二氧化硅的形貌调控及其吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变化是人类迄今面临的最重大环境问题,也是21世纪人类面临的最复杂挑战之一。化石燃料燃烧排放的CO2是造成全球气候变化的主要原因,对全球变暖的贡献率已超过了60%。在众多捕集工业废气中CO2的技术中,吸附分离是最有效的技术之一,而且一直备受研究者的青睐。而在吸附分离技术中,研发具有高吸附容量、高选择性和良好循环利用性能的CO2吸附剂成为技术的关键。在研发的各类CO2吸附剂中,以氨基修饰的介孔材料最受关注,因为其具有高比表面积、大孔容、孔径可调等优点,在CO2吸附、分离及存储等领域展现了广阔的应用前景。
     另一方面,甲醛是一种常见的室内空气污染物,长期处于含有甲醛的环境中,即使是在很低浓度(低于1ppm)下也对人体的健康不利,因此室内空气污染已经成为了重要的社会问题。吸附,洗气和高级氧化技术已经运用于去除空气中挥发性有机化合物(VOCs),比如甲醛和丙酮。在上述方法中,吸附法是一种更简便而且有效的去除气体甲醛的方法。本论文主要工作包括以下内容:
     1)氨基功能化单分散多孔SiO2微球的制备及其CO2吸附性能研究。氨基功能化单分散多孔SiO2微球是通过在水-乙醇-十二胺的混合溶液中将正硅酸乙酯(TEOS)进行水解和缩合反应,并在600℃下煅烧,最后利用四乙烯五胺(TEPA)进行表面功能化制备得到的。样品的CO2吸附性能是通过Chemisorb2720脉冲化学吸附系统进行分析。结果显示,煅烧温度对SiO2微球的比表面积,孔体积和孔径都有着显著的影响。随着煅烧温度的升高,比表面积和孔体积增大,而孔径随之减小。600℃下煅烧的SiO2微球的比表面积和孔体积分别达到921m2/g和0.48cm3/g。在氨基功能化之后,样品的比表面积和孔体积大幅度降低,分别降至34m2/g和0.08cm3/g,这是由于孔道被TEPA分子填充引起的。所有TEPA功能化的样品表现出了优良的CO2吸附性能,其CO2吸附性能与样品的TEPA负载量,吸附温度和比表面积有关。最佳的TEPA负载量(34wt%)和吸附温度(75℃)得到确定,在600℃下煅烧和TEPA负载量为34wt%时的SiO2样品拥有最大的C02吸附量(4.27mmol g-1吸附剂)。本研究将为设计和合成捕获CO2的新型多孔吸附材料提供新的视野。
     2)表面氨基修饰双峰分布多孔二氧化硅空心微球的制备及其CO2吸附性能研究。通过水热法合成了具有高比表面积的双峰分布大孔/介孔SiO2空心球(BMSHS),以十六烷基三甲基溴化铵(CTAB)和全氟十二烷酸(PFDOA)作为共模板剂,并研究CTAB/PFDOA的质量比对样品物理性能的影响,利用四乙烯五胺(TEPA)进一步修饰所制备的样品,并用X射线衍射(XRD)、透射电镜(TEM)、傅立叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、差热分析(DTA)、热重分析(TGA)和N2吸附脱附来进行结构表征,样品的CO2吸附性能是用纯的CO2气体在35-130℃下进行CO2吸附表征的。实验结果表明,所制备的样品均含有峰孔值在约3-4nm的介孔和峰孔值约在103到117nm间的大孔。这些介孔和大孔分别来自于空心球的壳层和空腔。R值对比表面积有显著的影响,当R值增大时,比表面积随之增大。所有TEPA修饰过的样品均表现出优良的CO2吸附性能,CO2吸附性能与样品的TEPA负载量,吸附温度和比表面积有关。最佳的TEPA负载量和吸附温度分别约为50wt%和110℃,而且CO2吸附量是与比表面积成正比的。在R=40和TEPA负载量为50wt%时所制备得到的BMSHS样品拥有最大的CO2吸附量(4.41mmol g-1吸附剂)。
     3)分等级二氧化硅空心微管的生物模板法合成及其甲醛吸附性能。二氧化硅空心管是以十六烷基三甲基溴化铵(CTAB);和生物模板杨絮(PC)作为共模板,通过水热法并改变PC/SiO2质量比R制备得到的,所制备的样品运用四乙烯五胺(TEPA)来进行修饰,并用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、差热分析(DTA)、热重分析(TGA)和N2吸附脱附对样品的微结构来进行表征,样品的甲醛吸附性能在常温常压下进行吸附测试。实验结果表明,所有样品均含有峰孔径约在2.5nm的介孔,这些介孔来源于空心微管的管壁,PC/SiO2的质量比R对样品的比表面积有着重要的影响,且样品P0.3具有最大的比表面积(896m2/g),所有负载TEPA的样品均表现出优异的甲醛吸附性能,甲醛吸附性能取决于样品的功能化的氨基官能团和比表面积,甲醛的吸附量与比表面积成正比关系。样品P0.3-50拥有最大的甲醛吸附量(20.65mg/g吸附剂)。
     4)ZrO2空心球的制备及其对刚果红的吸附性能研究。具有分等级结构的ZrO2空心微球是通过简单的水热方法制备得到,以氯氧化锆为原料,将其均匀分散在含有尿素、盐酸和乙醇的溶液中,通过调节水热时间即可得到Zr02空心微球和实心球;所制备样品的微结构通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、氮气吸附脱附来进行结构表征;并通过吸附水溶液中的刚果红来表征样品的吸附性能。分别用准一级,准二级和颗粒内扩散动力学模型来拟合样品的吸附动力学数据。准二级动力学和颗粒内扩散模型能更好地描述样品的吸附动力学。用Langmuir和Freundlich模型来分析所制备样品吸附刚果红的吸附平衡数据发现,Langmuir模型与实验数据符合得更好。通过Langmuir公式计算得到ZrO2空心球在30℃时对刚果红的最大吸附量(qmax)为59.5mg g-。与ZrO2实心球和试剂相比,ZrO2空心球对刚果红较高的最大吸附量是由于ZrO2空心微球具有较大的比表面积引起的。
The global climate change is the most critical environmental problem and is also one of the most complicated challenges facing to the whole mankind. CO2emission from fossil fuels combustion contributes to more than60%of the global climate change, which has been the main reason that results in the global climate change. Adsorption-based separation is considered to be one of the most effective technologies to capture CO2from industrial emissions. It is of great importance to develop an efficient CO2sorbent with a high CO2adsorption capacity, a high selectivity, and a long-term regeneration property, In recent years, among various types of CO2capture sorbents, amino-functionalized mesoporous silicas have attracted much attention due to their high surface area, large pore volume, tunable pore size, and high selectivity for CO2adsorption.
     The purification technology for removing indoor formaldehyde is of great importance because indoor air pollution has become an important social issue with increasing desire to improve the quality of life. Adsorption, scrubbing, and advanced oxidation have been applied to remove volatile organic compounds (VOCs) in air, such as formaldehyde and toluene. Among the above methods, adsorption is a simpler and more effective method to remove gaseous formaldehyde. The point can be summarized as follows:
     1) Fabrication of amine-functionalized monodispersed porous silica microspheres for efficient CO2adsorption. Amine-functionalized monodispersed porous silica microspheres (MPSM) were prepared by the hydrolysis and condensation of tetraethoxysilane (TEOS) in a water-ethanol-dodecylamine mixed solution, then calcined at600℃and finally functionalized with tetraethylenepentamine (TEPA). The CO2adsorption performance of the samples was measured using a Chemisorb2720pulse chemisorption system (Micromeritics, USA). The results showed that calcination temperatures had an obvious influence on the specific surface area, pore volume and pore size of SiO2microspheres. With increasing calcination temperatures, the specific surface area and pore volume increased and pore size decreased. The specific surface area and pore volume of 600℃-calcined SiO2microspheres reached921m2/g and0.48cm3/g, respectively. After surface amine functionalization, the specific surface area and pore volume of the samples drastically decreased and respectively decreased to34m2/g and0.08cm3/g, due to the filling of pore by TEPA molecules. All the TEPA-functionalized samples exhibited good CO2adsorption performance, which were related to the amount of loaded TEPA, adsorption temperature, and the specific surface areas of the samples. A optimal TEPA loading amount (34wt%) and adsorption temperature (75℃) were determined. The maximum CO2adsorption amount (4.27mmol g'1adsorbent) was achieved on the600℃-calcined SiO2microsphere sample with TEPA loading of34wt%. Repeated adsorption/desorption cycle experiments revealed that the TEPA-functionalized SrO2microspheres are good adsorbents for CO2with good cyclic stability.
     2) Fabrication and CO2adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces. Amine-functionalized monodispersed porous silica microspheres (MPSM) were prepared by the hydrolysis and condensation of tetraethoxysilane (TEOS) in a water-ethanol-dodecylamine mixed solution, then calcined at600℃and finally functionalized with tetraethylenepentamine (TEPA). The CO2adsorption performance of the samples was measured using a Chemisorb2720pulse chemisorption system (Micromeritics, USA). The results showed that calcination temperatures had an obvious influence on the specific surface area, pore volume and pore size of SiO2microspheres. With increasing calcination temperatures, the specific surface area and pore volume increased and pore size decreased. The specific surface area and pore volume of600℃-calcined SiO2microspheres reached921m2/g and0.48cm3/g, respectively. After surface amine functionalization, the specific surface area and pore volume of the samples drastically decreased and respectively decreased to34m2/g and0.08cm3/g, due to the filling of pore by TEPA molecules. All the TEPA-functionalized samples exhibited good CO2adsorption performance, which were related to the amount of loaded TEPA, adsorption temperature, and the specific surface areas of the samples. A optimal TEPA loading amount (34wt%) and adsorption temperature (75℃) were determined. The maximum CO2adsorption amount (4.27mmol g-1adsorbent) was achieved on the600℃-calcined SiO2microsphere sample with TEPA loading of34wt%. Repeated adsorption/desorption cycle experiments revealed that the TEPA-functionalized SiO2microspheres are good adsorbents for CO2with good cyclic stability.
     3) Silica hollow tubes were synthesized by a hydrothermal method using Cetyltrimethylammonium bromide (CTAB) and biological template poplar catkin (PC) as cotemplates and the PC/SiO2weight ratio R was varied. The prepared samples were further modified with tetraethylenepentamine (TEPA) and characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), differential thermal analysis (DTA), thermal gravimetric analysis (TGA), and N2physisorption techniques. This was followed by formaldehyde tests at ambient temperature. The results showed that all of the prepared samples contained small mesopores with a peak pore size at ca.2.5nm. The mesopores are found in the hollow tubes. The PC/SiO2weight ratio R exhibited a significant influence on specific surface areas, the P0.3sample has highest specific surface area (896m2/g). All of the TEPA-loaded samples exhibited good formaldehyde adsorption abilities. The results indicated that the formaldehyde adsorption capacity was dependent on the amine group functionalized and the specific surface areas of the samples. The formaldehyde adsorption amount increased proportionally with the specific surface areas. The maximum formaldehyde adsorption amount (20.65mg/g adsorbent) was achieved on the PO.3-50sample. The present study opens new avenues for the utilization of bio-template used for the fabrication of mesoporous hollow tubes. The present study will provides new insight into the design and synthesis of novel porous adsorption materials with high-performance for indoor air cleanup.
     4) Synthesis of ZrO2hollow spheres and its adsorption kinetics and isotherms to Congo red in water. ZrO2hollow microspheres with hierarchical structures were synthesized via a simple hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscope, nitrogen adsorption-desorption isotherms. The experiments were carried out in a batch system. In this work, the equilibrium, kinetic and thermodynamic data of the Congo red dye adsorption on ZrO2hollow spheres are studied and compared with ZrO2solid spheres and reagents. ZrO2hollow spheres and ZrO2solid spheres are fabricated by a hydrothermal reaction of zirconium oxychloride in the presence of urea, hydrochloric acid, and ethanol at different temperatures, respectively. Adsorption of Congo red onto the as-prepared samples is investigated and discussed. The adsorption kinetic data are modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations, indicating that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. Furthermore, adsorption equilibrium data of Congo red on the as-prepared samples are analyzed by Langmuir and Freundlich models, suggesting that the Langmuir model provides the better correlation of the experimental data. The adsorption capacities (qmax) of Congo red on ZrO2hollow spheres at30℃determined using the Langmuir equation is59.5mg g-1. The larger adsorption capacities of Congo red for ZrO2hollow spheres versus ZrO2solid spheres and reagents are attributed to its higher specific surface areas. The present work will provide new understanding on the adsorption process and mechanism of Congo red molecules onto ZrO2hollow spheres.
引文
[]]郭庆杰,温室气体二氧化碳捕集和利用技术进展[M],北京:化学工业出版社,2010.
    [2]师春元,黄黎明,陈赓良机遇与挑战—二氧化碳资源开发与利用[M],北京:石油工业出版社,2006.
    [3]朱跃钊,廖传华,王重庆,等.二氧化碳的减排与资源化利用[M],北京:化学工业出版社,2011.
    [4]魏建文,介孔二氧化硅改性及其吸附CO2研究[D].浙江大学博士学位论文,2008.
    [5]绿色煤电有限公司,挑战全球气候变化-二氧化碳捕集与封存[M],北京:中国水利水电出版社,2008.
    [6]张阿玲,方栋.温室气体CO2的控制和回收利用[M],北京:中国环境科学出版社,1996.
    [7]Obert R, Dave B C. Enzymatic conversion of carbon dioxide to methanol:enhanced methanol production in silica sol-gel matrices[J]. J. Am. Chem. Soc.,1999,121:12192-12193.
    [8]常虹,C02吸附剂的合成、表征及其吸附性能研究[D],浙江师范大学硕士学位论文,2011.
    [9]冯风,2004~2025年世界油气消费预测[J],世界石油工业,2005,5:40-43.
    [10]D'Alessandro D M, Smit B, Long J R. Carbon dioxide capture:prospects for new materials[J].Angew. Chem. Int. Ed.,2010,49:6058-6082.
    [11]魏文英,方键,孔海宁,等.金属有机骨架材料的合成及应用[J].化学进展,2005,17:1110-1115.
    [12]魏文英.新型金属有机骨架的合成、结构表征及催化性能[D],天津大学博士学位论文,2005.
    [13]许磊,王公慰,魏迎旭,等.MCM-41介孔分子筛合成研究:Ⅱ.微波辐射合成法[J].催化学报,1999,20:251-255.
    [14]Xu X C, Song C S, Andresen J M. Preparation and characterization of novel CO2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41[J]. Microporous Mesoporous Mater.,2003,62:29-45.
    [15]Maria Chong A S, Zhao X S. Functionalization of SBA-15 with APTES and characterization of functionalized materials[J]. J. Phys. Chem. B,2003,107:12650-12657.
    [16]Macquarrie D J. Direct preparation of organically modified MCM-type materials preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM[J].Chem. Commun.,1996,16:1961-1962.
    [17]刘亚敏,新型固体胺吸附分离烟气中二氧化碳[D],浙江大学博士学位论文,2011.
    [18]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science,1998,279:548-552.
    [19]Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J. Am. Chem. Soc,1998,120:6024-6036.
    [20]Franchi R S, Harlick P J E, Sayari A. Applications of pore expanded mesoporous silica.2. sevelopment of a high-capacity, water-tolerant adsorbent for CO2[J]. Ind. Eng. Chem. Res., 2005,44:8007-8013.
    [21]Harlick P J E, Sayari A. Applications of Pore-expanded mesoporous silicas.3. triamine silane grafting for enhanced CO2 adsorption [J]. Ind. Eng. Chem. Res.,2006,45:3248-3255.
    [22]Harlick P J E, Sayari A. Applications of Pore-expanded mesoporous silica.5. triamine grafted material with exceptional CO2 dynamic and equilibrium Adsorption performance[J]. Ind. Eng. Chem. Res.,2007,46:446-458.
    [23]Belmabkhout Y, Serna-Guerrero R, Sayari A. Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 Silica:application for gas purification[J]. Ind. Eng. Chem. Res.,2010,49:359-365.
    [24]Xu X, Song C, Miller B G, Scaroni A W. Influence of Moistureon CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41 [J]. Ind. Eng. Chem. Res.,2005,44:8113-8119.
    [25]Huang H Y, Yang R T, Chinn D, et al. Amine-grafted MCM-48 and silica xerogel as superior sorbent s for acidic gas removal from natural gas[J]. Ind. Eng. Chem. Res.,2003,42: 2427-2433.
    [26]Kim S, Ida J, Guliants V V, Lin J Y. S. Tailoring pore properties of MCM-48 silica for selective adsorption of CO2[J]. J. Phys. Chem. B.,2005,109:6287-6293.
    [27]Liu X, Zhou L, Fu X, et al. Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO2 and CH4[J]. Chem. Eng. Sci.,2007,62: 1101-1110.
    [28]Yue M B, Chun Y, Cao Y, et al. CO2 Capture by as-prepared SBA-15 with an occluded organic Template [J].Adv. Funct. Mater.,2006,16:1717-1722.
    [29]Zheng F, Tran D N, Busch e B J, et al. Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent [J]. Ind. Eng. Chem. Res.,2005,44:3099-3105.
    [30]Chang A C C, Chuang S S C, Gray M, et al. In-situ Infrared study of CO2 adsorption on SBA-15 grafted with y-(Aminopropyl) triethoxysilane [J]. Energy Fuels,2003,17:468-473.
    [31]Wang X, Schwartz V, Clark J C, et al. Infrared study of CO2 sorption over molecular basket sorbent consisting of polyethylenimine-modified mesoporous molecular sieve[J]. J. Phys. Chem. C,2009,113:7260-7268.
    [32]Ma X L, Wang X X, Song C S. "Molecular basket" sorbents for separation of CO2 and H2S from various gas streams[J]. J. Am. Chem. Soc,2009,131:5777-5783.
    [33]Filburn T, Helble J J, Weiss R A. Development of supported ethanolamines and modified ethanolamines for CO2 capture[J]. Ind. Eng. Chem. Res.,2005,44:1542-1546.
    [34]Leal O, Bolvar C, Ovalles C, et al. Reversible adsorption of carbon dioxide on amine surface-bonded silica gel[J]. Inorg. Chim. Acta,1995,240:183-189.
    [35]Hiyoshi N, Yogo K, Yashima T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15[J]. Microporous Mesoporous Mater.,2005,84:357-365.
    [36]Srivastava R, Srinivas D, Ratnasamy P. Sites for CO2 activation over amine-functionalized mesoporous Ti(Al)-SBA-15 catalysts[J].Microporous Mesoporous Mater.,2006,90: 314-326.
    [37]R. Srivastava, Srinivas D, Ratnasamy P. CO2 activation and synthesis of cyclic carbonates and alkyl/aryl carbamates over adenine-modified Ti-SBA-15 solid catalysts[J] J. Catal.,2005, 233:1-15.
    [38]Khatri R A, Chuang S S C, Soong Y, et al. Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture[J]. Energy Fuels,2006,20:1514-1520.
    [39]王文超,周仕学,姜瑶瑶,等.室内甲醛污染治理技术的研究进展[J].环境科学与技术,2006,29(9):106-109.
    [40]刘慧卿,傅建.室内环境污染与防护[M].郑州:黄河水利出版社,2011.
    [41]刘伟伟,姚志良.室内甲醛污染及其净化技术[J].广州化工,2012,40(19):8-10.
    [42]Noguchi T, Fujishima A, Sawunyama P. Photocatalytic degradation of gaseous formaldehyde using TiO2 film [J]. Environ. Sci. Technol.,1998,32:3831-3833.
    [43]Jiao Z, Luo P, Wu Y. Absorption of lean formaldehyde from air with Na2SO3 solution[J]. J. Hazard. Mater. B,2006,134:176-182.
    [44]Yuan R S, Zheng J T, Guan R B. Surface characteristics and photocatalytic activity of TiO2 loaded on activated carbon fiber[J]. Colloid and Surfaces,2005,254:131-136.
    [45]Fumihide S, Shunsuke Y, Yusuke O. A rapid treatment of formaldehyde in a highly tight room using a photocatalytic reactor combined with a continuous adsorption and desorption apparatus[J]. Chemical Engineering Science,2003,58:929-934.
    [46]胡将军,李英柳,彭卫华.吸附-光催化氧化净化甲醛废气的试验研究[J].化学与生物工程,2004,1:39-41.
    [47]朱玉玲.室内空气中甲醛的去除研究[D].山东大学硕士学位论文,2010.
    [48]王琨,李文朴,欧阳红.室内空气污染及其控制措施的比较研究[J].哈尔滨工业大学学报,2004,36:493-496.
    [49]Knofel C, Martin C, Hornebecq V, et al. Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy[J].J. Phys.Chem. C,2009,113:21726-21734.
    [50]Chew T L, Ahmad A L, Bhatia S. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2)[J]. Adv. Colloid Interface Sci.,2010,153: 43-57.
    [51]Xu X, Song C, Anderson J M, et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy Fuel,2002,16: 1463-1469.
    [52]Yan X L, Zhang L, Yang G D, et al. Amine-modified SBA-15:effect of pore structure on yhe performance for CO2 capture[J]. Ind. Eng. Chem. Res.2011,50:3220-3226.
    [53]Song C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing[J]. Catal. Today,2006,115:2-32.
    [54]Idem R, Wilson M, Tontiwachwuthikul P, et al. Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the university of regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant[J]. Ind. Eng. Chem. Res.2006,45:2414-2420.
    [55]Siriwardane R V, Stevens R W. Novel regenerable magnesium hydroxide sorbents for CO2 capture at warm gastemperatures[J].Ind. Eng. Chem. Res.,2008,48:2135-2141.
    [56]Choi S, Drese J H, Jones C W. Adsorbent materials for carbon dioxide capture from large anthropogenicpoint sources[J]. ChemSusChem,2009,2:796-854.
    [57]Lee S C, Chae H J, Lee S J, et al. Development of regenerable MgO-based sorbent promoted with K2CO3for CO2 capture at low Temperatures[J]. Environ. Sci. Technol.,2008,42: 2736-2741.
    [58]Wang X X, Ma X L, Sun L, et al. A nanoporous polymeric sorbent for deep removal of H2S from gas mixtures for hydrogen purification[J]. Green Chem.,2007,9:695-702.
    [59]Yang R T. Gas Separation by adsorption processes[M]. London:Imperial College Press, 1997.
    [60]Bredesen R, Peters T A. Membrane Technology, Vol.2 (Eds.:K.-V. Peinemann, S. Pereira Nunes), Wiley-VCH, Weinheim,2008, pp.217.
    [61]Yan X, Zhang L, Zhang Y, et al. Amine-modified mesocellular silica foams for CO2 capture[J]. Chem. Eng. J.2011,168:918-924.
    [62]Bhagiyalakshmi M, Yun L J, Anuradha R, et al. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting[J]. J. Hazard. Mater.,2010,175:928-938.
    [63]Liang Z J, Fadhel B, Schneider C J, et al. Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties[J]. Microporous Mesoporous Mater., 2008,11:536-543.
    [64]Knowles G P, Graham J V, Delaney S W, et al. Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents[J]. Fuel Process. Technol.,2005,86:1435-1448.
    [65]Ho N L, Perez-Pellitero J, Porcheron F, et al. Enhanced CO2 solubility in hybrid adsorbents: optimization of solid support and solvent properties for CO2capture[J]. J. Phys. Chem. C, 2012,116:3600-3607.
    [66]Wei J, Shi J, Pan H, et al. Thermal and hydrothermal stability of amino-functionalized SBA-16 and promotion of hydrophobicity by silylation[J]. Micropor. Mesopor. Mater.,2009, 117:596-602.
    [67]Zelenak V, Badanicova M, Halamova D, et al. Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture[J]. Chem. Eng. J.2008,144:336-342.
    [68]Hao S, Xiao Q, Yang H, et al. Synthesis and CO2 adsorption property of amino-functionalized silica nanospheres with centrosymmetric radial mesopores[J]. Micropor. Mesopor. Mater.,2010,132:552-558.
    [69]Belmabkhout Y, Serna-Guerrero R, Sayari A. Amine-bearing mesoporous silica for CO2 removal from dry and humid air[J]. Chem. Eng. Sci.,2010,65:3695-3698.
    [70]Liu S H, Wu C H, Lee H K, et al. Highly stable amine-modified mesoporous silica materials for efficient CO2capture[J]. Top. Catal.,2010,53:210-217.
    [71]Son W J, Choi J S, Ahn W S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials[J]. Micropor. Mesopor. Mater.,2008, 113:31-40.
    [72]Chen C, Yang S T, Ahn W S, et al. Amine-impregnated silica monolith with a hierarchical pore structure:enhancement of CO2 capture capaciry[J]. Chem. Commun.,2009,3627-3629.
    [73]Yue M B, Sun L B, Cao Y, et al. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine[J]. Chem. Eur. J.,2008,14:3442-3451.
    [74]Sanz R, Calleja G, Arencibia A, et al. CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15[J]. Appl. Surf. Sci.,2010,256: 5323-5328.
    [75]Li P, Ge B, Zhang S, et al. CO2 capture by polyethylenimine-modified fibrous adsorbent[J]. Langmuir,2008,24:6567-6574.
    [76]Chen C, Son W J, You K S, et al. Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity[J]. Chem. Eng. J.,2010,161:46-52.
    [77]Liu Y, Shi J, Chen J, et al. Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6[J]. Micropor. Mesopor. Mater.,2010,134:16-21.
    [78]Yu J G, Le Y, Cheng B. Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces[J]. RSC Advances,2012,2:6784-6791.
    [79]Colfen H, Mann S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures[J]. Angew. Chem. Int. Ed.,2003,42:2350-2365.
    [80]Yu J G, Yu X X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J]. Environ. Sci. Technol.,2008,42:4902-4907.
    [81]Yu J G, Guo H T, Davis S A, et al. Fabrication of hollow inorganic microspheres by chemically induced self-transformation[J]. Adv. Funct. Mater.,2006,16:2035-2041.
    [82]Yu J G, Yu H G, Guo H T, et al. Spontaneous formation of a tungsten trioxide sphere-in-shell superstructure by chemically induced self-transformation[J]. Small,2008,4:87-91.
    [83]Yu H G, Yu J G, Liu S W, et al. Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres[J]. Chem. Mater.,2007,19:4327-4334.
    [84]Yu J G, Zhang J. A simple template-free approach to TiO2 hollow spheres with enhanced photocatalytic activity[J]. Dalton Trans.,2010,39:5860-5867.
    [85]Miao X L, Li Y G, Zhang Q H, et al. Low shrinkage light curable dental nanocomposites using SiO2 microspheres as fillers[J]. Mater. Sci. Eng. C,2012,32:2115-2121.
    [86]Shiba K, Kambara K, Ogawa M. Sizecontrolled syntheses of nanoporous silica spherical particles through a microfluidic approach[J]. Ind. Eng. Chem. Res.,2010,49:8180-8183.
    [87]Yi G R, Manoharan V N, Michel E, et al. Colloidal clusters of silica or polymer microspheres[J]. Adv. Mater.,2004,16:1204-1208.
    [88]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J. Colloid Interface Sci.,1968,26:62-69.
    [89]Zhao L, Yu J G, Chen B, et al. A novel approach for the synthesis of monodispersed porous silica microspheres with high surface area[J]. J. Non-Crystalline Solids,2005,351: 3593-3599.
    [90]Yu J G, Zhao L, Cheng B. Preparation of monodispersed microporous SiO2 microspheres with high specific surface area using dodecylamine as a hydrolysis catalyst[J]. J. Solid State Chem.,2006,179:226-232.
    [91]Cai W Q, Yu J G, Jaroniec M. Effect of nonionic structure-directing agents on adsorption and structural properties of mesoporous alumina[J]. J. Mater. Chem.,2011,21:9066-9072.
    [92]Sing K S W, Everett D H, Haul R A W.et al. Reporting physisorption data for gas/solid systems with specialreference to thedetermination of surface area and porosity[J]. Pure Appl. Chem.,1985,57:603-619.
    [93]Gregg S J, Sing K S W. Adsorption, surface area and porosity[M]. Academic Press, London, 1982.
    [94]Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases[J]. Nature,1997,385:420-423.
    [95]Kohl A, Nielsen R. Gas Purification; Gulf Publishing Co.:Houston, TX,1997.
    [96]Belmabkhout Y, Serna-Guerrero R, Sayari A. Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure.1:Pure CO2 adsorption[J]. Chem. Eng. Sci.,2009,64,3721-3728.
    [97]Jang H T, Park Y K, Ko Y S, et al. Highly siliceous MCM-48 from rice husk ash for CO2 adsorption[J]. Int. J. Greenhouse Gas Control,2009,3:545-549.
    [98]Serna-Guerreroa R, Belmabkhoutb Y, Sayari A. Further investigations of CO2 capture using triamine-grafted pore-expanded mesoporous silica[J]. Chem. Eng. J.,2010,158:513-519.
    [99]Zelenak V, Halamova D, Gaberova L, et al. Amine-modified SBA-12 mesoporous silica for carbon dioxide capture:Effect of amine basicity on sorption properties[J]. Microporous Mesoporous Mater.,2008,116:358-364.
    [100]Khatri R A, Chuang S S C, Soong Y, et al. Carbon dioxide capture by diamine-grafted SBA-15:a combined fourier transform infrared and mass spectrometry study[J]. Ind.Eng. Chem. Res.,2005,44:3702-3708.
    [101]Fadhel B, Hearn M, Chaffee A. CO2 adsorption by PAMAM dendrimers:Significant effect of impregnation into SBA-15[J]. Microporous Mesoporous Mater.,2009,123:140-149.
    [102]Chang F Y, Chaoa K J, Cheng H H, et al. Adsorption of CO2 onto amine-grafted mesoporous silicas[J]. Sep. Purif. Technol.,2009,70:87-95.
    [103]Gray M L, Soong T Y, Champagne K J, et al. Improved immobilized carbon dioxide capture sorbents[J]. Fuel Process. Technol.,2005,86:1449-1455.
    [104]Rosenholm J M, Penninkangas A, Linden M. Amino-functionalization of large-pore mesoscopically ordered silica by a one-step hyperbranching polymerization of a surface-grown polyethyleneimine[J]. Chem. Commun.,2006,3909-3911.
    [105]Wei J W, Shi J J, Pan H, et al. Adsorption of carbon dioxide on organically functionalized SBA-16[J]. Microporous Mesoporous Mater.,2008,116,394-399.
    [106]Knofel C, Descarpentries J, Benzaouia A, et al. Functionalised micro-/mesoporous silica for the adsorption of carbon dioxide[J]. Microporous Mesoporous Mater.,2007,99,79-85.
    [107]Knowles G P, Delaney S W, Chaffee A L. Diethylenetriamine[propyl(silyl)]-functionalized (DT) mesoporous silicas as CO2 adsorbents[J]. Ind. Eng. Chem. Res.,2006,45:2626-2633.
    [108]Araki S, Doi H, Sano Y, et al. Preparation and CO2 adsorption properties of aminopropyl-functionalized mesoporous silica microspheres[J]. J. Colloid Interface Sci., 2009,339,382-389.
    [109]Yang S, Zhou X, Yuan P, et al. Siliceous nanopods from a compromised dual-templating approach [J]. Angew. Chem., Int. Ed.,2007,46:8579-8582.
    [110]Cai W Q, Yu J G, Anand C, et al. Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties[J]. Chem. Mater.,2011,23:1147-1157.
    [111]Yu J G, Zhang L J, Cheng B, et al. Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania[J]. J. Phys. Chem. C,2007,111: 10582-10589.
    [112]Wang W G, Yu J G, Xiang Q J, et al. Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2-graphene composites for photodegradation of acetone in air[J]. Appl. Catal. B,2012,119-120:109-116.
    [113]Zhou J B, Cheng Y, Yu J G, et al. Hierarchically porous calcined lithium/aluminum layered double hydroxides:Facile synthesis and enhanced adsorption towards fluoride in water[J]. J. Mater. Chem.,2011,21,19353-19361.
    [114]Zhou J B, Yang S L, Yu J G, et al. Novel hollow microspheres of hierarchical zinc-aluminum layered doublehydroxides and their enhanced adsorption capacity for phosphate in water[J].J. Hazard. Mater.,2011,192:1114-1121.
    [115]Cai W Q, Yu J G, Gu S H, et al. Facile hydrothermal synthesis of hierarchical boehmite: sulfate-mediated transformation from nanoflakes to hollow microspheres[J]. Cryst. Growth Des.,2010,10:39773982.
    [116]Cai W Q, Yu J G, Jaroniec M. Template-free synthesis of hierarchical spindle-like g-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water[J]. J. Mater. Chem.,2010,20:4587-4594.
    [117]Yu J G, Wang W G, Cheng B. Synthesis and enhanced photocatalytic activity of a hierarchical porous flowerlike p-n Junction NiO/TiO2 photocatalyst[J]. Chem.-Asian J., 2010,5:2499-2506.
    [118]Yu X X, Yu J G, Cheng B, et al. Synthesis of Hierarchical Flower-like AlOOH and TiO2/AlOOH Superstructures and their Enhanced Photocatalytic PropertiesJ. Phys. Chem. C, 2009,113:17527-17535.
    [119]Yu J G, Qi L F. Template-free fabrication of hierarchically flower-like tungsten trioxideassemblies with enhanced visible-light-driven photocatalytic activity[J]. J. Hazard. Mater.,2009,169:221-227.
    [120]Yu J G, Su Y R, Cheng B. Template-free Fabrication andenhanced photocatalytic activity of hierarchical macro-/mesoporous titania[J]. Adv. Funct. Mater.,2007,17:1984-1990.
    [121]Yu J G, Yu J C, Leung M K P, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania[J]. J. Catal.,2003, 217:69-78.
    [122]Yu J G, Liu S W, Yu H G. Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation[J]. J. Catal.,2007,249, 59-66.
    [123]Rashidi F, Kharat A N, Rashidi A M, et al. Fractal geometry approach to describe mesostructured boehmite and gamma-alumina nanorods[J]. Eur. J. Inorg. Chem.,2010,10: 1544-1551.
    [124]Ho L N, Pellitero J P, Porcheron F, et al. Enhanced CO2 solubility in hybrid MCM-41: molecular simulations and experiments[J]. Langmuir,2011,27:8187-8197.
    [125]Su F, Lu C, Kuo S C, et al. Adsorption of CO2 on amine-functionalized Y-type zeolites[J]. Energy Fuels,2010,24:1441-1448.
    [126]Olajire A A. CO2 capture and separation technologies for end-of-pipe applications-A review[J]. Energy,2010,35:2610-2628.
    [127]Ho N L, Porcheron F, Pellenq R J M. Experimental and molecular simulation investigation of enhanced CO2 solubility in hybrid adsorbents[J]. Langmuir,2010,26:13287-13296.
    [128]Zhang B J, Davis S A, Mann S. Starch gel templating of spongelike macroporous silicalite monoliths and mesoporous films[J]. Chem. Mater.,2002,14:1369-1375.
    [129]Yu J G, Liu W, Yu H G. A One-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity[J]. Cryst. Growth Des.,2008,8:930-934.
    [130]Yu J G, Li Q L, Fan J J, et al. Fabrication and photovoltaic performance of hierarchically titanate tubular structures self-assembled by nanotubes and nanosheets[J]. Chem. Commun., 2011,47:9161-9163.
    [131]Madhusudan P, Ran J R, Zhang J, et al. Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3nanocomposites with enhanced visible-light photocatalytic activity[J]. Appl. Catal., B,2011,110:286-295.
    [132]Cheng B, Le Y, Cai W Q, et al. Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water[J]. J. Hazard. Mater.,2011,185: 889-897.
    [133]Wang L, Sakurai M, Kameyama H. Study of catalytic decomposition of formaldehyde on Pt/TiO2 alumite catalyst at ambient temperature[J]. J. Hazard. Mater.,2009,167:399-405.
    [134]Sun L, Hu J F, Gao F, et al. Adsorption of formaldehyde on the Fe site of clean and M2+(Ca2+, Sr2+ and Ba2+) doped LaFeO3(010) surface[J]. Appl. Surf. Sci.,2011,257: 8692-8695.
    [135]Nie L H, Yu J G, Li X Y, et al. Jaroniec M. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde[J]. Environmental Science & Technology,2013,47:2777-2783.
    [136]Lu X C, Jiang J C, Sun K, et al. Surface modification, characterization and adsorptive properties of a coconut activated carbon[J]. Appl. Surf. Sci.,2012,258:8247-8252.
    [137]Yu J G, Zhou M H, Cheng B, et al. Ultrasonic preparation of mesoporous titanium dioxide nanocrystalline photocatalysts and evaluation of photocatalytic activity[J]. J.Mol. Catal. A: Chem.,2005,227:75-80.
    [138]Yu J G, Yue L, Liu S W, et al. Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO2 nanocomposite microspheres[J]. J. Colloid. Interf. Sci.,2009,334: 58-64.
    [139]Zhu Y, Li H, Zheng Q, et al. Amine-functionalized SBA-15 with uniform morphology and well-defined mesostructure for highly sensitive chemosensors to detect formaldehyde vapor[J]. Langmuir,2012,28:7843-7850.
    [140]Rong H Q, Ryu Z Y, Zheng J T, et al. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde[J]. J. Colloid. Interf. Sci.,2003,261: 207-212.
    [141]An H B, Yu M J, Kim J M, et al. Indoor formaldehyde removal over CMK-3[J]. Nanoscale Res. Lett.,2012,7:7-12.
    [142]Sekine Y, Nishimura A. Removal of formaldehyde from indoor air by passive type air-cleaning materials[J]. Atmos. Environ.,2001,35:2001-2007.
    [143]Laszlo K. Characterization and adsorption properties of polymer-based microporous carbons with different surface chemistry[J]. Microporous Mesoporous Mater.,2005,80: 205-211.
    [144]Srisuda S, Virote B. Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials[J]. J. Environ. Sci.,2008,20:379-384.
    [145]Yan M, Song W, Chen Z. In situ growth of a carbon interphase between carbon fibres and a polycarbosilane-derived silicon carbide matrix[J]. Carbon,2011,49:2869-2872.
    [146]Matsuo Y, Nishino Y, Fukutsuka T, et al. Removal of formaldehyde from gas phase by silylated graphite oxide containing amino groups[J]. Carbon,2008,46:1162-1163.
    [147]Boonamnuayvitaya V, Sae-ung S, Tanthapanichakoon W. Preparation of activated carbons from coffee residue for the adsorption of formaldehyde[J]. Sep. Purif. Technol.,2005,42: 159-168.
    [148]Yang Y K, Qiu S Q, Cui W, et al. A facile method to fabricate silica-coated carbon nanotubes and silica nanotubes from carbon nanotubes templates[J]. J. Mater. Sci.,2009,44: 4539-4545.
    [149]Fan J J, Zhao L, Yu J G, et al. The effect of calcination temperature on the microstructure andphotocatalytic activity of TiO2-based composite nanotubes prepared by an in situ template dissolution method[J]. Nanoscale,2012,4:6597-6603.
    [150]Nishibayashi Y, Yoshikawa M, Inada Y, et al. Ruthenium-catalyzed propargylation of aromatic compounds with propargylic alcohols[J]. J. Am. Chem. Soc.,2002,124: 11846-11847.
    [151]Fan R, Karnik R, Yue M, et al. DNA translocation in inorganic nanotubes[J]. Nano Lett., 2005,5:1633-1637.
    [152]Llusar M, Sanchez C. Inorganic and hybrid nanofibrous materials templated with organogelators[J]. Chem. Mater.,2008,20:782-820.
    [153]Hillebrenner H, Buyukserin F, Kang M, et al. Corking nano test tubes by chemical self-assembly[J]. J. Am. Chem. Soc.,2006,128:4236-4237.
    [154]Chen X C, Klingeler R, Kath M, et al. Magnetic silica nanotubes:synthesis, drug release, and feasibility for magnetic hyperthermia[J]. ACS Appl. Mater. Interfaces,2012,4: 2303-2309.
    [155]Kim D I, Park J H, Kim S D, et al. Comparison of removal ability of indoor formaldehyde over different materials functionalized with various amine groups[J]. J. Ind. Eng. Chem., 2011,17:1-5.
    [156]Hench L L, West J K. The sol-gel process[J]. Chem. Rev.,1990,90:33-72.
    [157]Schmidt R, Hansen E W, Stoecker M, et al. Pore size determination of MCM-51 mesoporous materials by means of 1H NMR spectroscopy, N2 adsorption, and HREM. A preliminary study[J]. J. Am. Chem. Soc,1995,117:4049-4056.
    [158]Chan C C P, Choudhury N R, Majewski P. Fabrication and characterisation of self-assembled monolayers of N-[3-(trimethoxysilyl)propyl]diethylenetriamine on silica particles[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects.,2011,377:20-27.
    [159]Briand E, Humblot V, Landoulsi J, et al. Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces[J]. Langmuir,2011,27:678-685.
    [160]Pippig F, Hollander A. Fluram labeling of high density NH2 surfaces[J]. Appl. Surf. Sci., 2007,253:6817-6823.
    [161]Suzuki T. Development and application of formaldehyde adsorbent[J]. R&D Review of Toyota CRDL,2001,36:1.
    [162]Bansode R R, Losso J N, Marshall W E, et al. Adsorption of volatile organic compounds by pecan shell-and almond shell-based granular activated carbons[J]. Bioresour. Technol.,2003, 90:175-184.
    [163]Wen Q B, Li C T, Cai Z H, et al. Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde[J]. Bioresour. Technol.,2011,102:942-947.
    [164]Yang H G, Zeng H C. Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites[J]. Angew. Chem. Int. Ed,2004,43: 5930-5933.
    [165]Chiou M S, Ho P Y, Li H Y. Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads.[J] Dyes and Pigments,2004,60:69-84.
    [166]Gong R, Ding Y, Li M, et al. Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution[J]. Dyes Pigment,2005,64:187-192.
    [167]Namasivayam C, Kavitha D. Removal of Congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste[J]. Dye Pigments,2002, 54:47-58.
    [168]Vimonses V, Lei S, Jin B, et al. Kinetic study and equilibrium isotherm analysis of Congo red adsorption by clay materials[J]. Chem. Eng. J,2009,148:354-364.
    [169]Purkait M K, Maiti A, DasGupta S, et al. Removal of Congo red using activated carbon and its regeneration[J]. J. Hazard. Mater,2007,145:287-295.
    [170]Fu Z X, Bu W B. High efficiency green-luminescent LaPO4:Ce, Tb hierarchical nanostructures:Synthesis, characterization, and luminescence properties[J]. Solid State Sci, 2008,10:1062-1067.
    [171]Tanthapanichakoon W, Ariyadejwanich P, Japthong P, et al. Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires[J]. water Res,2005,39:1347-1353.
    [172]Gole J L. Prokes S M, Stout J D, Glembocki O J, Yang R S. Unique properties of selectively formed zirconia nanostructures[J]. Adv. Mater.,2006,18:664-667.
    [173]Yokoyama T, Fujita N, Nakajima M, et al. Novel direct hydrogenation process of aromatic carboxylic acids to the corresponding aldehydes with zirconia catalyst[J]. Appl. Catal. A, 1992,88:149-161.
    [174]Amphlett C B, MacDonald L A, Redman M J. Synthetic inorganic ion-exchange materials—Ⅱ:Hydrous zirconium oxide and other oxides[J]. J. Inorg. Nucl. Chem.,1958,6: 236-245.
    [175]Cao H, Qiu X, Luo B, et al. Synthesis and room-temperature Uultraviolet photoluminescence properties of zirconia nanowires[J]. Adv. Funct. Mater.,2004,14: 243-246.
    [176]Hu J, Chen M, Fang X, et al. Fabrication and application of inorganic hollow spheres[J]. Chemical Society Reviews,2011,40:5472-5491.
    [177]Fei J, Cui Y, Yan X, et al. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment[J]. Adv. Mater.,2008,20:452-456.
    [178]Wei Z, Xing R, Zhang X, et al. Facile Template-Free Fabrication of Hollow Nestlike a-Fe2O3 Nanostructures for Water Treatment[J]. ACS applied materials & interfaces,2013,5: 598-604.
    [179]Yang M, Ma J, Zhang C, et al. General Synthetic Route toward Functional Hollow Spheres with Double-Shelled Structures[J]. Angew. Chem. Int. Edit.,2005,44:6727-6730.
    [180]Zhong Z, Yin Y, Gates B, et al. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads[J], Adv. Mater.,2000,12: 206-209.
    [181]Liang H P, Zhang H M, Hu J S, et al. Pt hollow nanospheres:facile synthesis and enhanced electrocatalysts[J]. Angew. Chem.,2004,116:1566-1569.
    [182]Peng Q, Dong Y, Li Y. ZnSe semiconductor hollow microspheres[J]. Angew. Chem. Int. Edit.,2003,42:3027-3030.
    [183]Huang J, Xie Y, Li B, et al. In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres[J]. Adv. Mater.,2000,12:808-811.
    [184]Wang S F, Gu F, Lv M K. Sonochemical synthesis of hollow PbS nanospheres[J]. Langmuir, 2006,22:398-401.
    [185]Chen G, Xia D, Nie Z, et al. Facile synthesis of Co-Pt hollow sphere electrocatalyst[J]. Chem. Mater.,2007,19:1840-1844.
    [186]Sun X, Liu J, Li Y. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres[J]. Chem. Eur. J.,2006,12:2039-2047.
    [187]Xia Y, Mokaya R. Hollow spheres of crystalline porous metal oxides:A generalized synthesis route via nanocasting with mesoporous carbon hollow shells[J]. J. Mater. Chem., 2005,15:3126-3131.
    [188]Arnal P M, Weidenthaler C, Schuth F. Highly monodisperse zirconia-coated silica spheres and zirconia/silica hollow spheres with remarkable textural properties[J]. Chem. Mater.2006, 18:2733-2739.
    [189]Walsh D, Arcelli L, Swinerd V, et al. Aerosol-mediated fabrication of porous thin films using ultrasonic nebulization[J]. Chem. Mater.2007,19:503-508.
    [190]Lin F Q, Dong W S, Liu C L, et al. In situ source-template-interface reaction route to hollow ZrO2 microspheres with mesoporous shells[J]. J. Colloid. Interf. Sci.,2008,323: 365-371.
    [191]Yin J L, Qian X F, Yin J, et al. Preparation of polystyrene/zirconia core-shell microspheres and zirconia hollow shells[J]. Inorg. Chem. Commum.,2003,6:942-945.
    [192]Mondal A, Ram S. Formation of a new polymorph of ZrO2 with orthorhombic crystal structure contained in a mesoporous structure[J]. Chem. Phys. Lett.,2003,382:297-306.
    [193]Wu R C, Qu J H, Chen Y S. Magnetic powder MnO-Fe2O3 composite-a novel material for the removal of azo-dye from water[J]. Water Res,2005,39:630-638.
    [194]Tan I A W, Hameed B H, Ahmad A L. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon[J]. Chem. Eng. J,2007,127:111-119.
    [195]Ho Y S, McKay G. Sorption of dye from aqueous solution by peat[J]. Chem. Eng. J,1998, 70:115-124.
    [196]Weber W J, Morris J C. Proceedings of the International Conference on Water Pollution Symposium, vol.2, Pergamon, Oxford,1962, pp.231-266.
    [197]Cheung W H, Szeto Y S, McKay G Intraparticle diffusion processes during acid dye adsorption onto chitosan [J]. Bioresour. Technol.2007,98 (15):2897-2904.
    [198]Wu F C, Tseng R L, Juang R S. Comparisons of porous and adsorption properties of carbons activated by steam and KOH [J]. J. Colloid. Interf. Sci.2005,283:49-56.
    [199]Langmuir I. The adsorption of gases on plane surfaces of glass, mica, and platinum [J]. J. Am. Chem. Soc.1918,40:1361-1402.
    [200]Hall K R, Eagleton L C, Acrivos A, et al. Pore and solid diffusion kinetics in fixed-bed adsorption under constant pattern conditions[J]. Ind. Eng. Chem. Fundam,1966,5:212-223.
    [201]Freundlich H M F. Uber die adsorption in losungen [J]. J. Phys. Chem,1906,57:385-470.
    [202]Hameed B H, Ahmad A A, Aziz N. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash [J]. Chem. Eng. J.,2007,133:195-203.
    [203]Kumar K V, Kumaran A. Removal of methylene blue by mango seed kernel powder [J].Biochem. Eng. J.2005,27:83-93.
    [204]范佳杰,二氧化钛纳米片基染料敏化太阳能电池的制备[D].武汉理工大学博士论文,2012.
    [205]Tan I A W, Ahmad A L, Hameed B H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon [J]. J. Hazard. Mater.2009,164:473-482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700