挥发油及其活性成分组合与富马酸钠共同添加对体外瘤胃发酵和湖羊养分消化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究和开发瘤胃发酵调控剂,抑制反刍动物瘤胃甲烷的产生是近年来的研究热点,挥发油和富马酸盐是目前研究报道较多的两种新型瘤胃发酵调控剂。本试验分别采用体外和体内试验研究了挥发油与活性成分不同组合对瘤胃发酵的作用差异,及其与富马酸钠共同添加对湖羊瘤胃甲烷产生、微生物区系和营养物质消化的影响;同时结合分子生物学方法,进一步阐明了挥发油对瘤胃微生物的影响及其作用机制。为将二者的组合作为瘤胃发酵调控剂的提供了理论依据。
     试验一:为研究挥发油与其活性成分对瘤胃发酵的影响差异,本试验采用压力传感器式体外产气系统,分别将牛至油、肉桂油及其对应的活性成分香芹酚和肉桂醛以0、50、200和500mg/L的水平添加到体外发酵液中,研究它们对瘤胃发酵和甲烷产生的影响。结果表明,产气量、挥发性脂肪酸(VFA)和甲烷产量均随挥发油添加浓度的增加而显著降低(P<0.05),200mg/L的添加浓度下,香芹酚和肉桂醛对VFA的降低幅度均大于30%,而500mg/L的油和活性成分均降低了VFA达50%以上,表明瘤胃发酵显著抑制。同等浓度下,活性成分对瘤胃发酵的抑制幅度大于其对应的油,且甲烷抑制潜势也低于对应的油;高浓度下,香芹酚和牛至油对发酵抑制幅度大于肉桂醛和肉桂油。可见,不同挥发油对瘤胃具有不同的作用效果,而单种活性成分对甲烷抑制的效果弱于对应的天然挥发油。
     试验二:研究不同挥发油组合和活性成分组合组合对瘤胃发酵的影响,并筛选可降低瘤胃甲烷的优化组合。本试验将丁香油、肉桂油、牛至油和柠檬油按照1:2:3:4,2:1:4:3,3:4:1:2,4:3:2:1和1:1:1:1的比例组成5种不同的挥发油组合(EOC1, EOC2, EOC3, EOC4, EOC5),且将丁香酚、肉桂醛、香芹酚和柠檬醛按照相同的比例组成5种不同的挥发油活性成分组合(EOAC1,EOAC2,EOAC3, EOAC4, EOAC5),采用压力传感器式体外培养系统研究了这些组合对体外甲烷产量和瘤胃发酵指标的影响,各种组合的添加浓度为0、50、200和500mg/L。研究结果表明,添加EOC和EOAC对产气量、甲烷产量和VFA的产量的影响均呈一种浓度依赖趋势。在同等挥发油添加浓度下,甲烷的降低幅度的趋向明显高于VFA和产气量的降低幅度。EOC和EOAC降低了瘤胃氨氮和A/P的比值,但对pH值则无显著影响。通过氢平衡分析发现,500 mg/L的EOC5中氢被用于生成甲烷与挥发性脂肪酸的比值为各挥发油组最低,同时降低了62.3%的甲烷和17.9%的TVFA,是具有最高甲烷抑制潜势的挥发油组合;而200 mg/L的EOAC5中氢被用于生成甲烷与挥发性脂肪酸的比值为各活性成分组最低,降低了31.3%的甲烷,好12.9%的VFA,是具有最高甲烷抑制潜势的活性成分组合。总体而言,挥发油组合对甲烷的抑制潜力大于活性成分组合。
     试验三:为研究挥发油及其活性成分和富马酸之间的协同作用,本试验采用压力传感器式体外系统,以试验一中筛选的最优挥发油组合5(EOC5)及活性成分组合5(EOCC5)为研究对象,将500mg/L的EOC5和200mg/L的EOCC5分别将0,5,10,15 mmol/L的富马酸一钠组合添加,研究二者对甲烷产生及瘤胃发酵指标和瘤胃微生物数量的影响。结果表明,5和10mmol/L的富马酸钠可进一步降低瘤胃甲烷排放,同时增加VFA的产量,EOC5和EOAC5两组均是在添加10 mmol/L的富马酸一钠时具有最大的甲烷抑制潜势。采用RT-PCR法对该最优组合的甲烷菌、真菌、原虫和两种重要的纤维降解菌F. succinogenes与R. flavefaciens进行定量分析表明,瘤胃原虫被显著抑制,真菌和两种纤维降解菌的数量也有较大程度的降低,但甲烷菌种群的数量降低幅度则明显的低于其他微生物。这些结果表明,添加富马酸有利于挥发油对瘤胃甲烷的抑制,但挥发油添加抑制瘤胃微生物可能会降低纤维消化。
     试验四旨在开发以微孔淀粉吸附挥发油后,用海藻酸钠为壁材包埋挥发油的工艺,同时研究此工艺对挥发油包埋效果的影响。试验采用五种挥发油成分(丁香酚、香芹酚、肉桂醛、柠檬醛、β—蒎烯)23.75:23.75:23.75:23.75:5的比例配成混合物,以微孔淀粉吸附后作为芯材,以海藻酸钠为壁材进行包埋试验,采用气喷雾法对挥发油活性成分和微孔淀粉的复合物进行包被试验。结果表明,微孔淀粉吸附组的包封率为82.6%,挥发油含量为12.8%,利用微孔淀粉吸附植物挥发油后,再用海藻酸钠包被,与直接包被相比,可提高海藻酸钠对结构和性质不同的挥发油单体的包被完全性,同时提高包被产物的稳定性,因此微孔淀粉吸附挥发油后再进行包被是一项提高挥发油包被效率的技术。
     试验五本试验采用装有瘤胃、十二指肠和回肠三通瘘管的4头湖羊,以4×4拉丁方设计,研究了植物挥发油及其活性成分和富马酸钠添加对湖羊生化及抗氧化指标、瘤胃发酵指标和营养物质消化率的影响。试验设四个处理,处理—饲喂基础日粮(头日400g精料+500g粗料,C),处理二添加1g混合挥发油(牛至油、肉桂油、丁香油和柠檬油按等比例组成)与25 g富马酸—钠(EOCF),处理三添加0.5 g混合挥发油活性成分(香芹酚、肉桂醛、丁香酚和柠檬醛等比例混合)与25 g富马酸一钠(LEACF),处理四添加1g混合活性成分与25 g富马酸一钠(HEACF)。试验分4期进行,每期包括14d预试期和7d正试期。结果表明,在同时添加25g/天富马酸钠的情况下,挥发油及其活性成分的添加对湖羊精料的采食量无显著影响,1g/天的天然挥发油组合还有提高粗料采食量的趋势。添加挥发油或其活性成分并不影响湖羊机体抗氧化性力,0.5g/天挥发油活性成分添加并未影响湖羊机体健康,但湖羊可能对1g/天活性成分产生应激。瘤胃发酵方面,挥发油和其活性成分添加三组均不影响瘤胃pH值,混合挥发油组(EOCF)和高量活性成分组(HEACF)显著降低了VFA,三组均显著降低了乙酸丙酸比例、氨氮浓度、甲烷预测产量、原虫和甲烷菌数量,但活性成分两组降低纤维消化菌数量,可能不利于纤维的消化。挥发油和活性成分组合的添加不影响干物质和有机物消化道各段的有机物消化率;有利于抑制前胃蛋白的降解,降低饲料蛋白的瘤胃消化率。此外,挥发油活性成分组合不影响饲料纤维的前胃消化率,但有提高肠道消化率的趋势,总体而言对饲料湖羊饲料纤维的消化无不利作用。
     综上所述,将不同作用机制的挥发油或其活性成分组合是一种有效的瘤胃甲烷抑制手段,但油的效果优于活性成分。挥发油降低甲烷和氨氮的机制在于抑制瘤胃原虫和甲烷菌,但对瘤胃纤维降解可能有抑制作用。富马酸钠添加可促进挥发油对甲烷的抑制作用,动物试验表明同时添加挥发油和富马酸不影响干物质、有机物、NDF和ADF的前胃消化率,但可降低饲料蛋白的前胃消化率,总体上对动物整体营养物质消化率无显著影响。
Development of some substances to manipulate ruminal fermentation and methane production is a research focus during recent years. Up-to-date, plant essential oils (EO) and fumarate are most studied substance. In this study, in vitro and in vivo trials were conducted to study the effects of different ratios of EO or their active component in combination with fumarate on rumen fermentation, methane production, and nutrients digestibility in Hu sheep. Molecular biological methods were also used to investigate the effects of EO and fumararte on ruminal microbes, aiming at elucidating their action mechanism.
     In Expt.1, Reading Pressure Transfer (RPT) system was adopted to study effects of two essential oil (cinnamon oil and oregano oil) and their major component (cinnamaldehyde and carvacrol) on rumen fermentation and methanogensis in vitro. The EO addition levels were 0,50,200 or 500 mg/L, respectively. Gas production, volatile fatty acid (VFA) and methane production were decreased with the increasing level of EO addition (P<0.05). At level of 200 mg/L, carvacrol and cinnamaldehyde decreased VFA by more than 30%, while 500mg/L level of oil or active components decreased VFA more than 50%, indicating that ruminal fermentation was substantially inhibited. When used at the same addition level, fermentation-inhibiting effects of cinnamaldehyde and carvacrol were larger than their correspondent oils. At the high level, carvacrol and oregano oil had higher fermentation inhibition effects than cinnamaldehyde and cinnamon oil. Results in this study indicated that effect of EO on rumen fermentation varied with their type, while methane inhibition effect of a single EO active component was weaker than their correspondent natural EO.
     The objectives of Expt.2 were to study the effects of different ratios of EO or EO active components on in vitro rumen fermentation, and to screen the optimal combinations to decreased methane production. Five combinations were formed by mixing oil from clove, origano, cinnamon,and lemon were mixed at ratios of 1:2:3:4, 2:1:4:3,3:4:1:2,4:3:2:1,1:1:1:1, respectively, to make up five combinations (EOC1, EOC2, EOC3, EOC4 and EOC5). Similarly, eugenol, carvacrol, citral and cinnamaldehyde were mixed to make another five combinations (EOAC1, EOAC 2, EOAC3, EOAC4, EOAC5). The mixtures were supplied at levels of 0,50,200 or 500 mg/L into the incubation fluid to screen the optimal combination for methane reduction. The RPT system was adopted to determine the effects of these combinations on rumen fermentation and methane production in vitro. Effect of EOC and EOAC on gas, methane and VFA production appeared in a dose-dependent manner. In the same addition level, methane decreasing extent tended to lower than the content to which total VFA and gas production decreased. Both EOC and EOAC decreased rumen ammonia and acetate to propionate (A/P) value, but had no influence on pH value. Hydrogen balance analysis showed that the ratio of hydrogen consumed via methane to hydrogen via VFA was the lowest at 500 mg/L EOC5 among EOC groups. At this group methane and total VFA were decreased by 62.2 and 17.9%, respectively. This level was, therefore, screened as optimal EO combination to decease methane. In 200 mg/L of EOAC5, the ratio of hydrogen consumed via methane to hydrogen via VFA was the lowest among EOAC groups, with methane and total VFA reduced by 31.3 and 12.9%, respectively. This level was screened as optimal EO combination to decease methane.
     In Expt.3, the 500mg/L EOC5 and 200 mg/L of EOAC5, which were screened from Expt.2, was added with 0,5,10 and 15 mmol/L monosodium fumarate, respectively, to see if fumarate had further effect on rumen fermentationt. Addition of fumarate further decreased methane production, but increased VFA production compare with EOC or EOAC added solely. The highest relative methane reduction potential (ratio of methane production reduction relative to reduced total VFA production due to the added inhibitory compounds) was at 10 mmol/L of fumarate in both EOAC and EOC groups. Quantification of microbial populations of rumen fluids by RT-PCR method showed that methanogen, protozoa, fungi, Fibrobacter succinogenes and Ruminococcus flavefaciens were significantly decreased in EOAC5-added groups. In summary, addition of fumarate has beneficial effect on decreasing methane production by EOC and EOAC, while the EOC and EOAC have inhibitory effects on rumen microbes.
     Expt.4 was conducted to explore the techniques for use of sodium alginate to encapsulate the microporous starch (MPS) in which essential oil is absorbed. Eugenol, carvacrol, cinnamaldehyde, citral and (3-pinene were mixed at a proportion of 23.75, 23.75,23.75,23.75 and 5%, respectively, then MPS was adopted to pre-absorb the complex of five pure EO components. The absorption complex was encapsulated by sodium alginate using high gas pressure spray method and formed into calcium alginate products. Adsorption rate of MPS with essential oil absorbed was 82.6%, and the EO content was 12.8%. Compare with direct encapsulate of EO, the EO components absorbed with MPS had an increased inclusion completeness of EO components, and improved stability of EO component. Therefore, absorption of EO with MPS before encapsulation is an effective technique to improve inclusion rate and increase encapsulation completeness of EO components.
     In Expt 5, four rumen fistulated Hu sheep were used to investigate effect of mixture of EOs or their active components along with fumarate on anti-oxidative status, blood biochemical parameters, rumen fermentation and nutrient digestibility. A 4×4 Latin Square design involved four treatments:basal diet added with 25 g/day monosodium fumarate (Control, C); C plus 1 g/d of EO combinations (mixture of equal proportion of oil from clove, oregano, cinnamon and lemon) (EOCF); C plus 1.0 (HEACF) or 0.5 g/day EO active component combinations (mixture of equal portion of eugenol, carvacrol, citral and cinnamaldehyde) (LEACF), respectively. Each period lasted for 21 days including 14 days for adaptation. With 25g/day monofumarate added, addition of EO and their active components did not have influence on concentrate intake of Hu sheep, but addition of EOCF tended to increase forage intake. The EO had a limited effect on anti-oxidant ability. Low dose (0.5g/day) of EO does not exert an influence on sheep health, while 1 g/d of EOAC would result in some stress to sheep. As for the rumen fermentation, pH value of incubation fluid was not influenced. The A/P ratio, ammonia-N, protozoa, methanogen were significantly decreased, indicating that methane would be decreased. However, fibrolytic bacteria were also decreased, suggesting that fiber digestion would be influenced by such addition. Addition of EO and their components did not have influence on digestibility of dry matter and organic matter in every segment of digestive tracts, but was beneficial for inhibition of forestomach protein degradation. Besides, EO and their components combination did not have effect on forestomach digestibility of feed fiber, but tended to increase fiber digestibility in the duodenum. Generally, addition of EO and their components had no harmful effects on fiber digestion of Hu sheep.
     In summary, Combination of different EO or EO components would be a promising measure to inhibit methane production, while the effect of EO was better than components. Addition of EO would inhibi protozoa and methanogen, but would also have a negative effect on fiber digestion. Addition of fumarate with EO and their components is beneficial to decrease methane production, and did not have farmful influence on DM, OM, NDF and ADF digestibility in Hu sheep.
引文
艾晓杰,吴晓林,朱勇琪等.大豆黄酮对荷斯坦牛围产期血液生化成分的影响.中国畜牧杂志.2004,40(11):19-21.
    陈会良,顾有方,李文超.牛至油对小鼠抗氧化功能的影响.中国中医药科技,2008,15(1):60.
    方琴,魏刚,丁平,徐鸿华.肉桂GC特征指纹图谱方法学研究.中药新药与临床药理.2006,3:188-192.
    冯仰廉.反刍动物营养学.2004北京:科学出版社.
    冯雪,姜子涛,李荣.调味香料草果挥发油的抗氧化性能及清除自由基能力.中国调味品.2010,3:48-54.
    冯宗慈,高民.通过比色测定瘤胃液氨氮含量方法的改进.内蒙古畜牧科学,1993,4:40-41.
    郭嫣秋.2008.瘤胃产甲烷菌定量检测与微生物菌群调控研究.浙江大学博士论文.
    何品晶,吕凡,邵立明,章骅.稳定同位素表征有机物甲烷化代谢动力学.化学进展.2010,21(2/3):542-548.
    胡伟莲,王佳堃,吕建敏.瘤胃体外发酵产物中的甲烷和有机酸含量的快速测定.浙江大学学报(农业与生命科学版),2006,32(2):217-221.
    金兰梅,伍清林,金保方等.抗热应激中草药添加剂(夏安散)对奶牛产奶量和血液生化指标的影响.中国兽医学报.2008,28(7):852-857.
    康波,杨焕民,刘胜军,周瑞进,李士泽,姜冬梅.东北白鹅和籽鹅血液生化指标.中国兽医学报.2006,26(6):649-652.
    李京晶,籍保平,周峰等.丁香和肉桂挥发油的提取、主要成分测定及其抗菌活性研究.食品科学.2006,27(8):64-68.
    李恒鑫.分子生物学技术在瘤胃微生态研究中的应用.饲料博览.2006,1:13-15.
    李莹,靳烨,黄少磊,刘彦民.微胶囊技术的应用及其常用壁材.农产品加工.2008,1:65-68.
    林波,纪苗苗,梁权,陆燕,刘建新.肉桂油和牛至油及其主要成分对体外瘤胃发酵和甲烷产生的影响[J].中国兽医学报2010,录用待刊.
    林波,陆燕.植物提取物调控反刍动物瘤胃发酵的研究进展.饲料工业.2009,30(19):27-31.
    刘园园,张卉,王士长.反刍动物瘤胃产甲烷古茵的生物学研究.家畜生态学报.2010.31(3):84-87.
    刘洪波,史冬辉,张瑜.植物精油抗菌活性研究进展.畜牧与饲料科学.2009 30 1:12-14
    刘振洲,周梦夏,李莹瑶,齐彪,赵丽娜,王丽平.牛至油前体化合物的促生长、体外抑菌及一般毒性研究.畜牧与兽医.2008,40(10):79-83.
    卢德勋.系统动物营养学导论.2004.北京:中国农业出版社.
    莫小路,严振,王玉生,汪小根.广藿香精油对植物病原真菌的抑菌活性研究.中药材.2004,
    毛胜勇,张耿,朱伟云.2006.延胡索酸二钠对瘤胃微生物体外发酵的影响南京农业大学学报,29(4),80-85
    娜仁花.不同日粮对奶牛瘤胃甲烷及氮排放的影响研究.中国农业科学院博士论文.北京.2010.
    庞德公,杨红建.产甲烷茵的分离纯化培养及其培养基对于菌株的选择作用.中国畜牧兽医2010,37(6):32-35.
    饶之坤饶之坤;封良燕;李聪等.辣木营养成分分析研究.现代仪器,2007,2:18-20.
    苏美琼.大蒜提取物微胶囊技术研究.杨凌:西北农林科技大学,2004.
    田云,卢向阳,何小解.天然植物抗氧化剂清除氧自由基特性研究.食品科学.2005,26,(6):123-125.
    田云,卢向阳,何小解等.微胶囊制备技术及其应用研究.科学技术与工程.2005,5(1):44-46.
    王康,何志敏.海藻酸微胶囊的制备及在药物控释中.2002,30(1):48-54.
    余小领,周光宏,李学斌.海藻酸钠被膜及其在食品加工中的应用.食品研究与开发.2009,30(9):181-183.
    袁娟丽袁娟丽;贺中民;王四旺等.花椒挥发油的急性毒性.时珍国医国药时珍国药医药2010,21(10):2096-2697.
    苑志朋.茶皂素及其与延胡索酸钠混合物对瘤胃发酵和甲烷产量影响的研究.2008.浙江大学硕士论文.
    张春梅.植物油及十八碳不饱和脂肪酸对瘤胃甲烷生成和微生态的影响.2008.浙江大学博士论文.
    张晓庆.红豆草中单宁对饲粮蛋白质保护的效果.兰州:甘肃农业大学博士学位论文.2005.
    赵晨.桂丁、草蔻挥发油抗氧化性研究.天然产物研究与开发.2008,20(5):896-898.
    周跃华.谈对于挥发油作为新的有效部位的认识.2007.http://www.implad.ac.cn/cn/zxzx/mrzx_440.asp
    祖波,祖建,周富春,汪林.产甲烷菌的生理生化特性.环境科学与技术.2008,1(3):5-7.
    Abdl-Rahman M. A., Sawiress F. A. R., Abd El-Aty A. M.2010. Effect of sodium lauryl sulfate-fumaric acid coupled addition on the in vitro rumen fermentation with special regard to methanogenesis. Vet Med Int..2010,1-7.
    Animut G, Puchala R, Goetsch A L, et al. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim. Feed Sci. Technol.2008,144:212-227.
    Andrea, B.d.S., Carmen, Silvia, Favarod Trindade, Carlos R.F.G. Preparation and characterization of paprika oleoresin microcapsules obtained by spraydrying. Cienc. Tecnol. Aliment., Campinas.2005,25 (2):322-326.
    Anna. S, Francesc. S., Miguel. P., Francesc. B., Isabelle.J., Victor. R.et al. Intake Alters Gene Expression in Canine Leukocytes. J Nutrigenet Nutrigenomics. 2009;2:43-52.
    Asanuma N, Iwamoto M, Hino T.. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J Dairy Sci.1999.82:780-787.
    Alexander G, Singh B, Sahoo A, et al. In vitro screening of plant extracts to enhance the efficiency of utilization of energy and nitrogen in ruminant diets. Anim. Feed Sci. Technol,2008,145:229-244.
    Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M.. Biological effects of essential oils-A review. Food, Chemical. Toxicol.2008,46:446-475.
    Brenes, A., Roura, E.. Essential oils in poultry nutrition:Main effects and modes of action. Anim. Feed Sci. Technol.2010,158:1-14.
    Benchaar C, Calsamiglia S, Chaves.A V, et al. A review of plant-derived essential oils in ruminant utrition and production. Anim. Feed Sci. Technol,2008,5:09-228.
    Benchaar C, Petit H V, Berthiaume R, et al. Effects of addition of essential oils and monensin premix on digestion, ruminal fermentation, milk production, and milk composition in dairy cows. J. Dairy Sci.2006.89:4352-4364.
    Benchaar C, Petit H V, Berthiaume R, et al. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. J. Dairy Sci.2007. 90:886-897.
    Benchaar, C. Calsamiglia, S., Chaves, A.V.,et al. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 2008,145:209-228.
    Benchaar, C., McAllister, T.A., Chouinard, P.Y., Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or yucca schidigera saponin extracts. J. Dairy Sci.2008,91:4765-4777.
    Beauchemin. K. A. and McGinn. S. M. Methane emissions from beef cattle:Effects of fumaric acid, essential oil, and canola oil. J Anim Sci 2006.84:1489-1496.
    Bento, B H L, Acamovic T, Makkar H P S. The influence of tannin, pectin, and polyethylene glycol on attachment of 15N-labelled rumen microorganisms to cellulose. Anim. Feed Sci. Technol.2005,122:41-57.
    Bodas R, Lopez S, Fernandez M, Garcia-Gonzalez R, et al. Gonzalez J.S. In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim. Feed Sci. Technol..2008,145:245-258.
    Botsoglou, N.A., Govaris, A., Botsoglou, E.N., Grigoropoulou, S.H., Papageorgiou, G., Antioxidant activity of dietary oregano essential oil and a-Tocopheryl acetate supplementation in long-term frozen stored turkey meat. J. Agric. Food Chem. 2003,51:2930-2936.
    Busquet, M., Calsamiglia, S., Ferret, A.,et al. Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci.2006,89,761-771.
    Busquet M., Calsamiglia S, Ferret A, et al, Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J. Dairy Sci. 2005,88:2508-2516.
    Carulla J E., Kreuzer M., Machmuller A., Hess H D. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res.2005,56:961-970.
    Castillejos L., Calsamiglia S., Ferret A, et al. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro system. J.Dairy. Sci.2006,89:2649-2658.
    Calsamiglia, S., Busquet, M., Cardozo, P.W. et al. Invited review:essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci.2007,90:2580-2595.
    Cabral CPala-Paul, J; Usano-Alemany, J; Granda, E; Soria, AC.Composition and anti-fungal activity of the essential oil from Cameroonian Vitex rivularis Giirke. Nat Prod Res.2009,23(16):1478-84.
    Capper, J.L., Cady, R.A., Bauman, D.E. The environmental impact of dairy production:1944 compared with 2007. J. Anim Sci.2009,87:2160-2167.
    Chaieb KChaieb KChaieb K, Hajlaoui H, Zmantar T Zmantar Jet al. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae):a short review. Phytother Res.2007. 21(6):501-506.
    Chaves, A.V., Stanford, K., Gibson, L.L. et al, Benchaar, C.. Effects of carvacrol and cinnamaldehyde on intake, rumen fermentation, growth performance, and carcass characteristics of growing lambs. Anim. Feed Sci. Technol,.2008,45,396-408.
    Cardozo P W, Calsamiglia S, Ferret A, et al. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. J. Anim. Sci.2005,83:2572-2579.
    Castillejos L, Calsamiglia S, Mart'in-Tereso J, et al. In vitro evaluation of effects of ten essential oils at three doses on ruminal fermentation of high concentrate feedlot-type diets. Anim. Feed Sci. Technol.2008,145:259-270.
    Castillejos L, Calsamiglia S, Ferret A, et al. Effects of dose and adaptation time of a specific blend of essential oil compound on rumen fermentation. Anim. Feed Sci. Technol.2007.132:186-201.
    Chalupa, W. Manipulating rumen fermentation. J Anim Sci.1977,46:585-599.
    Denman, S.E., McSweeney, C.S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol.2006,58:572-582.
    Denman, S. E., Tomkins, N. W. and McSweeney, C. S. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol.2007, 62:313-322.
    Devant M., Anglada A, Bach. A, et al. Effects of plant extract supplementation on rumen fermentation and metabolism in young Holstein bulls consuming high levels of concentrate. Anim. Feed Sci. Technol,2007,137:46-57.
    Dorman, H.J. and S.G. Deans, Antimicrobial agents from plants:Antibacterial activity of plant volatile oils. J. Applied Microbiol.2000,88:308-316.
    Evans J D, Martin S A. Effects of thymol on ruminal microorganisms. Curr. Microbiol.2000,41,336-340.
    Faleiro, L., Miguel, G., Gomes, S., Costa, L., Venancio, F., Teixeira, A., Figueiredo, A.C., Barroso, J.G., Pedro, L.G.. Antibacterial and Antioxidant Activities of Essential Oils Isolated from Thymbra capitata L. (Cav.) and Origanum vulgare L. J. Agric. Food Chem.2005.53:8162-8168.
    Fandino, I., Calsamiglia, S., Ferret, A., Blanch, M.. Anise and capsicum as alternatives to monensin to modify rumen fermentation in beef heifers fed a high concentrate diet. Anim. Feed Sci. Technol.2008,145:409-417.
    Farag, R., Badei, A., Hewedi, F., El-Baroty, G.,. Antioxidant activity of some spice essential oils on linoleic acid oxidation in aqueous media. J. American Oil Chemists'Society.1989,66:792-799.
    Flythe, M.D. The antimicrobial effects of hops (Humulus lupulus L.) on ruminal hyper ammonia-producing bacteria. Lett. Appl. Micro.2009,48,712-717.
    Garcia-Gonzalez R, Lopez S, Fernandez M, et al. Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Anim. Feed Sci. Technol,2008,147:36-52.
    Greathead H M R. Plants and plant extracts for improving animal productivity. Proc. Nutr. Soc,2003,62:279-290.
    Getachew G, Makkar HPS and Becker K. Effect of polyethylene glycol on in vitro degradability of nitrogen and microbial protein synthesis from tannin-rich browse and herbaEOCus legumes. Br. J. Nutr,2000,84:73-83.
    Guan H, Wittenberg KM, Ominski KH, Krause DO. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J Anim. Sci,2006,,84:1896-1906.
    Guo Y Q., Liu J-X., Lu Y, et al. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett. Appl. Micro,2008,47(5):421-426.
    Gyulai F, Baran M. Effect of monensin on rumen ciliate protozoa in sheep. Arch Tierernahr.1988,38(2):153-7.
    Hart, K.J., D.R. Yanez-Ruiz, S.M. Duval, N.R. McEwan and C.J. Newbold, Plant extracts to manipulate rumen fermentation. Anim. Feed Sci. Technol.2008, 147:8-35.
    He M Du M Q Fan M Wet al.In vitro activity of eugenol against Candida albicans biofilms J.Mycopathologia.2007 163 137-143.
    Helander I M, Alakomi H. L., Latva-Kala K. et al. Characterization of the action of selected essential oil components on Gram negative bacteria. J. Agric. Food Chem.1998,46:3590-3595.
    Hu W L, Liu J X., Ye J A., et al. Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Technol.2005,120:333-339.
    Hoffmann Ellen M., Selje-Assmann Natascha, Becker. Klaus. Dose studies on anti-proteolytic effects of a methanol extract from Knautia arvensis on in vitro ruminal fermentation. Anim. Feed Sci. Technol.2008,145:285-301.
    Holloway PE, Baker SK.. Development of antibodies to rumen methanogens in sheep. Asian-Aust J Anim Sci,2000,13:264.
    Hristov, A.N., Grandeen, K.L., Ropp, J.K., McGuire, M.A., Effect of Sodium Laurate on Ruminal Fermentation and Utilization of Ruminal Ammonia Nitrogen for Milk Protein Synthesis in Dairy Cows. J. Dairy Sci.2004,87,1820-1831.
    IPCC. Climate Change 2007:Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Inter-governmental Panel on Climate Change. Mets B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds), Cambridge University Press, Cambridge, UK and New York,2007.
    Javed, S., Rajesh, B. and Rekha, S. Microencap sulation of black pepper oleoresin. Food Chemistry,2006,94 (1):105-110.
    Johnson KA, Johnson DE. Methane emissions from cattle. Journal of Animal Science.1995,.73:2483-2492.
    Jennifer M. Brulc, Dionysios A. Antonopoulos, Margret E. Berg Miller, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases PNAS 2009 106 (6):1948-1953.
    Kamel C, Greathead H M R, Tejido M L, et al. Effects of allicin and diallyl disulfide on in vitro rumen fermentation of a mixed diet. Anim. Feed Sci. Technol, 2008,145:351-363.
    Kamra D N, Agarwal N., Chaudhary L C. Inhibition of ruminal methanogenesis by tropical plants containing secondary plant compounds. In:Soliva, C.R., Takahashi, J., Kreuzer,M. (Eds.), Proceedings of the 2nd International Conference of Greenhouse Gases and Animal Agriculture. ETH Zurich, Zurich, Switzerland,2005, pp.102-111.
    Koroch, A.R., Rodolfo Juliani, H., Zygadlo, J.A.. Bioactivity of Essential Oils and Their Components. Berlin:Springer Heidelberg.2007:87-115.
    Kong YKong.Yunhong, He Maolong, McAlister. T. Quantitative fluorescence in situ hybridization of microbial communities in the rumens of cattle fed different diets. Appl Environ Microbiol.2010.76 (20):6933-6938.
    Kung, L., Jr., Williams, P., Schmidt, R.J., Hu, W.. A Blend of Essential Plant Oils Used as an Additive to Alter Silage Fermentation or Used as a Feed Additive for Lactating Dairy Cows. J. Dairy Sci.2008.91:4793-4800.
    Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, et al. The Genome Sequence of the Rumen Methanogen Methanobrevibacter ruminantium Reveals New Possibilities for Controlling Ruminant Methane Emissions. PLoS ONE. 2010,5(1):e8926.
    Leng R A The potential of feeding nitrate to reduce enteric methane production in ruminants. Report to Department of Climate Change, Commonwealth Government, Canberra.2008.82.
    Lin. B, LU. Y, Liu. J.X. Effect of essential oils and fumarate different combinations on in vitro rumen fermentation.2009, lth ASAS-CAAV, Beijing, China.
    Lopez..S, Valdes. C, Newbold. C. J. Wallace. R. J. Influence of sodium fumarate addition on rumen fermentation in vitro. British Journal of Nutrition,1999:81, 59-64.
    Martin SA.1998. Manipulation of ruminal fermentation with organic acids:a review. J Anim Sci,76:3123-3132.
    Machmuller A, Ossowski D A, Wanner M, Kreuzer M. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (RUSITEC). Anim Feed Sci Technol.1998,71:117-130.
    Mauricio RM, Mould FL, Dhanoa MS, Owen E, Channa KS, Theodorou MK.. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim Feed Sci Technol.1999,79:321-330.
    May, C., Payne, A. L., Stewart, P. L. and Edgar, J. A. A delivery system for agents. International Patent Application 1995, No. PCT/AU95/00733.
    Meyer, N.F., Erickson, G.E., Klopfenstein, T.J., Greenquist, M.A., Luebbe, M.K., Williams, P., Engstrom, M.A.. Effect of essential oils, tylosin, and monensin on finishing steer performance, carcass characteristics, liver abscesses, ruminal fermentation, and digestibility. J. Anim Sci.2009,87:2346-2354.
    McSweeney C S, Palmer B, McNeill D M, et al. Microbial interactions with tannins: nutritional consequences for ruminants. Anim. Feed Sci. Technol.2001,91: 83-93.
    McSweeney C S, Gough J, Conlan L L, et al. Nutritive value assessment of the tropical shrub legume Acacia angustissima:Anti-nutritional compounds and in vitro digestibility. Anim. Feed Sci. Technol,2005,121:75-190.
    Mohammed N., Ajisaka N, Lila Z A, et al. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers[J]. J. Anim. Sci.2004,82:1839-1846.
    Macheboeuf, D., Morgavi, D.P., Papon, Y., Mousset, J.L., Arturo-Schaan, M., Dose-response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Animal Feed Science and Technology.2008,145: 335-350.
    Maria Graca Miguel. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules 2010,15:9252-9287
    McIntosh, F.M., Williams, P., Losa, R., et al. Effects of Essential Oils on Ruminal Microorganisms and Their Protein Metabolism. Appl. Environ. Microbiol.2003, 69,5011-5014.
    Menke K H, Steingass H. Estimation of the energetic feed value obtained from chemical analysis andin vitro gas production using rumen fluid. Animal Research and Development.1988,28:7-55.
    Michael H. Tavendale, Lucy P. Meagher, et al. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol,2005,123:403-419.
    Miller T L, and Wolin M J. Inhibition of growth of methane producing bacteria of the ruminant forestomach by hydroxymethylglutaryl-ScoA reductase inhibitors. J. Dairy Sci.2001:84:1445-1448.
    Mo X L Wang Y S Zeng Q Q et al. Antifungal activity study of several essential oils J.Natural Product Research and Development.2005,17:696-699.
    Moss.Angela, Newbold. J.P.. Methane production by ruminants:its contribution to global warming. Ann. Zootech.2000,49,231-253.
    Moss, A.R., Givens, D.I., Garnsworthy, P.C.. The effect of supplementing grass silage with barley on digestibility, in sacco degradability, rumen fermentation and methane production in sheep at two levels of intake. Animal Feed Science and Technology.1995,55:9-33.
    Newbold, C.J., el Hassan, S.M., Wang, J., Ortega, M.E., Wallace, R.J. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. Br. J. Nutr.1997:78:237-249.
    Newbold, C.J., McIntosh, F.M., Williams, P., Losa, R., Wallace, R.J. Effects of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed. Sci. Technol.2004:114:105-112.
    Pinto E, Pina-Vaz C, Salgueiro L, Goncalves MJ, Costa-de-Oliveira S, Cavaleiro C, Palmeira A, Rodrigues A, Martinez-de-Oliveira J.Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J Med Microbiol.2006 Oct;55(Pt 10):1367-73.
    Puchala R, Min B R, Goetsch A L, et al. The effect of a condensed tannin-containing forage on methane emission by goats. J. Anim. Sci.2005,83:182-186.
    Schonhusen U, Zitnan R, Kuhla S, et al. Effects of protozoa on methane production in rumen and hindgut of calves around time of weaning. Arch Tierernahr.2003,57 (4):279-295.
    Selje-Assmann N., Hoffmann E M., Becker K. A batch incubation assay to screen plant samples and extracts for their ability to inhibit rumen protein degradation. Anim. Feed Sci. Technol.2008,145:302-318.
    Shaver. R. D. and Tassoul. M. D. Essential oils as dietary supplements for dairy cows. mid-atlantic nutrition conference, baltimore, md; 2008 4-state applied nutrition & management conference, dubuque, ia; 2008 cornell nutrition conference,2008, Syracuse, ny.
    Singh, B., Bhat, T., Kurade, N., Sharma, O.. Metagenomics in animal gastrointestinal ecosystem:a microbiological and biotechnological perspective. Indian Journal of Microbiology.2008,48:216-227.
    Spanghero, M., Zanfi, C., Fabbro, E., Scicutella, N., Camellini, C., Effects of a blend of essential oils on some end products of in vitro rumen fermentation. Animal Feed Science and Technology.2008,145,364-374.
    Spanghero.M, Robinson.P.H, Zanfi.C, Fabbro.E. Effect of increasing doses of a microencapsulated blend of essential oils on performance of lactating primiparous dairy cows.Animal Feed Science and Technology.2009.153 (1-2):153-157
    Stephan, D., Yvonne, S., Annick, V. D. H. and Karin, S. Physicochemical characterization and oxidative stability of fish oil encapsulated in an amorphous matrix containing trehalose. Food Research International.2006,39(7):807-815.
    Spanghero M, Zanfi. C, Fabbro. E, et al. Effects of a blend of essential oils on some end products of in vitro rumen fermentation. Anim. Feed Sci. Technol,2008,145: 364-374.
    Sparling, R. and Daniels L. The specificity of growth inhibition of methanogenic bacteria by bromoethanesulfonate. Can J Microbiol.1987,33,1132-1136.
    Stephan, D., Yvonne, S., Annick,V. D. H., Karin, S. Physico-chemical characterization and oxidative stability of fish oil encap sulated in an amorphousmatrix containing trehalose. Food Research International.2006,39 (7): 807-815.
    Ungerfeld, E. M., Rust, S. R., Boone, D. R. and Liu, Y. Effects of several inhibitors on pure cultures of ruminal Methanogens. J Appl Microbiol.2004,97,520-526.
    Ushida, K., Jouany, J.P.. Methane production associated with rumen-ciliated protozoa and its effect on protozoan activity. Letters in Applied Microbiology.1996, 23:129-132.Van Nevel, C. J. and Demeyer, D. I. Feed additives and other interventions for decreasing methane emissions, in:Wallace R.J., Chesson A. (Eds.), Biotechnology in Animal Feeds & Animal Feeding, VCH, Weinheim.1995, pp:329-349.
    Woodward SL, Waghorn GC, Ulyatt MJ, Lassey KR. Early indication that feeding lotus will reduce methane emission from ruminants. Proc N Z Soc Anim Prod. 2001,61:23-26.
    Wright, A. D. G., Williams, A. J., Winder, B., Christopherson, C. T., Rodgers S. L. and Smith, K. D. Molecular diversity of rumen methanogens from sheep in western Australia. Appl Environ Microbiol.2004,70:1263-1270.
    Wallace R J. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 2004,63:621-629.
    Wallace, R.J., Wood, T.A., Rowe, A., Price, J., Yanez, D.R., Williams, S.P., Newbold, C.J. Encapsulated fumaric acid as a means of decreasing ruminal methane emissions. International Congress Series.2006,1293:148-151.
    Yan, L., Wang, J.P., Kim, H.J., Meng, Q.W., Ao, X., Hong, S.M., Kim, I.H. Influence of essential oil supplementation and diets with different nutrient densities on growth performance, nutrient digestibility, blood characteristics, meat quality and fecal noxious gas content in grower-finisher pigs.2010,128,115-122.
    Yang W Z, Benchaar C, Ametaj B N, et al. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J. Dairy Sci.2007,90:5671-5681.
    Yang, W.Z., Ametaj, B.N., Benchaar, C., Beauchemin, K.A.. Dose response to cinnamaldehyde supplementation in growing beef heifers:Ruminal and intestinal digestion.2010. J. Anim Sci.88:680-688.
    Yabuuchi Y, Matsushita Y, Otsuka H, Fukamachi K, Kobayashi Y. Effects of supplemental lauric acid-rich oils in high-grain diet on in vitro rumen fermentation. Animal Science Journal.2006,77:300-307.
    Yanagita, K., Kamagata, Y., Kawaharasaki, M., Suzuki, T., Nakamura, Y., Minato, H.. Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci. Biotechnol. Biochem.2000,64:1737-1742.
    Zijderveld, S.M., Gerrits, W.J.J., Apajalahti, J.A., Newbold, J.R., Dijkstra, J., Leng, R.A., Perdok, H.B., Nitrate and sulfate:Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. Journal of dairy science. 2010,93:5856-5866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700