A~2/O-BAF系统深度脱氮除磷
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制与治理水体富营养化是十分棘手、代价昂贵的世界性难题,被称为生态癌症。人类对引起水体富营养化的根本原因已经达成共识,即氮磷等营养元素的过量排放是最关键因素。因此,只有切断污染源,才能根治富营养化,实现经济和社会的可持续发展。
     A~2/O作为最简单的同步脱氮除磷工艺被广泛应用于国内外大型城市污水处理厂,然而,A~2/O工艺的固有缺欠就是硝化菌、反硝化菌和聚磷菌(PolyphosphateAccumalating Oganisms, PAO)在污泥龄(Sludge Retention Time, SRT)、碳源需求以及回流污泥中携带的硝酸盐影响聚磷菌厌氧释磷等,很难在单一系统中同时获得氮磷的高效去除。
     A~2/O–BAF系统将活性污泥法和生物膜法结合起来,通过缩短A~2/O的污泥龄,将硝化过程从A~2/O中分离出去,用BAF实现硝化,A~2/O在短污泥龄条件下运行,以除磷和反硝化为目的,而BAF在长污泥龄条件下运行,主要完成硝化。另一方面,从BAF回流来的硝酸盐为A~2/O的缺氧段提供了充足的电子受体,为反硝化除磷创造了条件。同时,由于A~2/O不硝化,回流污泥中不含硝酸盐,为厌氧段提供了绝对的厌氧环境,有利于聚磷菌厌氧释磷。
     本研究采用连续流双污泥A~2/O–BAF系统处理实际城市生活污水。系统由A~2/O反应器、二沉池和BAF组成。A~2/O为推流式,均分9个格室,有效容积30L;二沉池为竖流式,有效容积20L;BAF为圆柱形,采用上向流,填料层高度H=1.67m,有效容积13L。
     系统稳定运行后,考察了A~2/O的厌氧、缺氧和好氧段的容积比对脱氮除磷的影响。结果表明,在污泥龄为10d、污泥回流比(Sludge Return Ratio, r)为100%、硝化液回流比(Nitrate Recycling Ratio, R)为300%、总悬浮固体(Total SuspendedSolids, TSS)为3.0g/L时,A~2/O的厌氧、缺氧和好氧段容积比为1:6:2时,既能保证聚磷菌的优势增值又能有效地抑制硝化细菌的繁殖,系统的脱氮除磷效率最佳,总氮(Total Nitrogen, TN)和总磷(Total Phosphorus, TP)的去除率分别达到67.4%和98.6%。
     微生物的增值对TN去除率的贡献约为30%,反硝化脱氮是生物脱氮的主体。对于前置反硝化系统,从BAF回流来的硝化液为A~2/O的缺氧段提供电子受体,回流比越大,脱氮效果越好。另一方面,在缺氧条件下反硝化聚磷菌(DenitrifyingPhosphorus Removing Organisms, DAPO)与反硝化菌争夺有限的电子供体,如果硝酸盐氮浓度有限,DAPO将被淘洗,反之,DPAO将成为优势菌种,种群结构得到优化。研究结果表明,硝化液回流比与COD、TP和NH+4-N的去除没有明显相关性,TN的去除率随硝化液回流比的增大呈现升高趋势,但升高幅度呈递减规律,缺氧反硝化能力和反硝化吸磷量随硝化液回流比的增大而提高。
     低温使硝化菌的活性降低,是生物脱氮的瓶颈。BAF中的活性生物填料为硝化菌的生长提供了天然的生存环境,低C/N和较高的溶解氧(Dissolved Oxygen,DO)均有利于硝化菌成为优势菌种。在平均进水温度为14.2℃、COD为369.5mg/L、TN为76.8mg/L的条件下,平均出水TN与TP分别为13.21mg/L和0.23mg/L,满足国家一级A排放标准(GB18918-2002)。
     硝化液回流为A~2/O的缺氧段提供硝酸盐氮的同时,也携带一定量的溶解氧,兼性异养菌优先利用溶解氧,消耗有机碳源,因此,在较低的C/N比条件下(C/N=3.0),增大硝化液回流比,TN去除率下降。提高C/N比为4.0时,硝化液回流比从100%升高到400%时,TN去除率呈上升趋势,硝化液回流比增大到500%时,TN去除率不升反降,继续增大到600%时,TN去除率恶化。当C/N比为5.5、硝化液回流比从100%升高到600%时,TN去除率呈现上升趋势。C/N比为3.0和4.0时,硝化液回流比对TP去除率影响较小;当C/N比为5.5时,二沉池释磷,出水磷浓度超标,硝化液回流比增大可以缓解“二次释磷”。
     BAF存在临界进水氨氮浓度。BAF对磷的去除主要基于填料层中的悬浮物质的短期截流及吸附作用。聚磷菌厌氧释磷速率与主体溶液中磷浓度呈零次方关系,与挥发性脂肪酸(Volatile FaticAcid, VAF)的浓度呈正相关;碳源对厌氧释磷速率和好氧/缺氧摄磷速率均有影响。分子氧、硝酸盐氮和亚硝酸盐氮均可作为电子受体,亚硝酸盐氮浓度过高致使聚磷菌“中毒”,破坏细胞壁,导致“磷泄露”。
Eutrophication, the most urgent and troublesome problem in the world, hasgained significant attention worldwide. Once the eutrophication occurred, it isdifficult to control and handle. Simultaneous biological nutrients (particularlynitrogen and phosphorus) removal from wastewater is essential to preventeutrophication and achieve sustainable development.
     The anaerobic/anoxic/oxic (A~2/O) process is most commonly used in existingwastewater treatment plants (WWTPs) in the world. However, there are three mainoperational problems existing in A~2/O process, which are summarized as follows:
     Firstly, the confliction problem between sludge retention time (SRT) ofnitrifiers (long SRT) and polyphosphate accumulating organisms (PAO)(short SRT)can not be solved. So the SRT in the A~2/O process must maintain in a narrow rangefor removal of nitrogen (N) and phosphorus (P).
     Secondly, shortage of organic carbon sources in low strength wastewater is oftena rate-limiting factor to simultaneous N and P removal. Sufficient carbon source isnecessary for denitrification, in contrst, synthesis of poly-hydroxy-alkanoate (PHA)and glycogen degradation are the foundation of P removal. In A~2/O process, COD wasprimarily utilized by PAO in the anaerobic zone in which approximately70%of CODwas consumed, and around10%COD was consumed by denitrifiers in the followinganoxic zones. This leads to deterioration of N removal due to insufficient externalcarbon source.
     Finally, NO3–-N in return sludge is an inhibiting factor to the P release inanaerobic zone where denitrifiers will compete with PAO for external carbon source,and net P release won’t occur until denitrification is completed. This leads todeterioration of P removal in anoxic and/or aerobic zone. Therefore, how to resolvethe contradictions between removal N and P in the traditional processes is a crucialissue.
     The novel system integrating A~2/O-biological aerated filter (BAF) had substantialadvantages to solve the above mentioned problems. In this system, the A~2/O wasmainly used for P removal and denitrification, and the BAF was used for nitrification.Short SRT was applied in A~2/O and relatively longer SRT was applied in BAF toenrich nitrifiers, which not only benefited PAO, but also nitrifiers. In the same time,NO3–-N was recycled from BAF to the A~2/O’s anoxic zone rather than its anaerobiczone to provide an extremely strict anaerobic environment for phosphate release. Inaddition, influent with lower C/N ratio also stimulated the growth of denitrifyingphosphorus removing organisms (DPAO), which were capable to use NO3–-N as electron acceptors in simultaneous removal of N and P from wastewater. Furthermore,large amount of COD was consumed in the anaerobic zone of A~2/O and reduced theC/N ratio of supernatant that flowing into the BAF, which was favorable to the growthof nitrifiers in the biofilm and enhanced nitrification. Furthermore, the sufficientnitrate from BAF was recycled into the anoxic zones of A~2/O which benefits thedenitrifying phosphorus removal.
     A laboratory-scaled A~2/O-BAF system, for treating domestic wastewater, wasconsisted of an influent tank, an A~2/O reactor, a secondary settler and a BAF reactor.The transparent Plexiglas A~2/O reactor had nine compartments with a working volumeof30L. The mixed liquor from A~2/O reactor was settled in a cylindrical settler with aworking volume of20L. The media’s depth of up-flow BAF was167cm and theworking volume of the BAF reactor was13L.
     After stable operation of the A~2/O-BAF system, the effect of volume ratio in theA~2/O on the N and P removal was discussed. The volume ratio ofanaerobic/anoxic/aerobic zone was1:6:2and the major operating parameters were:SRT10d, sludge recycle ratio (r)100%, nitrate recycling ratio (R)300%, TSS3.0g/L.The results showed that the A~2/O-BAF system has potential for the domesticwastewater treatment and67.4%of TN and98.6%of TP were removed. This canguarantee the advantage of PAO growth and effectively restrain nitrifiers, and thesystem’s N and P removal efficiency is the highest.
     Cell assimilation was estimated to remove about30%of the TN concentrationpresent in the influent domestic wastewater, and the nitrification-denitrificationcontributed significant amount of the overall TN removal efficiency. High nitraterecycling stream would bring more nitrates back to the anoxic zone for denitrificationand prevent the nitrates from escaping out with the effluent. On the other hand, themajor factor influencing the occurrence of DAPO and associated anoxic P-uptake wasthe nitrate load in the anoxic zones, only if the nitrate load was high enough orexceeding the denitrification potential of ordinary heterotrophic organisms (OHO), i.e.non-PAO organisms in the anoxic zones, could it be possible to stimulate DPAO inthe system because the specific denitrification rate of OHO was significantly largerthan that of DPAO. There was no distinct relationship between the nitrate recyclingratio and the removal efficiencies of COD, TP and ammonia nitrogen. However, theremoval efficiencies of TN increased with the increasing of the nitrate recycling ratio,the rising rate was descending. Both the capacity of denitrifying and phosphorusremoval in anoxic zone increased simultaneously with the increasing of the nitraterecycling ratio.
     Also, the performance of A~2/O-BAF system was investigated when treatingdomestic wastewater with low C/N ratio at low temperature. Under the conditions of average temperature of14.2℃and C/N ratio of4.81, enhanced N and P removal wasachieved. Average effluent TN and TP concentrations were13.21mg/L and0.23mg/L, respectively,which could satisfy the class A discharge standards (Integratedwastewater discharge standard, GB18918-2002, China).
     Denitrifiers are facultative bacteria that energetically prefer oxygen to nitrate asthe terminal electron acceptor. A high nitrate recycling stream, typically required foreffective denitrification operation, will also bring a large amount of DO from the BAFto the anoxic zone of the A~2/O that, in turn, would inevitably deteriorate the TNremoval efficiency. This is especially crucial when the organic matters present in theinfluent wastewater are insufficient to deplete the high DO concentration present inthe nitrate recycling stream (C/N ratio of3.0). When the C/N ratio was4.0, TNremoval efficiency declined when R was above400%due to insufficient carbonsource and oxygen intrusion in the anoxic zone of the A~2/O. Highest C/N ratio of5.5improved the TN removal efficiencies when increasing R. The P removal efficiencyexhibited an upward trend with increasing of R. The lower C/N ratios of3.0and4.0had little influence on P removal. In contrast, the highest C/N ratio of5.5resulted in Prelease in settler due to the observed residual carbon source present, led to a decreasein P removal efficiency, although the higher R can relieve this conflicting influence.
     There is a critical ammonia concentration in the BAF. The removal ofphosphorus in BAF is due to the closure and adsorption by the suspended materials.The phosphorus release rate of PAO was not related to the phosphate concentration inmain solution but was positively related with the concentration to volatile fatic acid(VFA). The carbon source not only affected the rate of phosphorus release of PAO,but also the rate phosphorus uptake in oxic/anoxic conditions. Oxygen, nitrate andnitrite could be used as the electron acceptor for phosphorus uptake. However, therewas a nitrite threshold concentration because it would cause phosphorus release due todetriment to anoxic phosphate uptake.
引文
[1]张忠祥,钱易.废水生物处理新技术.清华大学出版社.2004:349-357.
    [2]刘一平,郭绍辉,王嘉麟.城市污水回用于工业的现状分析.环境工程,2005,23(3):15-18.
    [3]吴昌永. A2/O工艺脱氮除磷及其优化控制的研究.哈尔滨工业大学博士学位论文.2010:1-3.
    [4].郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用.化学工业出版社.2005:101-132.
    [5]中国工程院,中国水资源报告(第1卷)—《中国可持续发展水资源战略研究综合报告5及各专题报告》.北京:中国水利出版社,2001.12.
    [6]金相灿等.湖泊富营养化调查规范(第二版)(M).北京:中国环境科学出版社.1990.
    [7]王国祥,成小英,濮培民.湖泊藻型富营养化控制—技术、理论及应用.湖泊科学,2002,14(3):273-280.
    [8] Karakashev D, Schmidt J E, Angelidaki I. Innovative process scheme for removal oforganic matter,phosphorus and nitrogen from pig manure. Water Res.,2008,42:4083–4090.
    [9]张杰,臧景红,杨宏,刘俊良. A2/O工艺的固有缺欠和对策研究[J].给水排水,2003,129(13):22-26.
    [10]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策.给水排水,2000,26(12):1-4.
    [11] Rensink J H,Donker HJ GW and Simons S J,Phosphorus removal at low sludge loadings.Water Sci Tech.,1985,17(11-12):177-186.
    [12]郝晓地,刘壮,刘国军.欧洲城市污水处理技术新概念—可持续生物除磷脱氮(上).给水排水.2002,28(6):6-11.
    [13] Hu Z R, Wentzel M C, Ekama G A. Anoxic growth of phosphate-accumulating organism(PAOs) in biological nutrient removal activated sludge system. Water Res.,2002,36:4927-4937.
    [14] Chen YZ, Peng CY, Wang JH, Ye L, Zhang LC, Peng YZ. Effect of nitrate recyclingratio on simultaneous biological nutrient removal in a novel anaerobic/anoxic/oxic(A2/O)-biological aerated filter. Bioresource Technology,2011,102(10):5722-5727.
    [15] Wang Jianhua, Peng Yongzhen, Chen Yongzhi. Advanced Nitrogen and PhosphorusRemoval in A2O-BAF System Treating Low Carbon and Nitrogen Ratio DomesticWastewater. Frontiers of Environmental Science and Engineering in china,2011,5(3):474-480.
    [16] Wang X L, Peng Y Z, Wang S Y, Fan J, Cao X M. Influent of wastewater compositionon nitrogen and phosphorus removal and process control in A2O process. BioprocessBiosystem Engineering,2006,28:397-404.
    [17] D. J. Zhang, P. L. Lu, T. R. Long, V. Willy. The integration of methanogensis withsimultaneousnitrification and denitrification in a membrane bioreactor. Process Biochem.2005,40:541-547.
    [18] K. Pochana, J. Keller, P. Lant. Model development for simultaneous nitrification anddenitrification. Water Sci Tech.1999,39(1):235-243.
    [19] E. Morgentoth, T. Sherden, M. C. M. van Loosdrecht. Aerobic granulation in a sequencingbatch reactor. Water Res.1997,31(12):3191-3194.
    [20] H. Yoo. Nitrogen removal from synthetic wastewater by simultaneous nitrification anddenitrification via nitrite in an intermittently-aerated reactor.Water Res.1999,33(1):146-152.
    [21]高大文,彭永臻,王淑莹.高氮豆制品废水的亚硝酸型同步硝化反硝化生物脱氮工艺.化工学报.2005,56(4):699-704.
    [22] A. B. Gupta. Thiosphaera pantotropha: a sulphur bacterium capable ofsimultaneousheterotrophic nitrification and aerobic denitrification. Enzyme Microb. Technol.1997,21:589-595.
    [23]王晓莲,彭永臻,等. A2/O法污水生物脱氮除磷处理技术与应用.科学出版社.2009.
    [24]邹联沛,张立秋,王宝贞,等. MBR中DO对同步硝化反硝化的影响.中国给水排水.2001,17(6):10-14.
    [25] E. V. Munch, P. A. Lant, J. Keiler. Simultaneous nitrification and denitrification inbench-scale sequencing batch reactors. Water Res.1996,30:277-284.
    [26]郭建华.活性污泥微膨胀低能耗方法的研究.哈尔滨工业大学硕士学位论文.2007.
    [27] G. Zhu, Y. Peng, B. Li, et al. Biological removal of nitrogen from wastewater.Rev. Environ.Contam. Toxicol.2008,192:159-195.
    [28] R. J. Zeng, R. Lemaire, Z. Yuan, J. Keller. Simultaneous nitrification, denitrification, andphosphorus removal in a lab scale sequencing batch reactor. Biotechnol. Bioeng.2003,84(2):170-178.
    [29] J. P. Votes, H. Vanstaen, W. Verstraete. Removal of nitrogen from highly nitrogenouswastewaters. J. Water Pollut. Control Fed.1975,47:394-398.
    [30] J. H. Hunik, J. Tramper, R. H. Wijffels. A strategy to scale up nitrification processes withimmobilized cells of Nitrosomonas europaea and Nitrobacter agilis. Bioprocess Biosyst. Eng.1994,11(2):73-82.
    [31] I. Schmidt, O. Sliekers, M. Schmid, et al. New concepts of microbial treatment processes forthe nitrogen removal in wastewater. FEMS Microbiol. Rev.2003,27:481-492.
    [32] T. Kuba, G. Smolders, M. C. M. van Loosdrecht, et al. Phosphorus removal from wastewaterby anaerobic-anoxic sequencing batch reactor. Water Sci Tech.1993,27(5-6):241-252.
    [33] Y. Ma, Y. Peng, S. Wang, et al. Achieving nitrogen removal via nitrite in a pilot-scalecontinuous pre-denitrification plant. Water Res.2009,43:563-572.
    [34] T. Saito, D. Brdjanovic, M. C. M. van Loosdrecht. Effect of nitrite on phosphate uptake byphosphate accumulatingorg anisms. Water Res.2004,38:3760-3768.
    [35] T. Kuba, G. Smolders, M. C. M. van Loosdrecht, et al. Phosphorus removal from wastewaterby anaerobic-anoxic sequencing batch reactor. Water Sci Tech.1993,27(5-6):241-252.
    [36] J. Y. Hu, S.L. Ong, W. J. Ng, et al. A new method for characterizing denitrifying phosphorusremoval bacteria by using three different types of electron acceptors. Water Res.2003,37:3463-3471.
    [37] K. Pochana, J. Keller, P. Lant. Model development for simultaneous nitrification anddenitrification. Water Sci Tech.1999,39(1):235-243.
    [38] T. Kuba, M. C. M. van Loosdrecht, J. J. Heijnen. Biological dephosphatation by activatedsludge under denitrifying conditions: pH influence and occurrence ofdenitrifyingdephosphatation in a full-scale waste water treatment plant. Water Sci Tech.1999,36(12):75-82.
    [39] A. Wachtmeister, T. Kuba, M. C. M van Loosdrecht, et al. A sludge characterization assay foraerobic and denitrifying phosphorus removing sludge. Water Res.1997,31(3):471-478.
    [40]宋学起,彭永臻.以氯化方法实现生物膜法短程硝化.中国给水排水.2005,21(12):10-14.
    [41] A. B. Gupta. Thiosphaera pantotropha: a sulphur bacterium capable of simultaneousheterotrophic nitrification and aerobic denitrification. Enzyme Microb. Technol.1997,21:589-595.
    [42]罗志腾主编.污染控制工程微生物学.北京科学技术出版社.1988.
    [43]章非娟.生物脱氮技术.中国环境科学出版社.1992.
    [44]郑兴灿,李亚新.污水除磷脱氮技术.中国建筑工业出版社,1998:190-192.
    [45] Y. Comeau, W. K. Oldham, K. J. Hall. Dynamics of carbon reserves in biologicaldephosphatation of wastewater, in: biological phosphate removal from wastewaters.Pergamon Press, Oxford,1987:39-55.
    [46]郝红元,郝红英,王伟. A2/O工艺影响因素的研究.给水排水.2003,29(4):12-14.
    [47] Metcalf&Eddy, Inc. Wastewater Engineering: Treatment and Reuse(4th edition). NewYork, McGraw-Hill.2003:799-800.
    [48]朱明权. A2/O法过程控制及氮磷浓度的在线测定.给水排水.1997,23(4):60-65.
    [49]郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用.化学工业出版社,2005:23-32.
    [50]齐兵强,王占生.曝气生物滤池在污水处理中的应用.给水排水.2000,26(10):5-8.
    [51]张忠波,陈吕军,胡纪萃.新型曝气生物滤池-Biostyr.给水排水.2000,26(6):15-18.
    [52]王飞际.一种新的污水处理技术-Biopur法.给水排水.2001,27(1):11-14.
    [53] Hansen R., Th gersen T., Rogalla F. Comparing cost and process performance of activatedsludge (AS) and biological aerated filters (BAF) over ten years of full sale operation. WaterSci Tech.2007,55(8-9):99-106.
    [54]李汝琪,孔波,钱易.曝气生物滤池处理生活污水试验.环境科学.1999,20(5):69-71.
    [55]齐兵强,王占生.生物过滤氧化反应器处理生活污水中试研究.给水排水.2001,27(3):42-45.
    [56]郭天鹏,汪诚文,陈吕军.升流式曝气生物滤池深度处理城市污水的工艺特性.环境科学.2002,23(1):58-61.
    [57]邹伟国,孙群,王国华.新型Biosmedi滤池的开发研究.中国给水排水.2001,17(1):1-4.
    [58]郑俊,王晓焱.水解酸化-曝气生物滤池处理啤酒废水.给水排水.2001,27(1):48-49.
    [59]郑俊,程寒飞,王晓焱.上流式曝气生物滤池工艺处理生活污水.中国给水排水.2001,17(1):51-53.
    [60]马军,邱立平.曝气生物滤池及其研究进展.环境工程.2002,20(3):7-11.
    [61] R. Pujol, H. Lemmel and M.Gousailles. A Keypoint of Nitrification in an UpflowBiofiltration Reactor. Water Sci Tech.1998,38(3):43-49.
    [62] P. Chudoba and R. Pujol. A Three-stage Biofiltration Process: Performances of a Pilot Plant.Water Sci Tech.1998,38(8-9):257-265.
    [63] R. Pujol, M. Hamon and X. Kandel. Biofilters: Flexible, Reliable Biological Reactors. WaterSci Tech.,1994,29(10-11):53-60.
    [64]郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用.化学工业出版社,2005:23-32.
    [65] W. S. Mac Coy. Compact System Reportedly Products Effluent Comparable to ConventionalActivated Sludge Process. Wat. Environ. Tech.1997,2:39-42.
    [66] B. E. Rittmann, P. L. McCarty. Environmental Biotechnology: Principles and Applications.清华大学出版社,2002:398-399.
    [67] M. Tschui, M. Boller, W. Gujer. Tertiary Nitrification in Aerated Pilot Biofilters. Water SciTech.,1993,29(10-11):53-60.
    [68] J.P.Y. Jokela, R.H. Kettunen, K.M. Sormunen and J.A. Rintala. Biological NitrogenRemoval From Municipal Landfill Leachate: Low-cost Nitrification in Biofilters andLaboratory Scale in-situ Denitrification. Water Res.2002,36(16):4079-4087.
    [69] J.-G. Peladan, H. Lemmel and R. Pujol. High Nitrification Rate with Upflow Biofiltration.Water Sci Tech.1996,34(1-2):347-353.
    [70] R. Pujol, H. Lemmel and M. Gousailles. A Keypoint of Nitrification in an UpflowBiofiltration Reactor. Water Sci Tech.1998,38(3):43-49.
    [71] F. Fdz-Polanco, E. Mendez, I. A. Uruena, S. Villaverde and P. A. Garcia. SpatialDistribution of Heterotrophs and Nitrifiers in a Submerged Biofilter for Nitrification. WaterRes.2000,34(16):4081-4089.
    [72] S. Zhu and S. Chen. Effects of Organic Carbon on Nitrification Rate in Fixed Film Biofilter.Aquacultural Engineering.2001,25(1):1-11.
    [73] M. Payraudeau, C. Paffoni and M. Gousailles. Tertiary Nitrification in an Upflow Biofilteron Floating Media: Influence of Temperature and COD Load. Water Sci Tech.2000,41(4-5):21-27.
    [74] K. R.Gilmore, K. J. Husovitz, T. Holst and N. G. Love. Influence of Organic and AmmoniaLoading on Nitrifier Activity and Nitrification Performance for a Two-stage BiologicalAerated Filter System. Water Sci Tech.1999,39(7):227-234.
    [75]李汝琪,孔波,钱易.曝气生物滤池处理生活污水试验.环境科学.1999,20(5):69-71.
    [76] A. Shanableh and A. Hijazi. Treatment of Simulated Aquaculture Water Using BiofiltersSubjected to Aeration/non-aeration Cycles. Water Sci Tech.1998,38(8-9):223-231.
    [77] S. A. Beg, M. M. Hassan and M. A. S. Chaudhry. Effect of Sinusoidal Perturbations of FeedConcentration on Multi-substrate Carbon Oxidation and Nitrification Process in an UpflowPacked-bed Biofilm Reactor. Chemical Engineering Journal.1997,65:165-174.
    [78] O. Lahav, E. Artzi, S. Tarre and M. Green. Ammonium Removal Using a Novel UnsaturatedFlow Biological Filter with Passive Aeration. Water Res.2001,35(2):397-404.
    [79]马军,邱立平.曝气生物滤池中的亚硝酸盐积累及其影响因子.环境科学.2003,24(1):84-90.
    [80] J. J. Chen, D. McCarty, D. Slack and H. Rundle. Full Scall Case Study of a SimplifiedAerated Filter for Organics and Nitrogen Removal. Water Sci Tech.2000,41(4-5):1-4.
    [81] R. Pujol and S. Tarallo. Total Nitrogen Removal in Two-step Biofiltration. Water Sci Tech.2000,41(4-5):65-68.
    [82] R. Pujol. Process Improvements for Upflow Submerged Biofilters. Water21. April.2000:25-29.
    [83] F. Osorio and E. Hontoria. Wastewater Treatment With a Double-layer SubmergedBiological Aerated Filter, Using Waste Materials as Biofilm Support. Journal ofEnvironmental Management.2002,65:79-84.
    [84] P. W. Westerman, J. R. Bicudo, A. Kantardjieff. Upflow Biological Aerated Filters for theTreatment of Flushed Swine Manure. Bioresource Technology.2000,74:181-190.
    [85] C. H. M bius. Wastewater Biofilters Used for Advanced Treatment of Papermill Effluent.Water Sci Tech.1999,40(11-12):101-108.
    [86] R. F. Gon alves and F. F. de Oliveira. Improving the effluent quality of facultativestabilization ponds by means of submerged aerated biofilters. Water Sci Tech.1996,33(3):145-152.
    [87] A. Shanableh and A. Hijazi. Treatment of Simulated Aquaculture Water Using BiofiltersSubjected to Aeration/non-aeration Cycles. Water Sci Tech.1998,38(8-9):223-231.
    [88] L. Yang, L. Chou and W. K. Shieh. Biofilter Treatment of Aquaculture Water for ReuseApplications. Water Res.2001,35(13):3097-3108.
    [89]郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工程实例.化学工业出版社,2002:45-54.
    [90]王立立,刘焕彬,胡勇有,周勤.曝气生物滤池处理低浓度生活污水的研究.工业水处理.2003,23(3):29-32.
    [91]肖文胜,徐文国,齐兵强.上流式曝气生物滤池处理城市污水.中国给水排水.2003,19(2):49-50.
    [92]宋秀兰.生活污水处理后出水作杂用水的工艺研究.环境工程.1999,17(3):27-29.
    [93]江霜英,高廷耀.洗衣、洗浴废水再生回用作生活杂用水.中国给水排水.2003,19(4):93-94.
    [94]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策.给水排水,2000,26(12):1-4.
    [95] Rensink J H, Donker HJ GW and Simons S J, Phosphorus removal at low sludge loadings.Water Sci Tech.,1985,17(11-12):177-186.
    [96] Sorm R., Bortone G, Saltarellf R, Jenicek P, Wanner J, Tilche A. Phosphorus uptake underanoxic condition and fixed-film nitrification in nutrient removal activated sludge system.Water Res.1996,30(7):1573-1584.
    [97] Rodrigo, M. A., Seco, A., Penyaroja, J. M., Ferrer, J.. Influence of sludge age on enhancedphosphorus removal in biological systems. Water Sci Tech,1996,34(1–2),41–48.
    [98] Ahn, J., Daidou, T., Tsuneda, S., Hirata, A.,. Characterization of denitrifyingphosphate-accumulating organisms cultivated under different electron acceptor conditionsusing polymerase chain reaction-denaturing gradient gel electrophoresis assay. Water Res,2002,36,403-412.
    [99] Peng, Y.Z., Wang, X.L., Li, B.K.,2006. Anoxic biological phosphorus uptake and the effectof excessive aeration on biological phosphorus removal in the A2O process. Desalination,2006,189,155-164.
    [100] Lee H., Han J., Yun Z.2009. Biological nitrogen and phosphorus removal in UCT-typeMBR process. Water Sci Tech,2009,59(11),2093-2099.
    [101] Lee H., Han J., Yun Z.2009. Biological nitrogen and phosphorus removal in UCT-typeMBR process. Water Sci Tech,2009,59(11),2093-2099.
    [102]郝晓地,刘壮,刘国军.欧洲水环境控磷策略与污水除磷技术仁下).给水排水.1998,24(9):6871.
    [103] Levin GV et al. Pilot Plant Tests on Phosphate Removal Process. Journal WPCF1972,44(10):12-17.
    [104] Siebritz I.P. et al. A Parametric Model for Biological Excess Phosphorus Removal. IAWPRPost Conference Seminar on Phosphate Removal in Biological Treatment Processes. April5-6,1982, Pretoria.
    [105] Barnard J.L. Background to Biological Phosphorus Removal. IAWPR Post ConferenceSeminar on Phosphate Removal in Biological Treatment Processes. April5-6,1982, Pertoria.
    [106] Barnard J.L.A Review of Biological Phosphorus Removal in the Activated Sludge Process.Water SA.1976,2:136-144.
    [107] Marais GVR.et al.Observation Supporting Phosphate Removal by Biological ExcessUptake—A Review. Water Sci Tech.1983,15(3}4):15-41.
    [108] Minder J.W. and Rensink J.H. Introduction of Biological Phosphorus Removal to anActivated Sludge Plant with Practical Limitation. Biological Phosphate Removal fromWastewaters (R.Ramadoried.).Proceedings of an IAWPRC Specialized Conference (Sept.28-30,1987. Rome):213-223, Pergamon Press, London.
    [109]曹雪梅,彭永臻,王淑莹.缺氧区、好氧区容积比对A2/O工艺反硝化除磷的影响.中国给水排水.2007,23(3):27-30.
    [110]吴昌永,彭永臻,彭轶. A2O工艺处理低C/N比生活污水的试验研究.化工学报,2008,59(12):3126-3131.
    [111]彭轶. A2/O工艺中的反硝化除磷及其优化控制研究.哈尔滨工业大学硕士.学位论文.2008.
    [112]国家环保总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.
    [113] Amann R I, Krumholz L, Stahl D A. Fluorescent-oligonucleotide probing of whole cells fordeterminative, phylogenetic and environ-mental studies in microbiology. J. Bacteriol.,1990,172(2):762-770.
    [114] Y. Liu, Y. Chen, Q. Zhou. Effect of initial pH control on enhanced biological phosphorusremoval from wastewater containing acetic and propionic acids. Chemosphere2007,66:123-129.
    [115] C. Y. Wu, Y. Z. Peng, S. Y. Wang, et al. Enhanced biological phosphorus removal bygranular sludge-From macro-to micro-scale. Water Res.2010,44:807-814.
    [116]傅金祥,陈正清,赵玉华,等.挂膜方式对曝气生物滤池的影响.水处理技术,2006,32(8):42-45.
    [117]张杰,曹相生,孟雪征.好气滤池3种挂膜方法的试验研究.哈尔滨工业大学学报,2003,35(10):1216-1219.
    [118]高景峰,彭永臻,王淑莹.以pH作为SBR法硝化过程模糊控制参数的基础研究.应用与环境生物学报,2003,9(5):549-553.
    [119]高景峰,彭永臻,王淑莹.SBR法去除有机物、硝化和反硝化过程中pH变化规律.环境工程,2001,19(5):21-24.
    [120]王建芳,赵庆良,林佶侃,等.低溶解氧和磷缺乏引发的非丝状菌污泥膨胀及控制.环境科学,2007,28(7):545-550.
    [121]张自杰等.排水工程[M],北京:中国建筑工业出版社,1999,308-312.
    [122]Rogalla, F., Badard, M., Hansen, F., Danholm, P.. Up-scaling a compact nitrogen removalprocess. Water Sci Tech.1992,26(5–6):1067-1076.
    [123] Allan M, Leophldo ME, Tom S. A comparison of floating and sunken media biologicalaerated filters for nitrification. J Chem Technol Biotechnol,1998,72:265-274.
    [124] Payraudeau M, Paffoni C, Gousailles M.. Tertiary nitrification in an up flow biofilter onfloating media: influence of temperature and COD load. Water Sci Tech,2000,41(4–5):21–27.
    [125] E. Morgenroth, A. Obermayer, E. Arnold, A. Brühl,et al. Effect of long-term idle periodson the performance of sequencing batch reactors. Water Sci Tech.,2000,41(1):105–113.
    [126] J. S. Ventura, S. Seo, I. Chung, I. Yeom, H. Kim, Y. Oh, D. Jahng. Enhanced Reduction ofExcess Sludge and Nutrient Removal in a Pilot-scale A(2)O-MBR-TAD System. Water SciTech.2011,63(8):1547-1556.
    [127] Wang X L, Peng Y Z, Wang S Y, et al. Influence of wastewater composition on nitrogenand phosphorus removal and process control in A(2)O process[J]. Bioprocess and BiosystemsEngineering,2006,28(6):397-404.
    [128] Z. R. Hu, M. C. Wentzel, G. A. Ekama. Anoxic growth of phosphate-accumulatingorganism (PAOs) in biological nutrient removal activated sludge system. Water Res.2002,36:4927-4937.
    [129] T. Kuba, E. Murnleitner, M. C. M. van Loosdrecht, et al. A metabolic model for thebiological phosphorus removal by denitrifying organisms. Biotechnol. Bioeng.1996,52:685-695.
    [130]张晓丹,宋乾武,代晋国.温度及碳源对NPR工艺脱氮除磷效果的影响.环境科学研究.2007,20(4):125-129.
    [131]李圭白.水质工程学.中国建筑工业出版社,2005:376–377.
    [132] X. L. Wang, Y. Z. Peng, S. Y. Wang. Influence of Wastewater Composition on Nitrogen andPhosphorus Removal and Process Control in A(2)O Process. Bioprocess and BiosystemsEngineering.2006,28(6):397-404.
    [133] Hu, J.Y., Ong, S.L., Ng, W.J., Lu, F., Fan, X.J.. A new method for characterizingdenitrifying phosphorus removal bacteria by using three different types of electron acceptors.Water Res.,2003,37,3463-3471.
    [134] Jinwoo, J, Taira, H, Hiroshi, T, Toshiyuki, O.,. Development of biological filter as tertiarytreatment for effective nitrogen removal: Biological filter for tertiary treatment. Water Res.,2006,40:1127-1136.
    [135] Peng, Y.Z, Ge, S.J.. Enhanced nutrient removal in three types of step feeding process frommunicipal wastewater. Bioresource Technology.2011,102,6405-6413.
    [136] Henze M·Capabilities of biological nitrogen removal processes from wastewater·Water SciTech.,1991(23):669-679.
    [137] Tchobanoglous G, Burton F B, Stensel H D. Wastewater engineering: treatment and reuse,4thedn. USA, McGraw-Hill,2003.
    [138] Wang, J.H., Peng, Y.Z.; Chen, Y.Z.. Advanced nitrogen and phosphorus removal inA2O-BAF system treating low carbon-to-nitrogen ratio domestic wastewater. Frontiers ofenvironmental science&engineering in china,2011,5(3),474-480.
    [139] Chen, Y.Z., Peng, C.Y., Wang, J.H., Ye, L., Zhang, L.C., Peng, Y.Z.. Effect of nitraterecycling ratio on simultaneous biological nutrient removal in a novel anaerobic/anoxic/oxic(A2/O)-biological aerated filter (BAF) system. Bioresource Technology,2011,102,6405-6413.
    [140] Water Environment Federation (WEF). Membrane System for Wastewater Treatment.McGraw-Hill, New York,2005.
    [141] Wang Y Y, Peng Y Z, Stephenson T,. Effect of influent nutrient ratios and hydraulicretention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludgesequencing batch reactor process. Bioresource Technology,2009,100,3506-3512.
    [142] Wang X L, Peng Y Z, Wang S Y, Fan J, Cao X M. Influent of wastewater composition onnitrogen and phosphorus removal and process control in A2O process. Bioprocess BiosystemEngineering,2006,28:397-404.
    [143] Tseng, C.C., Potter, T.G., Koopman, B.. Effect of influent chemical oxygen demand tonitrogen ratio on a partial nitrification/complete denitrification process. Water Res.,1998,32(1),165-173.
    [144] Kujawa, K, Klapwijk, B. The effect of the sludge loading rate and the nature of carbonsource on denitrification potential. Research note. Wageningen Agricultural University (citedin Komorowska-Kaufman et al.,2006).
    [145] Henze, M., Kristensen, G.H., Strube, R.. Rate capacity characterization of wastewaternutrient removal processes. Water Sci Tech.,1994,29(7),101–107.
    [146]Jih, C.G., Huang, J.S., Hsieh, K.C.. Performance evaluation of single-sludge reactor systemtreating high-strength nitrogen wastewater. J. Hazard. Mater,200185(3),213–227.
    [147] Y. W. Ding, L. Wang, B. Z.Wang. Removal of Nitrogen and Phosphorus in a CombinedA(2)/O~BAF System with a Short Aerobic SRT. Journal of Environmental Sciences-China.2006,18(6):1082-1087.
    [148] H. Lee, J. Han, Z. Yun. Biological Nitrogen and Phosphorus Removal in UCT-type MBRProcess. Water Sci Tech.2009,59(11):2093-2099.
    [149] M. Kim, G. Nakhla. The Beneficial Role of Intermediate Clarification in a Novel MBRBased Process for Biological Nitrogen and Phosphorus Removal. Journal of ChemicalTechnology and Biotechnology.2009,84(5):637-642.
    [150] B. S. Akin, A.E. Ugurlu. Biological Removal of Carbon, Nitrogen, and Phosphorus in aSequencing Batch Teactor. Journal of Environmental Science and Health~Part AToxic/Hazardous Substances and Environmental Engineering.2003,38(8):1479-1488.
    [151]张晓丹,宋乾武,代晋国.温度及碳源对NPR工艺脱氮除磷效果的影响.环境科学研究.2007,20(4):125-129.
    [152] X. L. Wang, Y. Z. Peng, S. Y. Wang. Influence of Wastewater Composition on Nitrogen andPhosphorus Removal and Process Control in A(2)O Process. Bioprocess and BiosystemsEngineering.2006,28(6):397-404.
    [153]王亚宜,彭永臻,王淑莹.碳源和硝态氮浓度对反硝化聚磷的影响及ORP的变化规律.环境科学.2004,25(4):54-58.
    [154]阮文权,邹华,陈坚.乙酸钠为碳源时进水COD和总磷对生物除磷的影响.环境科学.2002,3(23):49-52.
    [155] Y. Ma, Y. Z. Peng, X. L. Wang. Improving Nutrient Removal of the AAO Process by anInfluent Bypass Flow by Denitrifying Phosphorus Removal. Desalination.2009,246:534-544.
    [156] H. Monclús, J. Sipmaa, G. Ferreroa. Optimization of Biological Nutrient Removal in a PilotPlant UCT-MBR Treating Municipal Wastewater during Start-up. Desalination.2010,250(12):592-597.
    [157] J. Jinwoo, H. Taira, T. Hiroshi. Development of Biological Filter as Tertiary Treatment forEffective Nitrogen Removal: Biological Filter for Tertiary Treatment. Water Res.2006,40:1127-1136.
    [158] H. Taira, T. Hiroshi, K. Naoyuki. Advanced Treatment of Sewage by Pre-coagulation andBiological Filtration Process. Water Res.2003,37:4259~4269.
    [159] G. A. Ekama, M. C. Wentzel. Difficulties and Developments in Biological NutrientRemoval Technology and Modelling. Water Sci Tech.1999,39(6):1-11.
    [160] Wachtmeister A, Kuba T, Van loosdrecht M C M et al.A sludge characterization assay foraerobic and denitrifying phosphorus removal sludge.Water Res.1997,31(3):471–478.
    [161] Kuba T., Murnleitner E., Van Loosdrecht M. C. M., Heijnen J. J. A Metabolic Model forbiological Phosphorus Removal by Denitrifying Organisms. Biotechnology andBioengineering,1996,52:685-695.
    [162]张兰英,刘娜,王显胜.现代环境微生物技术(第2版).清华大学出版社,2007,175-177.
    [163] Y. Chen, A. A. Randall, T. McCue. The efficiency of enhanced biological phosphorusremoval from real wastewater affected by different ratios of acetic to propionic acid. WaterRes.2004,38(1):27-36.
    [164] N. Yagci, E. U. Cokgor, N. Artan, et al.,2007. The effect of substrate on the composition ofpolyhrdroxyalkanoates in enhanced biological phosphorus removal. J. Chem. Technol.Biotechnol.,82:295-303.
    [165] Y. Liu, C. Geiger, A. A. Randall. The role of poly-hydroxy-alkanoate form in determiningthe response of enhanced biological phosphorus removal biomass to volatile fatty acids.Water Environ. Res.,2002,74:57-67.
    [166] S. Puig, M. Coma, H. Monclus, et al.. Selection between alcohols and volatile fatty acids asexternal carbon sources for EBPR. Water Res.,2008,42:557-566.
    [167] Kuba T, van Loosdrecht MCM, Brandse FA, Heijnen JJ.. Occurrence of denitrifyingphosphorus removing bacteria in modified UCT-type wastewater treatment plants. Water Res,1997,31(4):777–86.
    [168] Kuba T, van Loosdrecht MCM, Heijnen JJ.. Biological dephosphatation by activated sludgeunder denitrifying conditions: pH influence and occurrence of denitrifying dephosphatationin a full-scale waste water treatment plant. Water Sci Tech.1997,36(12):75–82.
    [169] van Loosdrecht MCM and Jetten MSM.. Microbiological conversions in nitrogen removal.Water Sci Tech.,1998,38:1-7.
    [170] Saito T, Brdjanovic D and van Loosdrecht MCM.. Effect of nitrite on phosphate uptake byphosphate accumulatingorg anisms. Water Res.,2004,38:3760-3768.
    [171] Zhou Y, Pijuan M and Yuan Z.. Free nitrous acid inhibition on anoxic phosphorus uptakeand denitrification by oly-phosphate accumulating organisms. Biotechnol Bioeng,2007,98:903–912.
    [172] ComeauY, Hall KJ, Oldham WK. Indirect polyphosphate quantification in activated sludge.Water Pollut Res J Canada1990,25:161–74.
    [173] Jenkins D, Tandoi V. The applied microbiology of enhanced biological phosphate removalaccomplishments and needs. Water Res1991;25:1471–1478.
    [174] van Starkenburg W, Rensink JH, Rijs GBJ. Biological P-removal: state of the art in theNetherlands. Water Sci Tech,1993,27:317–28.
    [175]Yong-Zhen Peng, Chang-Yong Wu, Ran-Deng Wang and Xiao-Ling Li. Denitrifyingphosphorus removal with nitrite by a real-time step feed sequencing batch reactor. Journal ofchemical technology and biotechnology,2011,86:541–546.
    [176] Kerrn-Jespersen JP and Henze M. Biological phosphorus release and uptake underalternation anaerobic and anoxic conditions in a fixed film reactor. Water Res.,1993,27:617–624.
    [177]Meinhold J, Arnold E and Isaacs S, Effect of nitrite on anoxic phosphate uptake in biologicalphosphorus removal activated sludge. Water Res.,1999,33:1871–1883.
    [178] Kuba T., Murnleitner E., Van Loosdrecht M. C. M., Heijnen J. J.. A Metabolic Model forBiological Phosphorus Removal by Denitrifying Organisms, Biotechnology andBioengineering,1996,52:685-695.
    [179] Smolders, G. J. F., van der Meij, J., van Loosdrecht, M. C. M., Heijnen, J. J. Model of theanaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pHinfluence. Biotechnol. Bioeng.1994,43:461-470.
    [180] Smolders, G. J. F., van der Meij, J., van Loosdrecht, M. C. M., Heijnen, J. J. Stoichiometricmodel of the aerobic metabolism of the biological phosphorus removal process. Biotechnol.Bioeng.1994,44:837-848.
    [181] Smolders, G. J. F., van der Meij, J., van Loosdrecht, M. C. M., Heijnen, J. J. Structuredmetabolic model for anaerobic and aerobic stoichiometry and kinetics of the biologicalphosphorus removal process. Biotechnol. Bioeng.1995,47:277-287.
    [182] Smolders, G. J. F., van Loosdrecht, M. C. M., Heijnen, J. J.. A metabolic model for thebiological phosphorus removal process. Water Sci Tech,1995,31:79-93.
    [183] Yarbrough JM, Rake JB, Eagon RG. Bacterial inhibitory effects of nitriteinhibition ofactive-transport, but not of group translocation, and of intracellular enzymes. Appl EnvironMicrobiol,1980,39(4):831–834.
    [184] Weon S, Lee C, Lee S, Koopman B. Nitrite inhibition of aerobic growth of Acinetobacter sp.Water Res.2002,36(18):4471–4476.
    [185] Zhou Y, Pijuan M, Yuan Z. Free nitrous acid inhibition on anoxic phosphorus uptake anddenitrification by poly-phosphate accumulating organisms. Biotechnol Bioeng,2007,98:903–912.
    [186] Wentzel M, Lotter L, Loewenthal R, Marais GV. Metabolic behaviour of Acinetobacter spp.in enhanced biological phosphorus removal: a biochemical model. Water SA1986,12(4):209–214.
    [187] Yoshida Y, Kim Y, Saito T, Tanaka K. Development of the modified activated sludge modeldescribing nitrite inhibition of aerobic phosphate uptake. Water Sci Tech,2009,59(4):621–630.
    [188] Oehmen, A., Lemos, P. C., Carvalho, G., Yuan, Z., Keller, J., Blackall, L. L.&Reis, M. A.M. Advances in enhanced biological phosphorus removal: from micro to macro scale.WaterRes.2007,41,2271–2300.
    [189] Bond, P. L., Keller, J.&Blackall, L. L. Anaerobic phosphate release from activated sludgewith enhanced biological phosphorus removal. A possible mechanism of intracellular pHcontrol. Biotechnol. Bioeng.1999,63,507–515.
    [190] Oehmen, A., Vives, M. T., Lu, H., Yuan, Z.&Keller, J. The effect of pH on the competitionbetween polyphosphateaccumulating organisms and glycogen-accumulating organisms.Water Res.2005,39,3727–3737.
    [191] A.J.Schuler, D. Jenkins. Effect of pH on Enhanced Biological Phosphorus RemovalMetabolism. Water Sci Tech.2002,46(45):171-178.
    [192] Zhang, T., Liu, Y.&Fang, H. H. P. Effect of pH change on the performance and microbialcommunity of enhanced biological phosphate removal process. Biotechnol. Bioeng.2005,92:173–182.
    [193] Bond, P.L., Keller, J., Blackall, L.L.. Anaerobic phosphate release from activated sludgewith enhanced biological phosphorus removal. A possible mechanism of intracellular pHcontrol. Biotech. Bioeng.1999,63:507–515.
    [194] Filipe, C.D.M., Daigger, G.T., Grady Jr., C.P.L. Stoichiometry and kinetics of acetateuptake under anaerobic conditions by anenriched culture of phosphorus-accumulatingorganisms at different pHs. Biotech. Bioeng.2001,76,32–43.
    [195] Filipe, C.D.M., Daigger, G.T., Grady Jr., C.P.L. A metabolic model for acetate uptake underanaerobic conditions by glycogen accumulating organisms: stoichometry, kinetics, and effectof pH. Biotech. Bioeng.2001,76,17–31.
    [196] Liu Yan, Chen Yinguang, Zhou Qi. Effect of initial pH control on enhanced biologicalphosphorus removal from wastewater containing acetic and propionic acids,2007,66:123–129.
    [197] Romansky, J., Heider, M., Wiesmann, U.. Kinetics of anaerobic ortho-phosphate release andsubstrate uptake in enhanced biological phosphorus removal from wastewater. Water Res.,1997,31:3137–3145.
    [198] Pijuan, M., Saunders, A.M., Guisasola, A., Baeza, J.A., Casas, C., Blackall, L.L. Enhancedbiological phosphorus removal in a sequencing batch reactor using propionate as the solecarbon source. Biotech. Bioeng.,2004,85:56–67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700