculations. J. Phys. Chem. A 2006,110,4376-4388.
    [99]Hansen, N.; Kasper, T.; Klippenstein, S. J.; Westmoreland, P. R.; Law, M. E.; Taatjes, C. A.; Kohse-Hoinghaus, K.; Wang, J.; Cool, T. A. Initial steps of aromatic ring formation in a laminar premixed fuel-rich cyclopentene flame. J. Phys. Chem. A 2007,111,4081-4092.
    [100]Gomez, A.; Sidebotham, G.; Glassman, I. Sooting behavior in temperature-controlled laminar diffusion flames. Combust. Flame 1984,58,45-57.
    [101]McEnally, C. S.; Pfefferle, L. D. An experimental study in nonpremixed flames of hydrocarbon growth processes that involve five membered carbon rings. Combust. Sci. Technol.1998,131,323-344.
    [102]Hatakeyama, S.; Ohno, M.; Weng, J. H.; Takagi, H.; Akimoto, H. Mechanism for the formation of gaseous and particulate products from ozone-cycloalkene reactions in air. Environ. Sci. Technol.1987,21,52-57.
    [103]Meloni, G.; Selby, T. M.; Osborn, D. L.; Taatjes, C. A. Enol formation and ring-opening in OH-Initiated oxidation of cycloalkenes. J. Phys. Chem. A 2008, 112,13444-13451.
    [104]Izumi, K.; Murano, K.; Mizuochi, M.; Fukuyama, T. Aerosol formation by the photooxidation of cyclohexene in the presence of nitrogen oxides. Environ. Sci. Technol.1988,22,1207-1215.
    [105]Grosjean, E.; Grosjean, D.; Seinfeld, J. H. Atmospheric chemistry of 1-octene, 1-decene, and cyclohexene:Gas-phase carbonyl and peroxyacyl nitrate products. Environ. Sci. Technol.1996,30,1038-1047.
    [106]Aschmann S. M.; Arey J.; Atkinson R. Kinetics and products of the reactions of OH radicals with cyclohexene,1-methyl-1-cyclohexene, cis-cyclooctene, and cis-cyclodecene. J. Phys. Chem. A 2012,116,9507-9515.
    [1]Heitler, W.; London, F. Wechselwirkung neutraler atome und homoopolare bindung nach der quantenmechanik. Z. Phys.1927,44,455-472.
    [2]唐敖庆,杨忠志,李前树,量子化学,北京,科学出版社,1982.
    [3]潘道恺等,物质结构,北京,人民教育出版社,1982.
    [4]封继康,基础量子化学原理,北京,高等教育出版社,1987.
    [5]陈念陔,高坡,乐征宇,量子化学理论基础,哈尔滨,哈尔滨工业大学出版社,2002.
    [6]林梦海,量子化学计算方法与应用,北京,科学出版社,2004
    [7]王荣顺,基础量子化学,长春,东北师范大学出版社,2006
    [8]徐光宪,量子化学基本原理和从头算法,北京,科学出版社,2008
    [9]Schrodinger, E. Quantisierung als eigenwertproblem. Ann. der. Phys.1926,79, 361-367.
    [10]Levine, I.N. Quantum Chemistry.3rd ed., Allyn&Bacon:Boston,1983.
    [11]Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927,84,457-484.
    [12]Hartree, D. R. The wave mechanics of an atom with a non-coulomb central field. Part II. Some results and discussion. Math. Proc. Camb. Phil. Soc.,1928, 24,111-132.
    [13]Pauli, W. Uber den zusammenhang des abschlusses der elektronengruppen im atom mit der komplexstruktur der spektren. Z. Physik,1925,31,765-783.
    [14]Fock, V. Naherungsmethoden zur losung des quantenmechanischen mehrkorperproblems. Zeit. Phys.1930,61,126-148.
    [15]Hehre,W.J.; Radom, L.; Schleyer, P.v.R. et al., Ab initio Molecular Orbital Theory, John Wiley&Sons, Inc.,1986.
    [16]McQuarrie, D.A. Quantum Chemistry University Science Books. Mill Vally:CA. 1983.
    [17]Pople, J.A.; Head-Gordon, M.; Raghavachari, K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J. Chem. Phys. 1987,87,5968-5975.
    [18]Roothaan, C.C.J. New developments in molecular orbital theory. Rev. Mod. Phys. 1951,23,69-89.
    [19]Schlegel, H. B.; Sosa, C. Ab initio molecular orbital calculations on F+H2→HF+H and OH+H2→H2O+H using unrestricted m(?)ller-plesset perturbation theory with spin projection. Chem. Phys. Lett.1988,145,329-333.
    [20]Ignatyev, I. S.; Xie, Y.; Allen, W. D.; Schaefer, H. F. Mechanism of the C2H5+O2 reaction. J. Chem. Phys.1997,107,141-155.
    [21]Lowdin, P. O. Correlation problem in many-electron quantum mechanics. Adv. Chem. Phys.1959,2,207-322.
    [22]M(?)ller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys. Rev.1934,46,618-622.
    [23]Head-Gordon, M.; Pople, J.A.; Frisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett.1988,153,503-506.
    [24]Pople, J.A.; Binkley, J.S.; Seeger, R. Theoretical models incorporating electron correlation. Int. J. Quant. Chem. Symp.1976,10,1-19.
    [25]Krishnan, R.; Pople, J.A. Approximate fourth-order perturbation theory of the electron correlation energy. Int. J. Quant. Chem.1978,14,91-100.
    [26]Raghavachari, K.; Pople, J.A.; Replogle, E.S.; Head-Gordon, M. Fifth order Moller-Plesset perturbation theory:comparison of existing correlation methods and implementation of new methods correct to fifth order. J. Phys. Chem.1990,94, 5579-5586.
    [27]Pople, J. A.; Seeger, R.; Krishnan, R. Variational configuration interaction methods and comparison with perturbation theory. Int. J. Quant. Chem. Symp.1977,11, 149-163.
    [28]Foresman, J. B.; Head-Gordon, M; Pople, J. A.; Frisch, M.J. Toward a systematic molecular orbital theory for excited states. J. Phys. Chem.1992,96,135-149.
    [29]Krishnan, R.; Schlegel, H. B.; Pople, J. A. Derivative studies in configuration interaction theory. J. Chem. Phys.1980,72,4654-4655.
    [30]Brooks, B. R.;Laidig, W. D.; Saxe, P. Goddard, J.D.; Yamaguchi, Y.; Schaefer, H.F. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach. J. Chem. Phys.1980,72,4652-4653.
    [31]Salter, E. A.; Trucks, G. W.; Bartlett, R. J. Analytic energy derivatives in many-body methods I. First derivatives. J. Chem. Phys.1989,90,1752-1766.
    [32]Raghavachari, K.; Pople, J. A. The calculation of one-electron properties using limited configuration interaction techniques. Int. J. Quantum. Chem.1981,20, 1067-1071.
    [33]Mitrushenkov, A.O. Passing the several billions limit in FCl calculations on a mini-computer. Chem. Phys. Lett.1994,217,559-565.
    [34]He, Z.; Kraka, E.; Cremer, D. Application of quadratic CI with singles, doubles, and triples (QCISDT):An attractive alternative to CCSDT. Int. J. Quantum. Chem.1996, 57,157-172.
    [35]Paldus, J.; Cizek, J.; Jeziorski, B. Coupled cluster approach or quadratic configuration interaction?J.Chem. Phys.1989,90,4356-4362.
    [36]Pople, J.A.; Head-Gordon, M.; Raghavachari, K. Quadratic configuration interaction: Reply to comment by Paldus, Cizek, and Jeziorski. J. Chem. Phys.1989,90, 4635-4636.
    [37]Pople, J.A.; Krishnan,R.; Schlegel, H.B.; Binkley, J.S. Electron correlation theories and their application to the study of simple reaction potential surfaces. Int. J. Quant. Chem.1978,14,545-560.
    [38]Kaufman, J. J.; Salahub, D.; Preston, H. J. T. General applicability of a big molecule gaussian SCF/CI program for calculations of excited metastables and of negative ion bound states and resonances. I. Stabilization method:H-. Int. J. Quant. Chem.1978, 14,515-518.
    [39]Bartlett, R.J.; Purvis,G. D. Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem. Int. J. Quant. Chem.1978,14,561-581.
    [40]Scuseria, G.E.; Schaefer, Ⅲ, H.F. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? J. Chem. Phys.1989,90,3700-3703.
    [41]Purvis, G.D.; Bartlett, R.J. A full coupled-cluster singles and doubles model:The inclusion of disconnected triples.J. Chem. Phys.1982,76,1910-1918.
    [42]Scuseria,G.E.; Janssen, C.L.; Schaefer,III, H.F. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys.1988,89,7382-7387.
    [43]Jayatilaka, D.; Lee, T. J. Open-shell coupled-cluster theory. J. Chem. Phys.1993,98, 9734.9747.
    [44]Rienstra-Kiracofe, J. C.; Schaefer, Ⅲ, H. F. The C2H5+O2 reaction mechanism: high-level ab initio characterizations. J. Phys. Chem. A 2000,104,9823-9840.
    [45]Thomas, L.S. The calculation of atomic fields. Proc. Cambridge Philos.Soc.1927,23, 542-548.
    [46]Fermi, E. A statistical method for the determination of some properties of atom. II Application to the periodic system of elements. Z. Phys.1928,48,73-79.
    [47]Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 1964,136, B864-B871.
    [48]Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev.1965,140, A1133-A1138.
    [49]Slater, J.C. Phillips, J. C. Quantum Theory of Molecular and Solids.Vol.4:the self-consistent field for molecular and solids. McGraw-Hill:New York,1974.
    [50]Salahub, D.R.; Zerner, M.C. eds. The Challenge of d and f Electrons. ACS: Washington, D.C.1989.
    [51]Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules. Oxford Univ. Press:Oxford,1989.
    [52]Pople, J.A.; Gill, P.M.W.; Johnson, B.G. Kohn-Sham density-functional theory within a finite basis set. Chem. Phys. Lett,1992,199,557-560.
    [53]Johnson, B.G.; Frisch, M.J. An implementation of analytic second derivatives of the gradient-corrected density functional energy. J. Chem. Phys.1994,100,7429-7442.
    [54]Labanowski, J.K.; Andzelm, J.W. eds., Density Functional Methods Chemistry. Springer-Verlag:New York,1991.
    [55]Kohn, W. Density Funtional Theory:Fundamentals and Applications. Highlights of Condensed Matter Theory, North Holland,1985:1
    [56]Sham, L. J.; Kohn, W. One-particle properties of an inhomogeneous interacting electron gas. Phys. Rev. B 1966,145,561-567.
    [57]Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 1964,136, 864-871.
    [58]Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev.1965,140,1133-1140.
    [59]Hedin, L.; Lundqvist, B. I. Explicit local exchange correlation potentials. J. Phys. Chem.1971,4,2064-2083.
    [60]Ceperley, D.M.; Alder, B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett.1980,45,566-569.
    [61]Callawav, N.; March, N.H. Density functional methods:Theory and applications. Sol. State Phys.1984,38,35-221.
    [62]Dreizler, R. M. Density Functional Theory. Springer-verlag,1990.
    [63]Perdew, J. P.; Wang, Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron-gas. Phys. Rev. B 1992,46,12947-12954.
    [64]Langreth, D C, Perdew, J. P. Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Phys. Rev. B 1986,21, 5469-5493.
    [65]Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988,38,3098-3100.
    [66]Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986,33,8822-8824.
    [67]Perdew, J. P.; Wang, Y. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation. Phys. Rev. B 1986,33, 8800-8802
    [68]Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation-energy. Phys. Rev. B 1992,45,13244-13249.
    [69]Kresse, G.; Hafner, J. Ab initio molecular dynamics for open shell transition metals. Phys. Rev. B 1993,48,13115-13118.
    [70]Vosko, S.J.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:A critical analysis. Can. J. Phys.1980, 58,1200-1211.
    [71]Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti conelation energy formula into a functional of the electron density. Phys. Rev. B 1988,37,785-789.
    [72]Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett.1989, 157,200-206.
    [73]Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981,23,5048-5079.
    [74]Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986,33,8822-8824.
    [75]Burke, K.; Perdew, J. P.; Wang, Y. in Electronic Density Functional Theory:Recent Progress and New Directions, Ed. Dobson, J. F.; Vignale, G.; Das, M. P. Plenum, 1998.
    [76]Perdew, J. P. in Electronic Structure of Solids, Ed. Ziesche, P.; Eschrig H. Akademie Verlag:Berlin,1991.
    [77]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46,6671-6687.
    [78]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Erratum:Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1993,48,4978-4978.
    [79]Perdew, J.P.; Burke,K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996,54, 16533-16539.
    [80]Hu, P.; King, D.A.; Lee, M.H.; Payne, M.C. Orbital mixing in CO chemisorption on transition metal surfaces. Chem. Phys. Lett.1995,246,73-78.
    [81]Hu, P.; King, D.A.; Crampin, S.; Lee, M.H.; Payne, M.C. Gradient corrections in density functional theory calculations for surfaces:Co on Pd{110}. Chem. Phys. Lett. 1994,230,501-506.
    [82]Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys.1993,98,5648-5652.
    [83]Curtiss, L.A.; Raghavachari, K.;Trucks, G.W. etc. Gaussian-2 theory for molecular energies of first-and second-row compounds. J. Chem. Phys.1991,94,7221-7230.
    [84]Becke, A. D. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys.1996,104, 1040-1046..
    [85]Adamo C.; Barone, V. Toward reliable adiabatic connection models free from adjustable parameters. Chem. Phys. Lett.1997,274,242-250.
    [86]Adamo C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:The mPW and mPW1PW models. J. Chem. Phys.1998,108,664-675.
    [87]Becke, A. D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys.,1993,98,1372-1377.
    [88]Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc.2008,120, 215-241.
    [89]Woon, D.E.; Dunning Jr., T.H. Gaussian basis sets for use in correlated molecular calculations. Ⅲ. The atoms aluminum through argon. J. Chem. Phys.1993,98, 1358-1371.
    [90]Kendall, R.A.; Dunning Jr., T.H.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys.1992,96, 6796-6806.
    [91]Dunning Jr., T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys.1989,90,1007-1023.
    [92]Peterson, K.A.; Woon, D.E.; Harrison, R.J. Benchmark calculations with correlated molecular wave functions. Ⅳ. The classical barrier height of the H+H2→H2+H reaction.J.Chem. Phys.1994,100,7410-7415.
    [93]Wilson,A.K.; van Mourik T.; Dunning Jr., T.H. Gaussian basis sets for use in correlated molecular calculations. Ⅵ. Sextuple zeta correlation consistent basis sets for boron through neon. J. Mol. Struct. Theochem 1997,388,339-349.
    [94]Davidson, E.R. Comment on "Comment on Dunning's correlation-consistent basis sets". Chem. Phys. Lett.1996,220,514-518.
    [95]赵学庄,罗渝然,臧雅茹,万学适著,化学反应动力学原理(下册),北京,高等教育出版社,1990。
    [96]Fukui, K. Formulation of the reaction coordinate. J. Phys. Chem.1970,74, 4161-4163.
    [97]Fukui, K. Variational principles in a chemical reaction, Int. J. Quantum. Chem.1981, 15,633-642.
    [98]Fukui, K.; Tachibana,A.; Yamashita, K. Toward chemodynamics, Int. J. Quantum. Chem.1981,15,621-632.
    [99]Gonzalez, C.; Schlegel, H.B. An improved algorithm for reaction path following. J. Chem. Phys.1989,90,2154-2161.
    [100]Gonzalez, C.; Schlegel, H.B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem.1990,94,5523-5527.
    [1]Harley, P.; Fridd-Stroud, V.; Greenberg, J.; Guenther A.; Vasconcellos, P. Emission of 2-methyl-3-buten-2-ol by pines:a potentially large natural source of reactive carbon to the atmosphere. J. Geophys.Res.1998,103,25479-25486.
    [2]Kesselmeier, J.; Staudt, M. Biogenic Volatile Organic Compounds (VOC):an overview on emission, physiology and ecology. J. Atmos. Chem.1999,33,23-88.
    [3]Guenther, A.; Zimmerman, P.; Klinger, L. Estimates of regional natural volatile organic compound fluxes from enclosure and ambient measurements. J. Geophys. Res. 1996,101,1345-1359.
    [4]Cometto, P.M.; Dalmasso, P.R.; Taccone, R.A.; Lane, S.I.; Oussar, F.; Daele, V. Mellouki, A.; Le Bras, G. Rate coefficients for the reaction of OH with a series of unsaturated alcohols between 263 and 371 K. J. Phys. Chem. A 2008,112, 4444.4450.
    [5]Grosjean, D.; Grosjean, E.; Williams H, E.L. Atmospheric chemistry of unsaturated alcohols. Environ. Sci. Technol.1993,27,2478-2485.
    [6]Rudich, Y.; Talukdar, R.; Burkholder, J.B.; Ravishankara, A.R. Reaction of methylbutenol with hydroxyl radical:Mechanism and atmospheric implications. J. Phys. Chem.1995,99,12188-12194.
    [7]Upadhyaya, H.P.; Kumar, A.; Naik, P.D.; Sapre, A.V.; Mittal, J.P. Kinetics of OH radical reaction with allyl alcohol(H2C=CHCH2OH) and propargyl alcohol(HCCCH2OH) studied by LIF. Chem. Phys. Lett.2001,349,279-285.
    [8]Papagni, C.; Arey J.; Atkinson, R. Rate constants for the gas-phase reactions of OH radicals with a series of unsaturated alcohols. Inter. J. Chem. Kinet.2001,33, 142-147.
    [9]Orlando, J.J.; Tyndall, G.S.; Ceazan, N. Rate coefficients and product yields from reaction of OH with 1-penten-3-ol, (Z)-2-penten-l-ol, and allyl alcohol (2-propen-l-ol). J. Phys. Chem. A 2001,105,3564-3569.
    [10]Imamura, T.; Iida, Y.; Obi, K.; Nagatani, I.; Nakagawa, K.; Patroescu-Klotz, I.; Hatakeyama, S. Rate coefficients for the gas-phase reactions of OH radicals with methylbutenols at 298 K. Int. J. Chem. Kinet.2004,36,379-385.
    [11]Holloway, A.L.; Treacy, J.; Sidebottom, H.; Mellouki, A.; Daele, V.; Le Bras G.; Barnes, I. Rate coefficients for the reactions of OH radicals with the keto/enol tautomers of 2,4-pentanedione and 3-methyl-2,4-pentanedione, allyl alcohol and methyl vinyl ketone using the enols and methyl nitrite as photolytic sources of OH. J. Photochem. Photobiol. A 2005,176,183-190.
    [12]Le Person, A.; Solignac, G.; Oussar, F.; Daele, V.; Mellouki, A.; Winterhalter, R.; Moortgat, G.K. Gas phase reaction of allyl alcohol (2-propen-l-ol) with OH radicals and ozone. Phys. Chem. Chem. Phys.2009,11,7619-7628.
    [13]Jimenez, E.; Lanza, B.; Antinolo, M.; Albaladejo, J. Photooxidation of leaf-wound oxygenated compounds, 1-penten-3-ol, (Z)-3-hexen-l-ol, and 1-penten-3-one, initiated by OH radicals and sunlight. Environ. Sci. Technol.2009,43,1831-1837.
    [14]Hallquist, M.; Langer, S.; Ljungstrom, E.; Wangberg, I. Rates of reaction between the nitrate radical and some unsaturated alcohols. Int. J. Chem. Kinet.1996,28, 467-474.
    [15]Fantechi, G.; Jensen, N.R.; Hjorth, J.; Peeters, J. Mechanistic studies of the atmospheric oxidation of methyl butenol by OH radicals, O3 and NO3 radicals. Atmos. Environ.1998,32,3547-3556.
    [16]Alvarado, A.; Tuazon, E.C.; Aschmann, S.M.; Arey, J.; Atkinson, R. Products and mechanisms of the gas-phase reactions of OH radicals and O3 with 2-methyl-3-buten-2-ol. Atmos. Environ.1999,33,2893-2905.
    [17]Noda, J.; Hallquist, M.; Langer, S.; Ljungstrom, E. Products from the gas-phase reaction of some unsaturated alcohols with nitrate radicals. Phys. Chem. Chem. Phys. 2000,2,2555-2564.
    [18]Noda, J.; Nyman, G.; Langer, S. Kinetics of the gas-phase reaction of some unsaturated alcohols with the nitrate radical. J. Phys. Chem. A 2002,106,945-951.
    [19]Pfrang, C.; Romero, M.T.B.; Cabanas, B.; Canosa-Mas, C.E.; Villanueva, F.; Wayne, R.P. Night-time tropospheric chemistry of the unsaturated alcohols (Z)-pent-2-en-l-ol and pent-l-en-3-ol:Kinetic studies of reactions of NO3 and N2O5 with stress-induced plant emissions. Atmos. Environ.2007,41,1652-1662.
    [20]Parker, J.K.; Espada-Jallad, C. Kinetics of the gas-phase reactions of OH and NO3 radicals and O3 with allyl alcohol and allyl isocyanate. J. Phys. Chem. A 2009,113, 9814-9824.
    [21]Graedel, T.E.; Keene, W.C. Tropospheric budget of reactive chlorine. Global Biogeochem. Cycles 1995,9,47-78.
    [22]Finlayson-Pitts, B.J. Comment on "Indications of photochemical histories of Pacific air masses from measurements of atmospheric trace species at Point Arena, California" by D. D. Parrish et al.J.Geophys. Res.1993,98,14991.
    [23]Leu, M.T.; Timonen, R.S.; Keyser L.S.; Yung, Y.T. Heterogeneous reactions of HNO3(g)+NaCl(s)→HCl(g)+NaNO3(s) and N2O5(g)+NaCl(s)→ClNO2(g)+ NaNO3(s). J. Phys. Chem.1995,99,13203-13212.
    [24]Singh, H.B.; Kasting, J.F. Chlorine-hydrocarbon photochemistry in the marine troposphere and lower stratosphere. J. Atmos. Chem.1988,7,261-285.
    [25]Clegg, S.L.; Brimblecombe, P. Potential degassing of HCl from acidified NaCl droplets. Atmos. Environ.1985,19,465-470.
    [26]Tanaka, P.L.; Oldfield, S.; Neece, J.D.; Mullins, C.B.; Allen, D.T. Anthropogenic sources of chlorine and ozone formation in urban atmospheres. Environ. Sci. Technol. 1993,34,4470-4473.
    [27]Galan, E.; Gonzalez I., Fabbri, B. Estimation of fluorine and chlorine emissions from Spanish structural ceramic industries. The case study of the Bailen area, Southern Spain. Atmos. Environ.2002,36,5289-5298.
    [28]Fantechi, G.; Jensen, N.R.; Saastad, O.; Hjorth, J.; Peeters, J. Reactions of Cl atoms with selected VOCs:Kinetics, products and mechanisms. J. Atmos. Chem.1998,31, 247-267.
    [29]Rodriguez, D.; Rodriguez, A.; Soto, A.; Aranda, A.; Diaz-de-Mera, Y.; Notario, A. Kinetics of the reactions of Cl atoms with 2-buten-l-ol,2-methyl-2-propen-1-ol, and 3-methyl-2-buten-1-ol as a function of temperature. J. Atmos. Chem.2008,59, 187-197.
    [30]Aranda, A.; Martinez, E.; Diaz-de-Mera, Y.; Rodriguez, A.; Rodriguez, D.; Cuartero, J. Low-pressure study of the reactions of Cl atoms with acrylic acid and allyl alcohol. Atmos. Environ.2003,37,4361-4369.
    [31]Wang, L.; Ge M.F.; Wang, W.G. Kinetic study of the reaction of chlorine atoms with 3-methyl-3-buten-l-ol. Chinese Sci. Bull.2009,54,3808-3812.
    [32]Fantechi, G.; Jensen, N.R.; Hjorth, J.; Peeters, J. Determination of the rate constants
    [1]Andreae, M.O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar. Chem.1990,30,1-29.
    [2]Spiro, P.A.; Jacob, D.J.; Logan, J.A. Global inventory of sulfur emissions with 1°x1° resolution. J. Geophys. Res.1992,97,6023-6036.
    [3]Bates, T. S.; Lamb, B. K.; Guenther, A.; Dignon, J.; Stoiber, R. E. Sulfur emissions to the atmosphere from natural source. J. Atmos. Chem.1992,14,315-337.
    [4]Ravishankara, A.R.; Rudich, Y.; Talukdar, R.; Barone, S.B. Oxidation of atmospheric reduced sulphur compounds:perspective from laboratory studies. Philos. Trans. R. Soc. London B 1997,352,171-182.
    [5]Oksdath-Mansilla, G.; Penenry, A.B.; Albu, M.; Barnes, I.; Wiesen, P.; Teruel, M. A. FTIR relative kinetic study of the reactions of CH3CH2SCH2CH3 and CH3CH2SCH3 with OH radicals and Cl atoms at atmospheric pressure. Chem. Phys. Lett.2009,477, 22-27.
    [6]Ingham, T.; Bauer, D.; Sander, R.; Crutzen, P.J.; Crowley, J.N. Kinetics and products of the reactions BrO+DMS and Br+DMS at 298 K. J. Phys. Chem. A 1999,103, 7199-7209.
    [7]Knight, G.P.; Crowley, J.N. The reactions of IO with HO2, NO and CH3SCH3:Flow tube studies of kinetics and product formation. Phys. Chem. Chem. Phys.2001,3, 393-401.
    [8]Aschmann, S.M.; Tuazon, E.C.; Long, W.D.; Atkinson, R. Kinetics and products of the gas-phase reactions of divinyl sulfoxide with OH and NO3 radicals and O3. J. Phys. Chem. A 2008,112,8723-8730.
    [9]Drabowicz, J.; Mikolajczyk, M. An improved method for oxidation of sulfides to sulfoxides with hydrogen peroxide in methanol. Synth. Commun.1981,11,1025-1030.
    [10]Ravikumar, K.S.; Begue, J.P.; Dauiele, B.D. A selective conversion of sulfide to sulfoxide in hexafluoro-2-propanol. Tetrahedron Lett.1998,39,3141-3144.
    [11]Hynes, A.J.; Wine, P.H. The atmospheric chemistry of dimethylsulfoxide (DMSO) kinetics and mechanism of the OH+DMSO reaction. J. Atmos. Chem.1996,24, 23-37.
    [12]Urbanski, S.P.; Stickel, R.E.; Wine, P.H. Mechanistic and kinetic atudy of the gas-phase reaction of hydroxyl radical with dimethyl sulfoxide. J. Phys. Chem. A 1998,102,10522-10529.
    [13]Arsene, C.; Barnes, I.; Becker, K.H.; Schneider, W.F.; Wallington, T.T.; Mihalopoulos, N.; Patroescu-Klotz, I.V. Formation of methane sulfinic acid in the gas-phase OH-radical initiated oxidation of dimethyl sulfoxide. Environ. Sci. Technol.2002,36,5155-5163.
    [14]Kukui, A.; Borissenko, D.; Laverdet, G.; Le Bras, G. Gas-phase reactions of OH radicals with dimethyl sulfoxide and methane sulfinic acid using turbulent flow reactor and chemical ionization mass spectrometry. J. Phys. Chem. A 2003,107, 5732-5742.
    [15]Wang, L.M.; Zhang, J.S. Ab initio study of reaction of dimethyl sulfoxide (DMSO) with OH radical. Chem. Phys. Lett.2002,356,490-496.
    [16]Resende, S.M.; de Bona, J.C.; de Souza Sombrio, P. Theoretical study of the role of adducts in the atmospheric oxidation of dimethyl sulfoxide by OH, O2 and O3 and the kinetics of the reaction DMSO+OH.Chem. Phys.2005,309,283-289.
    [17]Gonzalez-Garcia, N.; Gonzalez-Lafont, A.; Lluch, J. M. Variational transition-state theory study of the dimethyl sulfoxide (DMSO) and OH reaction J. Phys. Chem. A 2006,110,798-808.
    [18]Falbe-Hansen, H.; S(?)rensen, S.; Jensen, N.R.; Pedersen, T.; Hjorth, J. Atmospheric gas-phase reactions of dimethylsulphoxide and dimethylsulphone with OH and NO3 radicals, Cl atoms and ozone. Atmos. Environ.2000,34,1543-1551.
    [19]J(?)rgensen, S.; Kjaergaard, H. G. Effect of hydration on the hydrogen abstraction reaction by HO in DMS and its oxidation products. J. Phys. Chem. A 2010,114,4857-4863.
    [20]Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys.1993,98,1372-1377.
    [21]Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti conelation energy formula into a functional of the electron density. Phys. Rev. B 1988,37,785-789.
    [22]Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys.1984,80, 3265-3269.
    [23]EMSL Basis Set Library. http://www.emsl.pnl.gov/forms/basisform.html.
    [24]Huynh, L.K.; Ratkiewicz, A.; Truong, T.N. Kinetics of the hydrogen abstraction OH +alkane→H2O+alkyl reaction class:an application of the reaction class transition state theory. J. Phys. Chem. A 2006,110,473-484.
    [25]Vega-Rodriguez, A.; Alvarez-Idaboy, J.R. Quantum chemistry and TST study of the mechanisms and branching ratios for the reactions of OH with unsaturated aldehydes. Phys. Chem. Chem. Phys.2009,11,7649-7658.
    [26]Gonzalez, C.; Schlegel, H.B. An improved algorithm for reaction path following. J. Chem. Phys.1989,90,2154-2161.
    [27]Gonzalez, C.; Schlegel, H.B. Reaction Path Following in Mass-Weighted Internal Coordinates. J. Phys. Chem.1990,94,5523-5527.
    [28]Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett.1989, 157,479-483.
    [29]Rienstra-Kiracofe, J.C.; Allen, W.D.; Schaefer Ⅲ, H.F. The C2H5+O2 reaction mechanism:High-level ab initio characterizations. J. Phys. Chem. A 2000,104, 9823-9840.
    [30]Gill, P.M.W.; Pople, J.A.; Radom, L.; Nobes, R.H. Why does unrestricted M(?)ller-Plesset perturbation theory converge so slowly for spin-contaminated wave functions? J.Chem. Phys.1988,89,7307-7314.
    [31]McDouall, J.J.W.; Schlegel, H.B. Analytical gradients for unrestricted Hartree-Fock and second order M(?)ller-Plesset perturbation theory with single spin annihilation. J. Chem. Phys.1989,90,2363-2369.
    [32]Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J. R.; Montgomery Jr., J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. Gaussian 03, Revision C.02.; Gaussian, Inc.: Wallingford,2004.
    [33]Iuga, C.; Alvarez-Idaboy, J.R.; Reyes, L.; Vivier- Bunge, A. Can a single water molecule reallycatalyze the acetaldehyde+OH reaction in tropospheric conditions? J. Phys. Chem. Lett.2010,1,3112-3115.
    [34]Iuga, C.; Alvarez-Idaboy, J.R.; Vivier- Bunge, A. Single water-molecule catalysis in the glyoxal+OH reaction under tropospheric conditions:Fact or fiction? A quantum chemistry and pseudo-second order computational kinetic study. Chem. Phys. Lett. 2010,501,11-15.
    [35]Long, B.; Long, Z.; Wang, Y. et al., Formic acid catalyzed gas-phase reaction of H2O with SO3 and the reverse reaction:A theoretical study. Chem. Phys.Chem. 2012,13,323-329.
    [36]Francisco-Marquez, M.; Alvarez-Idaboy, J. R.; Galano, A.; Vivier-Bunge, A. Quantum chemistry and TST study of the mechanism and kinetics of the butadiene and isoprene reactions with mercapto radicals. Chem. Phys.2008,344,273-280.
    [37]Wallington, T.J.; Dagaut, P.; Kurylo, M.J. Ultraviolet absorption cross sections and reaction kinetics and mechanisms for peroxy radicals in the gas phase. Chem. Rev. 1992,92,667-710.
    [38]Galano, A.; Ruiz-Suarez, L.G.; Vivier-Bunge, A. On the mechanism of the OH initiated oxidation of acetylene in the presence of O2 and NOx. Theor. Chem. Account.2008,121,219-225.
    [39]M(?)ller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys.Rev.1934,46,618-622.
    [40]Arsene, C.; Barnes, I.; Becker, K.H.; Mocanu, R. FT-IR product study on the photo-oxidation of dimethyl sulphide in the presence of NOx—temperature dependence. Atmos. Environ.2001,35,3769-3780.
    [41]Francisco-Marquez, M.; Alvarez-Idaboy, J.R.; Galano, A.; Vivier-Bunge, A. On the role of s-cis conformers in the reaction of dienes with OH radicals. Phys. Chem. Chem. Phys.2004,6,2237-2244.
    [42]Francisco-Marquez, M.; Alvarez-Idaboy, J.R.; Galano, A.; Vivier-Bunge, A. Theoretical study of the initial reaction between OH and isoprene in tropospheric conditions.Phys. Chem. Chem. Phys.2003,5,1392-1399.
    [1]Guenther, A.; Hewitt, C. N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W. A.; Pierce, T.; Scholes, B.; Steinbrecher, R.; Tallamraju, R.; Taylor, J.; Zimmermann, P. A global model of natural volatile organic compound emissions. J. Geophys. Res.1995,100,8873-8892.
    [2]Zielinska, B.; Sagebiel, J. C.; Harshfield, G.; Gertler, A. W.; Pierson, W. R. Volatile organic compounds up to C20 emitted from motor vehicles; Measurement methods. Atmos. Environ.1996,30,2269-2286.
    [3]Calvert, J. G.; Atkinson, R.; Kerr, J. A.; Madronich, S.; Moortgat, G. K.; Wallington, T. J.; Yarwood, G. The Mechanisms of Atmospheric Oxidation of the Alkenes. Oxford University Press:New York,2000.
    [4]Atkinson, R. Gas-phase tropospheric chemistry of volatile organic compounds.1. Alkanes and alkenes. J. Phys. Chem. Ref. Data 1997,26,215-290.
    [5]Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev.2003,103,4605-4638.
    [6]Izumi, K.; Murano, K.; Mizuochi, M.; Fukuyama, T. Aerosol formation by the photooxidation of cyclohexene in the presence of nitrogen oxides. Environ. Sci. Technol.1988,22,1207-1215.
    [7]Atkinson, R.; Tuazon, E. C.; Aschmann, S. M. Products of the gas-phase reactions of a series of 1-alkenes and 1-methylcyclohexene with the OH radical in the presence of NO. Environ. Sci. Technol.1995,29,1674-1680.
    [8]Grosjean, E.; Grosjean, D.; Seinfeld, J. H. Atmospheric chemistry of 1-octene, 1-decene, and cyclohexene:Gas-phase carbonyl and peroxyacyl nitrate products. Environ. Sci. Technol.1996,30,1038-1047.
    [9]Meloni, G.; Selby, T. M.; Osborn, D. L.; Taatjes, C. A. Enol formation and ring-opening in OH-initiated oxidation of cycloalkenes.J. Phys. Chem. A 2008, 112,13444-13451.
    [10]Aschmann S. M.; Arey J.; Atkinson R. Kinetics and products of the reactions of OH radicals with cyclohexene,1-methyl-1-cyclohexene, cis-cyclooctene, and cis-cyclodecene. J. Phys. Chem. A 2012,116,9507-9515
    [11]Balaganesh, M.; Rajakumar, B. Rate coefficients and reaction mechanism for the reaction of OH radicals with (E)-CF3CH=CHF, (Z)-CF3CH=CHF, (E)-CF3CF=CHF, and (Z)-CF3CF=CHF between 200 and 400 K:Hybrid density functional theory and canonical variational transition state theory calculations. J. Phys. Chem. A,2012,116, 9832-9842.
    [12]Silva, G. Reaction of methacrolein with the hydroxyl radical in air:Incorporation of secondary O2 addition into the MACR+OH master equation. J. Phys. Chem. A, 2012,116,5317-5324.
    [13]Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Ace.2008,120, 215-241.
    [14]Zhao, Y.; Truhlar, D. G. Density Functionals with broad applicability in chemistry. Ace. Chem. Res.2008,41,157-161.
    [15]Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys.1984,80, 3265-3269.
    [16]EMSL Basis Set Library, http://www.emsl.pnl.gov/forms/basisform.html.
    [17]Gonzalez, C.; Schlegel, H.B. An improved algorithm for reaction path following. J. Chem. Phys.1989,90,2154-2161.
    [18]Gonzalez, C.; Schlegel, H.B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem.1990,94,5523-5527.
    [19]Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett.1989, 157,479-483.
    [20]Alecu, I. M.; Zheng, J.; Zhao, Y.; Truhlar, D. G. Computational Thermochemistry: Scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J. Chem. Theory Comput.2010,6,2872-2887.
    [21]Pople, J. A.; Head-Gordon, M.; Raghavachari, K. Quadratic configuration interaction-a general technique for determining electron correlation energies. J. Chem. Phys. 1987,87,5968-5975.
    [22]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.01; Gaussian, Inc. Wallingford CT,2009.
    [23]Ignatyev, I. S.; Xie Y, Allen W. D.; Schaefer, H. F. Mechanism of the C2H5+O2 reaction.J.Chem. Phys.,1997,107,141-155.
    [24]Schlegel, H. B.; Sosa, C. Abinitio molecular-orbital calculations on F+H2→HF+H and OH+H2→H2O+H using unrestricted moller-plesset perturbation-theory with spin projection. Chem. Phys. Lett.,1988,145 (4):329-333.
    [25]Gill, P.M.W.; Pople, J.A.; Radom, L.; Nobes, R.H. Why does unrestricted M(?)ller-Plesset perturbation theory converge so slowly for spin-contaminated wave functions? J. Chem. Phys.1988,89,7307-7314.
    [26]McDouall, J.J.W.; Schlegel, H.B. Analytical gradients for unrestricted Hartree-Fock and second order M(?)ller-Plesset perturbation theory with single spin annihilation. J. Chem. Phys.1989,90,2363-2369.
    [27]Jayatilaka, D.; Lee, T. J. Open-shell coupled-cluster theory. J. Chem. Phys,1993,98, 9734-9747.
    [28]Rienstra-Kiracofe, J.C.; Allen, W.D.; Schaefer III, H.F. The C2H5+O2 reaction mechanism:High-level ab initio characterizations. J. Phys. Chem. A,2000,104, 9823-9840.
    [29]Wallington, T.J.; Dagaut, P.; Kurylo, M.J. Ultraviolet absorption cross sections and reaction kinetics and mechanisms for peroxy radicals in the gas phase. Chem. Rev. 1992,92,667-710.
    [30]O'Brien, J. M.; Czuba, E.; Hastie, D. R.; Francisco, J. S.; Shepson, P. B. Determination of the hydroxy nitrate yields from the reaction of C2-C6 alkenes with OH in the presence of NO. J. Phys. Chem. A 1998,102,8903-8908.
    [31]Matsunaga, A.; Ziemann, P. J. Yields of β-hydroxynitrates and dihydroxynitrates in aerosol formed from OH radical-initiated reactions of linear alkenes in the presence of NOx. J. Phys. Chem. A 2009,113,599-606.
    [32]Ramalho, S. S.; Vilela, A. F. A.; Barreto, P. R. P.; Gargano, R. Theoretical rate constants for the reaction BF2+NF=BF3+N of importance in boron nitride chemistry. Chem. Phys. Lett.2005,413,151-156.
    [33]Anglada, J. M.; Domingo, V. M. Mechanism for the gas-phase reaction between formaldehyde and hydroperoxyl radical. A theoretical study. J. Phys. Chem. A 2005, 109,10786-10794.
    [34]Anglada, J. M.; Olivella S.; Sole, A. Mechanistic study of the CH3O2·+HO2·→ CH3O2H+O2 reaction in the gas phase. Computational evidence for the formation of a hydrogen-bonded diradical complex. J. Phys. Chem. A 2006,110,6073-6082.
    [35]Singleton, D. L.; Cvetanovic, R. J. Temperature dependence of the reaction of oxygen atoms with olefins. J. Am. Chem. Soc.1976,98,6812-6819.
    [36]Wigner, E. P. Uber das ubershrieten von potentialschwellen bei chemischen reaktionen. Z. Phys. Chem. Abt. B 1932,19,203-216.
    [37]Chase, M. W., Jr. NIST-JANAF Thermochemical Tables,4th ed. J. Phys. Chem. Ref. Data,1998, Monograph 9,1-1951.
    [38]Atkinson, R.; Aschmann, S. M.; Pitts, J. N., Jr. Rate constants for the gas-phase reactions of the OH radical with a series of monoterpenes at 294±1 K. Int. J. Chem. Kinet.1986,18,287-299.
    [39]Gill, K. J.; Hites, R. A. Rate constants for the gas-phase reactions of the hydroxyl radical with isoprene, α-and β-pinene, and limonene as a function of temperature. J. Phys. Chem. A 2002,106,2538-2544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700