微波活化生物质炭制备尧结构与吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以农林废弃物(松木片、麦秸)为原料,采用微波加热和KOH活化技术制备活化生物质炭,并探索了活化生物质炭的制备工艺参数、碘值、得率、孔隙结构和表面官能团;采用自主设计的吸附-脱附装置进行吸脱附甲苯和丙酮实验,着重研究了KOH/生物质炭配比、甲苯和丙酮的初始浓度、吸附温度等对其吸附量、穿透曲线和吸附等温线的影响,并采用Dubinin-Radushkevich(DR)模型进行拟合。最后,采用微波法再生载甲苯和丙酮的活化生物质炭,探索了微波输出功率、气流流速和增加水蒸汽装置对载甲苯和丙酮活化生物质炭再生速率的影响,并与传统电加热法在加热时间、升温速率、再生效率和能耗等方面进行了对比。
     本研究得到的结论归纳如下:
     (1)以碘值为衡量指标优化的生物质炭和活化生物质炭制备工艺参数:炭化阶段的炭化温度为550℃,升温速率为10℃/min,炭化时间为2h和增加水蒸气装置;微波活化阶段的微波功率600W,微波时间30min,流量为0.5L/min和增加水蒸气装置。生物质炭化物(松木炭和麦秸炭)的得率在23-29%之间,活化生物质炭的得率在72-81%之间。随着KOH/生物质炭配比从0.5增加到3.0,松木活化生物质炭的比表面积从1053m2/g增加到2044m2/g;微孔孔容和总孔容也呈现出了同样的趋势,分别从0.373cc/g增加到0.701cc/g,0.473cc/g增加到0.933cc/g。麦秸活化生物质炭的比表面积也从942m2/g增加到1250m2/g;微孔孔容和总孔容分别从0.319cc/g增加到0.411cc/g,0.419cc/g增加到0.601cc/g。
     (2)常温常压下,甲苯和丙酮的初始浓度为200ppmv,不同KOH/生物质炭配比下制备的活化生物质炭具有不同的吸附性能,随着配比的增加,吸附量也随着增加。对于吸附质甲苯,配比从0.5增加到3.0,松木活化生物质炭的吸附量从22.3%增加到47.6%,麦秸活化生物质炭的吸附量从17.1%增加到32.7%。对于吸附质丙酮,松木活化生物质炭的吸附量从15.4%增加到21.7%,麦秸活化生物质炭的吸附量从14.0%增加到17.8%。随着甲苯和丙酮浓度从100增加到300ppmv,活化生物质炭的吸附量增大;对甲苯而言,松木活化生物质炭的吸附量从43.4%增加到51.3%,而麦秸活化生物质炭的吸附量则从20.2%增加到24.4%;两种活化生物质炭对丙酮的吸附量也具有同样的增加趋势。比较6种系列活化生物质炭的穿透曲线形状发现,配比为3.0的松木和麦秸活化生物质炭的曲线最为陡峭,而配比为0.5的松木和麦秸活化生物质炭的曲线最为平缓,因此,穿透时间也越长。在相同浓度下,甲苯的穿透时间比丙酮要长,达到饱和的时间也长,活化生物质炭对其吸附能力较好,饱和吸附量较大。甲苯和丙酮浓度在200ppmv下,当温度从25℃上升到45℃,系列活化生物质炭对甲苯和丙酮的吸附量都明显下降。KOH/生物质炭配比为3.0的松木活化生物质炭和麦秸活化生物质炭对甲苯的吸附量分别从47.6%降到25.0%和32.7%降到19.2%;松木活化生物质炭和麦秸活化生物质炭对丙酮的吸附量分别从21.7%降到15.3%和17.7%降到12.0%。
     (3)在常温下测试吸附等温线的结果表明,在相对压力较低的情况下,活化生物质炭的吸附量急剧上升;随着相对压力增大,吸附等温线呈水平或接近水平状,表明其孔隙结构以微孔为主。甲苯和丙酮在活化生物质炭上的吸附量随着KOH/生物质炭配比的增加而增加,配比为3.0的松木和麦秸活化生物质炭对甲苯的吸附量分别达到最大为71.9%和36.2%。松木和麦秸活化生物质炭对甲苯的吸附能力强于对丙酮的吸附能力。松木活化生物质炭对甲苯和丙酮的吸附能力大于麦秸对甲苯/丙酮的吸附能力。不同温度(25、35和45℃)下,甲苯和丙酮在系列活化生物质炭上的吸附等温线表明,甲苯和丙酮的吸附量随着温度的升高而降低,这两种活化生物质炭对甲苯和丙酮吸附等温线的试验数据都能采用Dubinin-Radushkevich模型进行很好地拟合。松木活化生物质炭和麦秸活化生物质炭对甲苯和丙酮吸附等温线拟合DR方程的平均相对误差分别为3.3%(甲苯)、5.0%(甲苯)和4.1%(丙酮)、8.1%(丙酮)。因而,松木活化生物质炭比麦秸活化生物质炭的吸附曲线能更好地拟合DR方程。
     (4)微波加热法再生载甲苯和丙酮活化生物质炭,经过5次吸附-微波辐射再生之后,两种活化生物质炭的再生率都达到99.7%以上;对于松木活化生物质炭对甲苯和丙酮的吸附量分别在457.0-455.5mg/g和229.5-231.3mg/g之间变化;对于麦秸活化生物质炭对甲苯和丙酮的吸附量分别在329.0-330.8mg/g和184.1-185.4mg/g之间变化。随着微波输出功率、气流流速和湿氮气的增加,微波加热再生的速率随之增加,最后得出优化微波再生参数为:600W、1L/min和增加湿氮气。在与传统电加热法相比较试验显示,对于再生载甲苯松木活化生物质炭的试验,恒功率微波加热法、恒温微波加热法和电加热法的再生速率分别为:32.9%/min、1.7%/min和0.9%/min;同样对于再生载丙酮松木活化生物质炭的试验,采用以上3种方法测试的再生速率分别为:99.7%/min、5.1%/min和1.7%/min。对比升温速率发现,恒温微波加热法的升温速率为186°C/min,电加热法的升温速率只有9°C/min,由此可见,升温速率越快,再生效率越高。在能耗对比方面,在确保再生率达到99%以上的前提下,微波再生法的能耗为13.5kJ/g,而电加热法的能耗为40.5kJ/g,相当于微波加热法的3倍。比较加热的时间可知,对于载甲苯的松木和麦秸活化生物质炭,恒功率(600W)微波再生法需要的时间最短为3min,其次为恒温(150°C)微波再生法为30min,最长的则是电加热法为120min。对于丙酮,恒功率(600W)微波再生法需要的时间最短为1min,其次为恒温(100°C)微波再生法为10min,最长的则是电加热法为60min。微波再生前后,活化生物质炭的比表面积、孔隙结构和表面官能团并没有明显变化。因此,微波再生法是一种节能、环保、有效的活化生物质炭再生方法,具有工业化应用的良好潜质。
This paper describes the activation of pine and wheat straw biochar with KOH andmicrowave heating to obtain a product with high adsorption capacity for toluene and acetone.For this purpose, a microwave activation process for the preparation of activated biochar wasdeveloped and the effects of various KOH/biochar mass ratios on the structural properties andadsorption capacity of activated biochar were investigated. The preparation conditions, such asthe microwave power, the KOH/biochar ratio and the microwave heating time were investigated.The properties of the produced activated carbon were characterized using iodine number as wellas BET surface area and pore size distribution. Adsorption capacity for toluene/acetone onactivated biochar was obtained using breakthrough curves at low concentrations and a sorptionanalyzer at high concentration. The adsorption isotherms were fitted with theDubinin–Radushkevich (DR) model. In the regeneration, this paper presents a comparison ofmicrowave and conductive heating regeneration of toluene and acetone from activated biochar,in terms of regeneration ratio, desorption rate, heating time and energy consumption. Thefollowing conclusions may be drawn:
     (1) The optimized preparation conditions for activated biochar are that carbonization timeis2h and humid N2during the carbonization period; and microwave power, microwave heatingtime are600W and30min, respectively, as well humid N2during the microwave activationperiod. As for pine and wheat straw activated biochar, the BET surface area increased from1053m2/g and942m2/g to1250m2/g and2044m2/g with an increase in the KOH/biochar massratio from0.5to3.0, respectively; micropore surface area and micropore volume showedsimilar increases. Most of the pores developed in the activated biochar samples are within themicroporous range, indicating that the microporosity is independent of the KOH/biochar massratio. Microporosity was present due to the initial porosity of the precursor material (e.g. thetracheids) that aided KOH impregnation into the biochar and to chemical reactions betweenKOH and biochar during microwave heating. The FTIR spectra of biochar activated by microwave heating and KOH with ratio of3.0showed bands of–OH, C-H, C=O, and=CH2functional groups.
     (2) For toluene at200ppmv, the adsorption capacities of pine and wheat straw activatedbiochar increase from22.3%and17.1%to47.6%and32.7%as increasing of KOH/biocharratio from0.5-3.0. The same tendency of acetone at200ppmv, the adsorption capacities of pineand wheat straw activated biochar increase from15.4%and14.0%to21.7%and17.8%asincreasing of KOH/biochar ratio from0.5-3.0. Adsorption capacity was increased according tothe increment of inlet concentration from100to300ppmv. For toluene, adsorption capacity ofpine and wheat straw activated biochar at KOH/biochar ratio of3.0was increased from43.4%and20.2%to51.3%and24.4%, respectively with the increasing of inlet concentration from100to300ppmv. For acetone, adsorption capacity of pine and wheat straw activated biochar atKOH/biochar ratio of3.0was increased from17.8%and12.7%to24.4%and21.4%,respectively. Higher KOH/biochar mass ratios resulted in longer breakthrough times andproduced more micropores, leading to a higher adsorption capacity. Furthermore, the fasterbreakthrough was and the slope of breakthrough curve was gradually increased. Breakthroughcurves on pine activated biochar and wheat straw activated biochar corresponding toKOH/biochar mass ratios of0.5,1.5, and3.0, respectively. Pine activated biochar atKOH/biochar mass ratios of0.5,1.5, and3.0took8,12, and18hours, respectively, to reachbreakthrough during the toluene adsorption process. Wheat straw activated biochar atKOH/biochar mass ratios of0.5,1.5, and3.0took4.5,5.5and6hours, respectively. Theadsorption capacity and breakthrough time decreased as the adsorption temperature increasedfrom25to45℃. As for toluene, the adsorption capacity of pine and wheat straw activatedbiochar at KOH ratio of3.0decreased from47.6%and32.7%to25.0%and19.2%,respectively, when the temperature increased from25to45℃; for acetone, the adsorptioncapacity of pine and wheat straw activated biochar at KOH ratio of3.0decreased from21.7%and17.7%to15.3%and12.0%, respectively, when the temperature increased from25to45℃.
     (3) Adsorption capacity at high concentration was increased according to the increment ofKOH/biochar ratio from0.5to3.0. For toluene, adsorption capacity of pine and wheat strawactivated biochar were increased from32.2%and20.2%to71.9%and45.9%, respectively,when KOH/biochar ratio was increased from0.5to3.0. For acetone, adsorption capacity ofpine and wheat straw activated biochar were increased from24.7%and22.7%to57.8%and36.4%, respectively, when KOH/biochar ratio was increased from0.5to3.0. An increase oftemperature from25to45℃, the toluene/acetone adsorption capacity from the adsorptionisotherm of activated biochar at high concentration was decreased. DR Dubinin–Radushkevich(DR) model can be used to fit toluene/acetone adsorption isotherm data for pine and wheat straw activated biochars at various temperatures of25,35,45℃.
     (4) The adsorption capacity of activated biochar is not influenced by successivemicrowave swing regeneration. For toluene, it was found that the adsorption capacities of pineand wheat straw activated biochar are about445mg/g and231mg/g, respectively, and5cyclesover repetitive microwave heating did not reduce or increase adsorption capacities. For acetone,it showed the adsorption capacities of pine and wheat straw activated biochar are about330mg/g and185mg/g, respectively. A increasing of microwave output power, flow rate of purgegas, and humidity of purge gas, desorption rates using microwave heating was increased. Theoptimized parameters of microwave output power, flow rate of purge gas, and humidity ofpurge gas for microwave heating under this experiment condition are:600W,1L/min and humidN2. Comparison of pine and wheat straw activated biochar loaded with toluene/acetone onadsorption capacity, regeneration ratios, temperature rats, desorption rates, power and energyconsumption, microwave regeneration has been demonstrated on a lab-scale to be a rapider,more efficient and simpler regeneration technique than that of conductive regeneration method.The results showed that the regeneration ratio reached99.7%and99.8%under3min and1minof microwave heating with constant power of600W, when the pine and wheat straw activatedbiochar was loaded with toluene and acetone, respectively. For microwave heating withconstant temperature, it took30min and10min for pine activated biochar loaded with tolueneand acetone, respectively, while it took only10min and5min for activated activated biocharloaded with toluene and acetone, respectively. However, for conductive heating, it took120minand60min for both pine/wheat straw activated biochar loaded with toluene and acetone,respectively. To achieve99.6%desorption, microwave heating requires13.5KJ/g and9KJ/g fortoluene and acetone, while conductive heating requires40.5KJ/g and31.5KJ/g for toluene andacetone. Therefore, the energy consumption of conductive heating was3times higher than thatof microwave heating for the desorption of toluene and acetone. The BET surface area,micropore volume, micropore surface area and surface functional group of the microwave andconventional treated samples was found unchanged. Therefore, microwave heating withconstant power is recognized as the most efficient and feasible regeneration method foractivated biochar saturated with toluene or acetone.
引文
[1] J.DeJongh, H.J.M. Verhaar, J.L.M. Hermens, Toxicol. Sci.45,26. doi:10.1093/toxsci/45.1.26,1998.
    [2] U.S. EPA., Integrated Risk Information System (IRIS) Online. Coversheet for Toluene, Office of Healthand Environmental Assessment, U.S. EPA, Cincinnati, OH, Retrieved1994,7/94.
    [3]洪紫萍.挥发性有机化合物的污染与防治[J].环境污染与防治,1994,16(4):24-26.
    [4]国务院办公厅转发环境保护部等部门关于推进大气污染联防联控工作改善区域空气质量指导意见的通知[EB/OL]. http://www.gov.cn/gongbao/content/2010/content_1612364.htm.
    [5]裘著革.室内空气污染与健康.北京:化学工业出版社,2003.
    [6] Yao, M.. Removal of Volatile Organic Compounds from Indoor Air Using Regenerative ActivatedCarbon Fiber Cloth.Michigan Technological University:2008,20.
    [7] Chiang, H. L.,C.P. Huangm, and P. C. Chiang, The Adsorption of Benzene and Methylethylketone ontoActivated Carbon: Thermodynamic Aspects, Chemosphere,2002,46,143.
    [8]张字峰,邵春燕,张雪英.挥发性有机物的污染控制技术[J].南京工业大学学报(自然科学版),2003,25(3):89-92.
    [9] Fujishima, A., Rao, T.N.,&Tryk, A. Titanium dioxide photocatalysis, Journal of Photochemistry andPhotobiology C: Photochemistry Reviews,2000(1),1–21.
    [10] Vione, D., Minero, C., Maurino, V., Carlotti, M.E., Picatonotto, T.,&Pelizzetti, E. Degradation ofphenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst, AppliedCatalysis B: Environmental,2005(58),79–88.
    [11] Masuda S, Kiss E, Ishida K, et al. pulse corona induced plasma chemical process: a horizon of newplasma chemical technologies [J]. Pure&Apple Chem,1988,60(5):727.
    [12]杨豪,李彦旭,卢姿生物法处理挥发性有机废气(VOCs)的研究.广东化工.2009年第8期第36卷p124-126.
    [13] Hunter, P. and Oyama, S.T.. Control of Volatile Organic Compound Emissions: Conventional andEmerging Technologies. John Wiley, New York,2000.
    [14] Faisal I. Khan, Aloke Kr. Ghoshal. Removal of volatile organic compounds from polluted air [J]. Journalof Loss Prevention in the Process Industries,2000,13(6):527-545.
    [15] Chuang C.L., Chiang P.C., Chang E.E.. Modeling VOCs adsorption onto activated carbon[J].Chemosphere,2003,53(1):17-27.
    [16]王簌主编,化工辞典[M]北京:化学工业出版社,1992,516.
    [17]陈诵英等吸附与催化[M].第1版.郑州:河南科学技术出版社,2001.8:1-2.
    [18] Ralph T. Yang. Adsorbents: Fundamentals and Applications [M]. Canada: John Wiley&Sons,Inc.,Hoboken, New Jersey,2003:2-3.
    [19] Gregg SJ, Sing K S W. Adsorption Surface Area and Porosity.2nd Edition. London: Academic Press.1982.
    [20] Brunauer S., Deming L., Deming W., Teller E., J. Am. Chem. Soc.[J],1940,62(7):1723.
    [21] Singh DB, Prasad G and Rupainwar DC,et al. Arsemc (Ⅲ) removal from aqueous solution by adsorption.Water Air and Soil Pollution,1988,42(3-4):373-386.
    [22] David Ramirez,Patrick D. Sullivan,Mark J. Rood, M.ASCE and K. James Hay. Equilibrium Adsorptionof Phenol-, Tire-, and Coal-Derived Activated Carbons for Organic Vapors[J].Journal of EnvironmentalEngineering.2004,(3):231–241.
    [23] Do,D.D.Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London,1998.
    [24] Lo,S. Characterization of the chemical,physical, thermal and electrical properties of a series of activatedcarbon fiber cloths.MS. Thesis,Department of Civil and Environmental Engineering, University ofIllinois at Urbana Champaign,Urbana.2008.
    [25] Lehmann J&Joseph S. Biochar for Environmental Management, Science and technology[M]. London:Earthscan,2009,48~51.
    [26] M.Ruiz-Fernández, M. Alexandre-Franco, C. Fernández-González, V. Gómez-Serrano, Development ofactivated carbon from vine shoots by physical and chemical activation methods. Some insight intoactivation mechanisms Adsorption,2011,17:621–629.
    [27] Yang K B, Peng J H, Srinivasakannan C, Zhang L B, Xia H Y, Duan X H. Preparation of highsurface area activated carbon from coconut shells using microwave heating[J]. Bioresource Technology,2010,101(15):6163~6169.
    [28] Meredith, R.J. Engineers’ Handbook of Industrial Microwave Heating. Institution of ElectricalEngineers, London,1998.
    [29]时运铭,段书德.木质粉状活性炭的微波加热再生研究[J].河北化工.2002年第6期p31-32.
    [30] Dehdashti, A., Khavanin, A., Abbas Rezaee,&Asilian, H. Regeneration of Granular Activated CarbonSaturated with Gaseous Toluene by Microwave Irradiation [J]. Eng. Env.Sci,2010.34:49-58.
    [31] R. Verma, S.P.Nandi and C. Cleareland, Microwave assisted chemical process for treatment of hazardouswaste, Argonne National Laboratory, Annual Report,1987.
    [32] Guo J, Lua A C. Preparation of activated carbons from oil-palm-stone chars by microwave-inducedcarbon dioxide activation [J]. Carbon,2000,38(14):1985~1993.
    [33] Liu X T, Quan X, Bo L L, Chen S, Zhao Y H, Chang M. Temperature measurement of GAC anddecomposition of PCP loaded on GAC and GAC-supported copper catalyst in microwave irradiation [J].Applied Catalysis a-General,2004,264(1):53~58.
    [34] Williams H M, Parkes G M B. Activation of a phenolic resin-derived carbon in air using microwavethermogravimetry [J]. Carbon,2008,46(8):1169~1172.
    [35] Alireza Dehdashti,Ali Khavanin, Abbas Rezaee, Hassan Asilian. Regeneration of granular activatedcarbon saturated with gaseous toluene by microwave irradiation[J]. Eng. Env. Sci.2010,34:49~58.
    [36] Hui Deng, Genlin Zhang, Xiaolin Xu, Guanghui Tao, Jiulei Dai. Optimization of preparation ofactivated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation [J].Journal of Hazardous Materials2010,182:217~224.
    [37] Liu Q S, Zheng T, Wang P, Guo L. Preparation and characterization of activated carbon from bambooby microwave-induced phosphoric acid activation [J]. Industrial Crops and Products,2010,31(2):233~238.
    [38] Ania C. O., J. B. Parra, J. A. Menendez, et al.Effect of Microwave and Conventional Regeneration onthe Microporous and Mesoporous Network and on the Adsorptive Capacity of ActivatedCarbons[J].Microporous and Mesoporous Materials.2005,85(1-2):7-15.
    [39] Hashisho Z., M. Rood and L. Botich. Microwave-swing Adsorption to Capture and Recover Vapors fromAir Streams with Activated Carbon Fiber Cloth[J]. Environmental Science&Technology.2005,39(17):6851-6859.
    [40]宁平,田森林,等.微波辐照再生载甲苯活性炭[J].化学工业与工程,2001,18(2):109-113.
    [41] Chen M. S., J. Huang, J. H. Wang, et al. Thermal Behaviors and Regeneration of Activated CarbonSaturated with Toluene Induced by Microwave Irradiation[J].Journal of Chemical Engineering ofJapan.2009,42(5):325-329.
    [42]潘能婷.新型微波适应型复合活性炭的制备及其微波再生性能研究[D].广州:华南理工大学,2010.
    [43]曹晓强,黄学敏,刘胜荣,赵圣伟,庄剑恒,冯燕,马广大.2种改性活性炭对甲苯吸附性能的对比研究.环境科学.2008年10月第29卷第10期p2869-2873.
    [44]金燕,蒋文举,江霞,朱晓帆,刘立.微波加热对活性炭表面基团及其对SO2吸附性能的影响.环境污染治理技术与设备.2003年4月第4卷第4期p35-38.
    [45]蒋文举,江霞,朱晓帆,金燕,钟本和.微波加热对活性炭表面基团及吸附性能的影响.林产化学与工业.2003年3月第23卷第1期p39-42.
    [46]岳宗豪,郑经堂,曲降伟,等.活性炭再生技术研究进展[J].应用化工.2009年11月第38卷第11期.
    [47] Jones D. A., T. P. Lelyveld, S. D. Mavrofidis, et al. Microwave Heating Applications in EnviromnentalEngineering-a Review[J]. Resources Conservation and Recycling(2002)34(2):75-90.
    [1]刘荣厚,牛卫生,张大雷编.生物质热化学转换技术[M].北京:化学工业出版社,2005.
    [2] Dehdashti, A., Khavanin, A., Abbas Rezaee,&Asilian, H. Regeneration of Granular Activated CarbonSaturated with Gaseous Toluene by Microwave Irradiation. Eng. Env.Sci,2010(34):49-58.
    [3] Hui Deng, Genlin Zhang, Xiaolin Xu, Guanghui Tao, Jiulei Dai. Optimization of preparation ofactivated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation [J].Journal of Hazardous Materials2010,182:217~224.
    [4] Yang K B, Peng J H, Srinivasakannan C, Zhang L B, Xia H Y, Duan X H. Preparation of highsurface area activated carbon from coconut shells using microwave heating[J]. Bioresource Technology,2010,101(15):6163~6169.
    [5] Liu Q S, Zheng T, Wang P, Guo L. Preparation and characterization of activated carbon from bambooby microwave-induced phosphoric acid activation [J]. Industrial Crops and Products,2010,31(2):233~238.
    [6] Teng H.,Yeh T.S.,I-Isu L.Y. Preparation of activated carbon from bituminous coal with phosphoric acidactivation. Carbon,1998,36(9):1387-1395.
    [7] Otowa, T., Production and adsorption characteristics of maxsorb: High-surface-area active carbon. GasSeparation&Purification,1993,4(7):241-245.
    [8] ASTM. Standard Test Method for Determination of Iodine Number of ActivatedCarbon D4607, American Society for Testing and Materials.2006.
    [9] Gregg S J, Sing K S W. Adsorption, surface area and porosity [M]. New York: Academic Press,1982.
    [10] Paul A Webb, Orr C. Analytical methods in fine particle technology [M]. Micromeritics Instrument Corp.1997.
    [11] Lastoskie C, Gubbins K E, Quirke N. Pore-size distritution analysis and networking-studies ofmicroporous sorbnents [J]. Characterization of Porous Solids,1994.87:51~60.
    [12]黄彪杉木间伐木的炭化理论及其炭化物在环境保护中应用的研究南京林业大学2004.
    [13] Wu, M., Zha, Q., Qiu, J., Han, X., Guo, Y., Li, Z., Yuan, A. and Sun, X. Preparation of porous carbonsfrom petroleum coke by different activation methods.,2005, Fuel84(14-15):1992-1997
    [14] Patrick, J. W., Ed. Porosity in Carbons: Characterization and Applications New York, John Wiley&Sons Inc,1995.
    [15] Jankowska, H., Swiatkowski, A. and Choma, J. Active Carbon. New York, Ellis Horwood,1991.
    [16]张利波,刘晓海,彭金辉,等.微波加热核桃壳制取活性炭及孔结构表征[J].化学工业与工程技术,2006,27(4):15-22.
    [17]邢宝林,谌伦建,张传祥,潘兰英,黄光许中低温活化条件下超级电容器用活性炭的制备与表征.煤炭学报2011年7月第36卷第7期.
    [18]陈再华,王正郁.一种用生物质材料为原料的极性电极用活性炭的制造方法[P].中国专利:200810121556.0,2009-05-06.
    [19] Feng-Chin Wu, Ru-Ling Tseng. Preparation of highly porous carbon from fr wood by KOH etching andCO2gasifcation for adsorption of dyes and phenols from water. Journal of Colloid and InterfaceScience.294,2006,21–30.
    [20] Z. Hu, M.P. Srinivasan, Micropor. Mesopor. Mater.43,2001,267.
    [21] Feng-Chin Wu, Ru-Ling Tseng, Chi-Chang Hu. Comparisons of pore properties and adsorptionperformance of KOH-activated and steam-activated carbons. Microporous and Mesoporous Materials80,2005,95–106.
    [22] N. Tancredi, T. Cordero, J. Rodriguez-Mirasol, J.J. Rodriguez,Fuel75,1996,1701.
    [23] Wu F C, Wu P H, Tseng R L, Juang R S. Preparation of novel activated carbons fromH2SO4-pretreated corncob hulls with KOH activation for quick adsorption of dye and4-chlorophenol[J].Journal of Environmental Management,2011,92(3):708~713.
    [24]樊希安微波辐射农林废弃物制备活性炭新技术研究.昆明理工大学硕士2004.
    [25] Oliver J.P, ConklinW. B, SzombotheIy M. V. Characterization of Porous Solids Ⅲ. Editors: Ronguerd J.,Rodriguez-Reinoso F., Sing K. S. W., Unger K.K. Amsterdam: Elsevier,1994.81.
    [26] Rouquerol, F., Rouquerol, J., Sing, K.S.W., Adsorption by Powders and Porous Solids. Principles,Methods and Application. Academic Press, San Diego, CA,1999.
    [27] Ru-Ling Tseng, Szu-Kung Tseng. Pore structure and adsorption performance of the KOH-activatedcarbons prepared from corncob. Journal of Colloid and Interface Science.2005,287:428–437.
    [28] K.Y. Foo, B.H. Hameed. Microwave-assisted preparation of oil palm fber activated carbon formethylene blue adsorption. Chemical Engineering Journal.2011,(166):792–795.
    [29] OtowaT.NojinaY.MiyazakiT.DevelopmentofKOHActiwaedHighSurfaceAreaCarbonanditsApplicationtoDrinking WaterPurification.Carbon.1997,35(9):1315,1319.
    [1] Yao, M. Removal of Volatile Organic Compounds from Indoor Air using Regenerative Activated CarbonFiberCloth. Michigan Technological University,2008.20.
    [2]刘星,张萃民.气相色谱/光离子化检测器简介[J].环境监测管理与技术,1997,9(4):42-44.
    [3] DongqiangHan, WanyunMa, DieyanChen.Determination of Biodegradation Produets fromBenzene,Toluene. Ethylbenzene and Xylenes in Seawater by Purge and TraP GasChromatography[J].Chinese Journalof Analytieal Chemistry.2006,34(10):361-1365.
    [4]马如森,王谦,景士廉.真空紫外光离子化检测器可检测的化合物[J].中国环境监测,2000,16(5):16-19.
    [5]薛文平,孙辉,姜莉莉,马春,张新欣,VOCs在活性炭纤维上吸附性能的研究.大连轻工业学院学报.2007年6月第26卷第2期.
    [6] Agnès Joly, Vitaly Volpert, Alain Perrard. Dynamic Adsorption with FEMLAB, Modeling breakthroughcurves of gaseous pollutants through activated carbon beds. Excerpt from the Proceedings of theCOMSOL Multiphysics User’s Conference, Paris,2005.
    [7]张丽丹,王晓宁,韩春英,郭坤敏.活性炭吸附二氧化碳性能的研究.北京化工大学学报.2007,第34卷第1期.
    [8]龚燕飞VOCs和水蒸气在活性炭上的吸附平衡研究.西安建筑科技大学硕士2010.
    [9]高瑞英,陈秋燕,李忠军.活性炭吸附VOC苯系物的影响因素研究.广东轻工职业技术学院学报第4卷第4期2005,p16-18.
    [10] Sampatrao D. Manjare and Aloke K. Ghoshal Studies on Adsorption of Ethyl Acetate Vapor onActivated Carbon. Ind. Eng. Chem. Res.2006,45,6563-6569.
    [1] Dolidovich, A. F.; Akhremkova, G. S.; Efremtsev, V. S. Novel Technologies of VOCDecontamination in Fixed, Moving and Fluidized Catalyst-Adsorbent Beds. Can. J. Chem. Eng.1999,77,342.
    [2] Huang, M. C.; Chou, C. H.; Teng, H. Pore-Size Effects on Activated Carbon Capacities for VolatileOrganic Compound Adsorption. AIChE J.2002,48(8),1804.
    [3] Singh, K. P.; Mohan, D.; Tandon, G. S.; Gupta, G. S. D. Vapor Phase Adsorption of Hexane andBenzene on Activated Carbon Fabric Cloth: Equilibria and Rate Studies. Ind. Eng. Chem. Res.2002,41(10),2480.
    [4] Huang, C. C.; Hwu, T. L.; Hsia, Y. S. Recovery of Acetone Vapor by a Thermal Swing Adsorber withActivated Carbon. J. Chem. Eng. Jpn.1993,26(1),21.
    [5] Manjare, S. D.; Ghoshal, A. K. Studies on Dynamic Adsorption Behaviour of Ethyl Acetate onMolecular Sieves. Can. J. Chem. Eng.2005,83,232.
    [6] Martinez, G. M.; Basmadjian, D. Towards a General Gas Adsorption Isotherm. Chem. Eng. Sci.1996,51(7),1043.
    [7] Gupta, V. K.; Verma, N. Removal of Volatile Organic Compounds by Cryogenic Condensation followedby Adsorption. Chem. Eng. Sci.2002,57(14),2679.
    [8] David Ramirez,Patrick D. Sullivan,Mark J. Rood, M.ASCE,and K. James Hay. EquilibriumAdsorption of Phenol-, Tire-, and Coal-Derived Activated Carbons for Organic Vapors. Journal ofEnvironmental Engineering.2004:(3)231-241.
    [9] Jingjing Pei, Jianshun S. Zhang. Determination of adsorption isotherm and diffusion coeffcient oftoluene on activated carbon at low concentrations. Building and Environment.2012,(48)66-76.
    [10] Shen, T. and Wang, D.H. Application of potential theory for gas adsorption systems. In: AdsorptionTechnology for Air and Water Pollution Control. Chelsea, MI: Lewis Publisher, Inc. p.256–77,1992.
    [11] El-Hendawy A N A. Influence of HNO3oxidation on the structure and adsorptive properties ofcorncob-based activated carbon [J]. Carbon.2003(41):713~722.
    [1] F.Rodriguez-Reinoso, in: F. Schuth, K.S.W. Sing, J. Weitkamp (Eds.), Handbook of Porous Solids, frsted., vol.3, Wiley-VCH Verlag GmbH, Weinheim,2002, Chapter4.
    [2]田森林.昆明理工大学研究生学术交流会论文集[C].昆明:昆明理工大学,1998.
    [3]宁平,田森林,王学谦.微波辐照再生载甲苯活性炭[J].化学工业与工程.2001年4月第18卷第2期.
    [4]吴琪,宋乾武,曾燕艳.活性炭再生技术研究进展和发展趋势[J].中国环保产业.2011.10.
    [5] Guo, J., and Lua, A. C. Preparation of activated carbons from oil-palm-stone chars bymicrowave-induced carbon dioxide activation [J]. Carbon,2000.38(14):1985-1993.
    [6] Liu, XT, Quan, X, Bo, LL,et al. Chang, M.Temperature measurement of GAC and decomposition ofPCP loaded on GAC and GAC-supported copper catalyst in microwave irradiation[J]. Applied Catalysisa-General,2004.264(1):53-58.
    [7] Williams, H. M.,&Parkes, G. M. B. Activation of a phenolic resin-derived carbon in air usingmicrowave thermogravimetry[J].Carbon.2008.46(8):1169-1172.
    [8]时运铭,段书德.木质粉状活性炭的微波加热再生研究[J].河北化工.2002年第6期p31-32.
    [9] Dehdashti, A., Khavanin, A., Abbas Rezaee, et al. Regeneration of Granular Activated Carbon Saturatedwith Gaseous Toluene by Microwave Irradiation [J]. Eng. Env.Sci,2010.34:49-58.
    [10] Shi, M., C. C. H. Lin, T. M. Kuznicki, et al. Separation of a Binary Mixture of Ethylene and Ethane byAdsorption on Na-ETS-10[J]. Chemical Engineering Science2010:65(11):3494-3498.
    [11] Reuss J., D. Bathen and H. Schmidt-Traub. Desorption by microwaves: Mechanisms of MulticomponentMixtures[J]. Chemical Engineering&Technology.2002,25(4):381-384.
    [12] Ania C. O., J. B. Parra, J. A. Menendez, et al. Microwave-assisted Regeneration of Activated CarbonsLoaded with Pharmaceuticals[J]. Water Research.2007,41(15):3299-3306.
    [13] Chen M. S., J. Huang, J. H. Wang, et al.Thermal Behaviors and Regeneration of Activated CarbonSaturated with Toluene Induced by Microwave Irradiation[J].Journal of Chemical Engineering ofJapan.2009,42(5):325-329.
    [14] Dehdashti A., A. Khavanin, A. Rezaee, et al. Application of Microwave Irriadiation for the Treatment ofAdsorbed Volatile Organic Compounds on Granular activated carbon[J]. Iranian Journal ofEnvironmental Health Science&Engineering.2011,8(1):85-94.
    [15] Price, D. W. and P. S. Schmidt. VOC Recovery Through Microwave Regeneration of Adsorbents:Process Design Studies[J]. Journal of the Air&Waste Management Association.1998,48(12):1135-1145.
    [16] Ania C. O., J. B. Parra, J. A. Menendez, et al.Effect of Microwave and Conventional Regeneration onthe Microporous and Mesoporous Network and on the Adsorptive Capacity of ActivatedCarbons[J].Microporous and Mesoporous Materials.2005,85(1-2):7-15.
    [17] Hashisho Z., M. Rood and L. Botich. Microwave-swing Adsorption to Capture and Recover Vapors fromAir Streams with Activated Carbon Fiber Cloth[J]. Environmental Science&Technology.2005,39(17):6851-6859.
    [18]宁平,田森林.微波辐照再生载甲苯活性炭[J].化学工业与工程,2001,18(2):109-113.
    [19]潘能婷.新型微波适应型复合活性炭的制备及其微波再生性能研究[D].广州:华南理工大学,2010.
    [20]岳宗豪,郑经堂,曲降伟,等.活性炭再生技术研究进展[J].应用化工.2009年11月第38卷第11期.
    [21] Jones D. A., T. P. Lelyveld, S. D. Mavrofidis, et al. Microwave Heating Applications in EnviromnentalEngineering-a Review[J]. Resources Conservation and Recycling(2002)34(2):75-90.
    [22]冒海燕Zaher Hashisho汪孙国陈恒王海燕周定国.微波加热方法制备活化生物质炭的研究.林产工业.2012年第39卷第3p30-34.
    [23] Paul A Webb, Orr C. Analytical methods in fine particle technology [M]. Micromeritics Instrument Corp.1997.
    [24] R. Verma, S.P.Nandi and C. Cleareland, Microwave assisted chemical process for treatment of hazardouswaste, Argonne National Laboratory, Annual Report,1987.
    [25] Wang, L. W., Wu, J. Y., Wang, R. Z., Xu, Y. X., Wang, S. G. and Li, X. R. Study of theperformance of activated carbon-methanol adsorption systems concerning heat andmass transfer. Applied Thermal Engineering2003,(13):1605-1617.
    [26] Coss, P. M. and C. Y. Cha. Microwave regeneration of activated carbon used for removal of solventsfrom vented air[J].Journal of the Air&Waste Management Association.2000,50(4):529-535.
    [27] Cherbanski R., M. Komorowska-Durka, G. D. Stefanidis, et al. Microwave Swing Regeneration vsTemperature Swing Regeneration-Comparison of Desorption Kinetics[J].Industrial&EngineeringChemistry Research.2011,50(14):8632-8644.
    [1] Foster, K.L., Fuerman, R.G., Economy, J., Larson, S.M., Rood, M.J.: Adsorption characteristics of tracevolatile organic compounds in gas streams onto activated carbon fbers. Chem. Mater.1992(4)1068–1073.
    [2] Yao, M. Removal of Volatile Organic Compounds from Indoor Air using Regenerative Activated CarbonFiber Cloth. Ph.D. Dissertation, Michigan Technological University,Michigan,2008.
    [3] Cooper, C. D. and F. C. Alley. Air Pollution Control: A Design Approach, Wavel and Press, ProspectHeight, IL, USA,1986.
    [4] Chiang, H. L., Huang, C. P., Chiang, P. C. The Adsorption of Benzene and Methylethylketone ontoActivated Carbon: Thermodynamic Aspects. Chemosphere,2002,46(1):143-152.
    [5] Chuang, C. L.; Chiang, P. C.; Chang, E. E. Modeling VOCs Adsorption onto ActivatedCarbon.Chemosphere.2003,53(1):17-27.
    [6] Lehmann, J.and Joseph, S. Biochar for Environmental Management, Science and Technology.London:Earthscan,2009.
    [7] Sheng, J. M., Huang, B., andGao, S.Y, Study on properties of Chinese fir thinning wood charcoals andits adsorption capacities for VOC polluting substances. J. of Fuzhou University (Natural Science),2005,33(6):3.17(3):621-629.
    [8] Zheng, W., Guo, M. X., Chow, T.; Bennett, D. N.;Rajagopalan, N. Sorption Properties ofgreenwastebiochar for two Triazinepesticides. J.Hazard. Mater.2010,181(1-3):121-126.
    [9] Tseng, R. L. and Tseng, S. K. Pore Structure and Adsorption Performance of the KOH-activated CarbonsPrepared from Corncob. J.Colloid.Interf. Sci.2005,287(2):428-437.
    [10] Ruiz-Fernandez, M.; Alexandre-Franco, M.; Fernandez-Gonzalez, C.; Gomez-Serrano, V. Developmentof Activated Carbon fromVine Shoots by Physical and Chemical Activation Methods.Some Insight intoActivation Mechanisms.Adsorption.2011,17(3):621-629.
    [11] Yang, K. B.;Peng, J. H.; Srinivasakannan, C.; Zhang, L. B.; Xia, H. Y.; Duan, X. H.Preparation of HighSurface Area Activated Carbon from Coconut Shells using Microwave Heating.BioresourceTechnol.2010,101(15):6163-6169.
    [12] Kawano, T.; Kubota, M.; Onyango, M. S.; Watanabe, F.; Matsuda, H. Preparation of Activated Carbonfrom Petroleum Coke by KOH Chemical Activation for Adsorption Heat Pump.Appl. Therm. Eng.2008,28(8-9):865-871.
    [13] Wu, F.-C.; Wu, P.-H.; Tseng, R.-L.;Juang, R.-S. Preparation of Novel Activated Carbons fromH2SO4-Pretreated Corncob Hulls with KOH Activation for Quick Adsorption of Dye and4-chlorophenol.J. Environ. Manage.2011,92(3):708-713.
    [14] Hunter, P. and Oyama, S.T. Control of Volatile Organic Compound Emissions: Conventional andEmerging Technologies. John Wiley, New York,2000.
    [15] Zaher Hashisho. Microwave-Swing Adsorption for the Capture and Recovery, or Destruction for a MoreSustainable use of Organic Vapors, PhD Dissertation, University of Illiois at Urbona-Champaign,2007.
    [16] Chen,W., Experimental Evaluation of Indoor Air Cleaning Technologies and Modeling of UV-PCO(Photocatalytic Oxidation) Air Cleaners under Multiple VOCs Conditions, PhD Dissertation,Syracuse University,2007.
    [17] Altwicker, E.R., Canter, L.W., Cha, S.S., Chuang, K.T., Liu, D.H.F., Ramachandran, G., Raufer, R.K.,Reist, P.C., Sanger, A.R., Turk, A., Wagner, C.P. Air Pollution, in Environmental Engineers’ Handbook.Liu, D.H.F. and Liptak, B.G.(Ed), CRC Press,1999.
    [18] Sturrock, Peter A: Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical&Laboratory Plasmas. Cambridge University Press,1994.
    [19] Daniels S.L. On the ionization of air for removal of noxious effluvia, IEEE Transaction on PlasmaScience.2002,30(4):1471-1481.
    [20] Hunter, P. and Oyama, S.T. Control of Volatile Organic Compound Emissions: Conventional andEmerging Technologies. John Wiles, New York,2000.
    [21] Altwicker, E.R., Canter, L.W., Cha, S.S., Chuang, K.T., Liu, D.H.F., Ramachandran, G., Raufer, R.K.,Reist, P.C., Sanger, A.R., Turk, A., Wagner, C.P. Air Pollution, in Environmental Engineers’ Handbook.Liu, D.H.F. and Liptak, B.G.(Ed), CRC Press,1999.
    [22] Hunter, P. and Oyama, S.T. Control of Volatile Organic Compound Emissions: Conventional andEmerging Technologies. John Wiles, New York,2000.
    [23] Gregg SJ, Sing K S W. Adsorption Surface Area and Porosity.2nd Edition. London: Academic Press.1982.
    [24] Hayward DO and MA Trapnell BMW, Chemisorption,2nd edition, London, Butterworths,1964.
    [25] Brunauer S., Deming L., Deming W., Teller E., J. Am. Chem. Soc.[J],1940,62(7):1723.
    [26] Singh DB, Prasad G and Rupainwar DC,et al. Arsemc (Ⅲ) removal from aqueous solution by adsorption.Water Air and Soil Pollution,1988,42(3-4):373-386.
    [27] David Ramirez,Patrick D. Sullivan,Mark J. Rood, M.ASCE and K. James Hay. Equilibrium Adsorptionof Phenol-, Tire-, and Coal-Derived Activated Carbons for Organic Vapors[J].Journal of EnvironmentalEngineering.2004,(3):231–241.
    [28] Do, D.D. Adsorption Analysis: Equilibria and Kinetics. Imperial College Press,1998,London.
    [29] Lo,S. Characterization of the chemical, physical, thermal and electrical properties of a series of activatedcarbon fiber cloths.MS. Thesis, Department of Civil and Environmental Engineering, University ofIllinois at Urbana Champaign, Urbana.2008.
    [30] Yates, D. J. C. Studies on the surface area of zeolites, as determined by physical adsorption and X-raycrystallography. Canadian Journal of Chemistry,1968,(46):1695-1701.
    [31] Meredith, R.J. Engineers’ Handbook of Industrial Microwave Heating. Institution of ElectricalEngineers,1998.London.
    [32] Chen, C. J.; Wei, L. B.; Zhao, P. C.; Li, Y.; Hu, H. Y.; Qin, Y. B. Study on Preparation of ActivatedCarbon from Corncob Furfural Residue with ZnCl2by Microwave Irradiation. New Mater. Adv. Mater.,Part2.2011, Vol.152-153:1322-1327.
    [33] Dehdashti, A.; Khavanin, A., Abbas Rezaee; Asilian, H. Regeneration of Granular Activated CarbonSaturated with Gaseous Toluene by Microwave Irradiation. Eng. Env.Sci.2010,34:49-58.
    [34] Guo, J.and Lua, A. C. Preparation of Activated Carbons from Oil-palm-stone Chars byMicrowave-induced Carbon Dioxide Activation.Carbon.2000,38(14):1985-1993.
    [35] Liu, X. Q., X; Bo, L.L; Chen, S; Zhao, Y.H; Chang, M. Temperature Measurement of GAC andDecomposition of PCP loaded on GAC and GAC-supported Copper Catalyst in microwave irradiation.Appl. Catal.A-Gen.2004,264(1):53-58.
    [36] Williams, H. M.andParkes, G. M. B. Activation of a Phenolic Resin-derived Carbon in Air usingMicrowave Thermogravimetry.Carbon.2008,46(8):1169-1172.
    [37] Liu, Q. S.; Zheng, T.; Wang, P.; Guo, L. Preparation and Characterization of Activated Carbon fromBamboo by Microwave-induced Phosphoric Acid Activation. Ind. Crop.Prod.2010,31(2):233-238.
    [38] Hashisho, Z.; Emamipour, H.; Rood, M.; Hay, J.; Kim, B.;Thurston, D.L. Concomitant Adsorption andDesorption of Organic Vapor in Dry and Humid Air Streams using Microwave and Direct ElectrothermalSwing Adsorption.Environ. Sci. Technol.2008,42(24),9317-9322.
    [39] Hashisho, Z.; Barot, S.; Rood, M.; and Bernhard, J.Role of Functional Groups on the MicrowaveAttenuation and Electric Resistivity of Activated Carbon Fiber Cloth.Carbon.2009,47(7),1814-1823.
    [1] Lehmann, J.and Joseph, S. Biochar for Environmental Management, Science and Technology.London:Earthscan,2009.
    [2] Sheng, J. M., Huang, B., andGao, S.Y, Study on properties of Chinese fir thinning wood charcoals andits adsorption capacities for VOC polluting substances. J. of Fuzhou University (Natural Science),2005,33(6):3.17(3):621-629.
    [3] Zheng, W., Guo, M. X., Chow, T.; Bennett, D. N.;Rajagopalan, N. Sorption Properties ofgreenwastebiochar for two Triazinepesticides. J.Hazard. Mater.2010,181(1-3):121-126.
    [4] Tseng, R. L. and Tseng, S. K. Pore Structure and Adsorption Performance of the KOH-activated CarbonsPrepared from Corncob. J.Colloid.Interf. Sci.2005,287(2):428-437.
    [5] Bandosz, T. J. Activated carbon surfaces in environmental remediation Oxford, UK, ELSEVIER Ltd.2006.
    [6] OtowaT.NojinaY.MiyazakiT.Development of KOH Actiwaed High surface Area Carbon and itsApplication to Drinking Water Purification.Carbon.1997,35(9):1315,1319.
    [7] ASTM. Standard Test Method for Determination of Iodine Number of ActivatedCarbon D4607, American Society for Testing and Materials.2006.
    [8] Gregg, S. J. and Sing, K. S. W. Adsorption, Surface Area and Porosity; Academic Press: New York.1982.
    [9] Webb, Paul A.and Orr, C. Analytical Methods in Fine Particle Technology; Micromeritics InstrumentCorp,1997.
    [10] Lastoskie, C.; Gubbins, K. E.; Quirke, N. Pore-size Distribution Analysis and Networking-Studies ofMicroporous Sorbents.Stud. Surf.Sci. Catal.1994,87,51-60.
    [11] Wu, M., Zha, Q., Qiu, J., Han, X., Guo, Y., Li, Z., Yuan, A. and Sun, X.. Preparation of porous carbonsfrom petroleum coke by different activation methods. Fuel.2005,84(14-15):1992-1997.
    [12] Patrick, J. W., Ed.. Porosity in Carbons: Characterization and Applications New York, John Wiley&Sons Inc.1995.
    [13] Jankowska, H., Swiatkowski, A. and Choma, J. Active Carbon. New York, Ellis Horwood.1991.
    [14] Kunbin Yang, Jinhui Peng, Srinivasakannan, Libo Zhang, Hongying Xia, Xinhui Duan. Preparation ofhigh surface area activated carbon from coconut shells using microwave heating. BioresourceTechnology.101(2010)6163–6169.
    [15] Hakan Demiral, lknur Demiral, Fatma Tümsek, Belgin Karabacako lu,. Adsorption of chromium(VI)from aqueous solution by activated carbon derived from olive bagasse and applicability of differentadsorption models Chemical Engineering Journal (2008)144,188–196.
    [16] El-Hendawy, A.N.A. Influence of HNO3oxidation on the structure and adsorptive properties ofcorncob-based activated carbon. Carbon.2003(41),713-722.
    [17] Wu, F.-C.; Wu, P.-H.; Tseng, R.-L.;Juang, R.-S. Preparation of Novel Activated Carbons fromH2SO4-Pretreated Corncob Hulls with KOH Activation for Quick Adsorption of Dye and4-chlorophenol.J. Environ. Manage.2011,92(3):708-713.
    [18] Yang, K. B.;Peng, J. H.; Srinivasakannan, C.; Zhang, L. B.; Xia, H. Y.; Duan, X. H.Preparation of HighSurface Area Activated Carbon from Coconut Shells using Microwave Heating.BioresourceTechnol.2010,101(15):6163-6169.
    [19] Rouquerol, F.;Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids: Academic Press:1999.
    [20] Ru-Ling Tseng, Szu-Kung Tseng. Pore structure and adsorption performance of the KOH-activatedcarbons prepared from corncob. Journal of Colloid and Interface Science.2005,287:428–437.
    [1] M.A. Lillo-Rodenas, J. Carratala-Abril, D. Cazurla-Amoros, A. Linares-Solano, Fuel Process. Technol.2002(77)331.
    [2] M. Tancrede, R. Wilson, L. Zeise, E.A.C. Crouch, Atomos. Environ.1987(21)2187.
    [3] P. Braeuer, M. Salem, P. Harting, K. Quitzsch, Sep. Purif. Technol.1997(12)255.
    [4] DongqiangHan, WanyunMa, DieyanChen.Determination of Biodegradation Produets fromBenzene,Toluene. Ethylbenzene and Xylenes in Seawater by Purge and TraP Gas Chromatography[J].Chinese Journalof Analytieal Chemistry.2006,34(10):361-1365.
    [5] Xue Wen-ping, Sun Hui, Jiang Lili, Ma Chun, Zhang Xinxin. Adsorption performance of VOCs ontoactivated carbon fiber. Journal of Dalian Institute of Light Industry. Jun.2007.
    [6] Agnès Joly, Vitaly Volpert, Alain Perrard. Dynamic Adsorption with FEMLAB, Modeling breakthroughcurves of gaseous pollutants through activated carbon beds. Excerpt from the Proceedings of theCOMSOL Multiphysics User’s Conference2005. Paris.
    [7] Park, I.andKnaebel, K. S. Adsorption Breakthrough Behavior-Unusual Effects and Possible Causes.AICHE J.1992.38,660-670.
    [8] Juan Carratala′-Abril, Maria Angeles Lillo-Ro′denas, Angel Linares-Solano, and DiegoCazorla-Amoro′s. Activated Carbons for the Removal of Low-Concentration Gaseous Toluene at theSemipilot Scale. Ind. Eng. Chem. Res.2009,48,2066–2075.
    [9] Song-Woo Lee, Heung-Jai Park, Seok-Hee Lee, Min-Gyu Lee. Comparison of adsorption characteristicsaccording to polarity difference of acetone vapor and toluene vapor on silica–alumina fxed-bed reactor.Journal of Industrial and Engineering Chemistry.2008(14)10–17
    [10] Henning, K. D.; Bongartz, W.; Degel, J. Adsorptive recovery of problematic solvents. In Proceedingsof Biennial Conference on Carbon, Pennsylvania State University, USA,1989.
    [11] Sampatrao D. Manjare and Aloke K. Ghoshal Studies on Adsorption of Ethyl Acetate Vapor onActivated Carbon. Ind. Eng. Chem. Res.2006,45,6563-6569.
    [1] Dolidovich, A. F.; Akhremkova, G. S.; Efremtsev, V. S. Novel Technologies of VOCDecontamination in Fixed, Moving and Fluidized Catalyst-Adsorbent Beds. Can. J. Chem. Eng.1999,77,342.
    [2] Huang, M. C.; Chou, C. H.; Teng, H. Pore-Size Effects on Activated Carbon Capacities for VolatileOrganic Compound Adsorption. AIChE J.2002,48(8),1804.
    [3] Tien, C. Adsorption calculations and modeling, Butter worth Heinemann, New York.1994.
    [4] Singh, K. P.; Mohan, D.; Tandon, G. S.; Gupta, G. S. D. Vapor Phase Adsorption of Hexane andBenzene on Activated Carbon Fabric Cloth: Equilibria and Rate Studies. Ind. Eng. Chem. Res.2002,41(10),2480.
    [5] Huang, C. C.; Hwu, T. L.; Hsia, Y. S. Recovery of Acetone Vapor by a Thermal Swing Adsorber withActivated Carbon. J. Chem. Eng. Jpn.1993,26(1),21.
    [6] Manjare, S. D.; Ghoshal, A. K. Studies on Dynamic Adsorption Behaviour of Ethyl Acetate onMolecular Sieves. Can. J. Chem. Eng.2005,83,232.
    [7] Sylvain Giraudet, Pascaline Pré and Pierre Le Cloirec. Modeling the Temperature Dependence ofAdsorption Equilibriums of VOCs onto Activated Carbons. Journal of Environmental Engineering.2010,103-112.
    [8] Jingjing Pei, Jianshun S. Zhang. Determination of adsorption isotherm and diffusion coeffcient oftoluene on activated carbon at low concentrations. Building and Environment.2012,(48)66-76.
    [9] Shen, T. and Wang, D.H.1992. Application of potential theory for gas adsorption systems. In:Adsorption Technology for Air and Water Pollution Control. Chelsea, MI: Lewis Publisher, Inc. p.256–77.
    [10] K.Y. Foo and B.H. Hameed.2012. Microwave-assisted regeneration of activated carbon. Bioresour.Technol.119,234-240.
    [11] Hakan Demiral, lknur Demiral, Fatma Tümsek, Belgin Karabacako lu,. Adsorption of chromium(VI)from aqueous solution by activated carbon derived from olive bagasse and applicability of differentadsorption models Chemical Engineering Journal (2008)144,188–196.
    [12] El-Hendawy, A.N.A. Influence of HNO3oxidation on the structure and adsorptive properties ofcorncob-based activated carbon. Carbon.2003(41),713-722.
    [13] R.L.Tseng, F.C. Wu, R.S. Juang. Liquid-phase adsorption of dyes and phenols using pinewood-basedactivated carbons. Carbon2003(41),487-495.
    [14] Rouquerol, F., J. Rouquerol, and K. Sing. Adsorption by Powders&Porous Solids, Academic Press, SanDiego.1999.
    [15] Henning, K. D.; Bongartz, W.; Degel, J. Adsorptive recovery of problematic solvents. In Proceedingsof Biennial Conference on Carbon, Pennsylvania State University, USA,1989.
    [1] Yuen, F.K. and B.H. Hameed, Recent developments in the preparation and regeneration of activatedcarbons by microwaves. Adv Colloid and Interface Science Adv. Colloid Interface Sci.,2009.149(1-2):p.19-27.
    [2] Ania, C.O., et al., Effect of microwave and conventional regeneration on the microporous andmesoporous network and on the adsorptive capacity of activated carbons. Micropor. Mesopor. Mat.,2005.85(1-2): p.7-15.
    [3] Yao, M., Removal of volatile organic compounds from indoor air using regenerative activated carbonfiber cloth. Ph.D. Dissertation.Michigan technological university,2008: p.20.
    [4] Cherbanski, R., et al., Microwave Swing Regeneration vs Temperature Swing Regeneration-Comparisonof Desorption Kinetics. Ind.&Eng. Chemis. Research,2011.50(14): p.8632-8644.
    [5] Xiu, G.H., P. Li, and A.E. Rodrigues, Sorption-enhanced reaction process with reactive regeneration.Chem. Eng. Sci.,2002.57(18): p.3893-3908. CHEM ENG SCI
    [6] Kapranov, S.V. and G.A. Kouzaev, Debye relaxation mechanisms of microwave heating of near-criticalpolar gases. Int. J. Therm. Sci.,2010.49(12): p.2319-2330.
    [7] Dehdashti, A., et al., Application of Microwave Irriadiation for the Treatment of Adsorbed VolatileOrganic Compounds on Granular activated carbon. Iranian Journal of Environmental Health Science&Engineering,2011.8(1): p.85-94.
    [8] Bradshaw, S.M., E.J. VanWyk, and J.B. deSwardt, Preliminary economic assessment of microwaveregeneration of activated carbon for the carbon in pulp process. J.Microwave Power E.E.,1997.32(3): p.131-144.
    [9] Zlotorzynski, A., The Application of Microwave-Radiation to analytical and Environmental Chemistry.Crit. Rev.Anal.Chem.,1995.25(1): p.43-76.
    [10] Dawson, E.A., et al., The generation of microwave-induced plasma in granular active carbons underfluidised bed conditions. Carbon,2008.46(2): p.220-228.
    [11] Shi, M., et al., Separation of a binary mixture of ethylene and ethane by adsorption on Na-ETS-10.Chemi. Eng. Sci.,2010.65(11): p.3494-3498.
    [12] Reuss, J., D. Bathen, and H. Schmidt-Traub, Desorption by microwaves: Mechanisms ofmulticomponent mixtures. Chemi. Eng. Technol.,2002.25(4): p.381-384.
    [13] Chen, M.S., et al., Thermal Behaviors and Regeneration of Activated Carbon Saturated with TolueneInduced by Microwave Irradiation. J. Chem. Eng. JPN.,2009.42(5): p.325-329.
    [14] Ania, C.O., et al., Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals.Water Res.,2007.41(15): p.3299-3306.
    [15] Price, D.W. and P.S. Schmidt, VOC recovery through microwave regeneration of adsorbents: Processdesign studies. J. Air Waste Manage.,1998.48(12): p.1135-1145.
    [16] Hashisho, Z., M. Rood, and L. Botich, Microwave-swing adsorption to capture and recover vapors fromair streams with activated carbon fiber cloth. Environ. Sci. Technol,2005.39(17): p.6851-6859.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700