磁流变弹性体的力学性能及其在振动控制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变弹性体(MRE)是一种主要由微米级的铁磁性颗粒和橡胶类基体构成的智能复合材料,其性能(模量、阻尼、变形、电阻抗等)可以由外加磁场快速、连续和可逆地控制,因此MRE在工程实践中具有广泛的应用前景。目前对MRE力学性能的研究主要集中在其剪切力学性能上,对法向力学性能的研究较少。此外,MRE在剪切状态下的承载能力较差,而在压缩状态下能承受较大的载荷。因此,MRE在压缩状态具有更好的工程应用价值。针对MRE可能的工程应用,本文首先对MRE的法向力和高应变率下的压缩性能进行了研究。在此基础上,结合前人的研究成果,针对MRE在振动控制应用中存在的问题,对MRE在吸振和隔振方面的应用展开了讨论,解决了MRE在振动控制应用中面临的器械设计和控制算法问题,初步实现了MRE的工程应用。本文的主要内容如下:
     1.采用安东帕MCR301流变仪研究了MRE在压缩状态、准静态剪切状态和动态剪切状态下的法向力,得到了MRE的法向力与外加磁场、剪切应变、温度和颗粒分布等的关系。在压缩状态下,MRE的法向力随着外加磁场的增大而增大,当铁颗粒达到磁饱和时,法向力也表现出饱和的趋势。此外,预压力、颗粒分布、外界环境温度和磁场的循环加载对MRE的法向力行为均有影响。在准静态剪切下,MRE的法向力与剪切应变密切相关。低磁场时,法向力随着剪切应变的增大而减小;高磁场时,法向力随着剪切应变的增大而增大。法向力的这种变化趋势与预压缩方向的弹性模量和颗粒链在外加磁场下受到的力矩相关。这两个因素的共同作用导致了MRE在准静态剪切下的法向力行为。在振荡剪切下,MRE的法向力与振荡剪切的幅值密切相关。当应变幅值低于7%时,法向力随剪切应变的变化趋势与准静态时类似。但是,当剪切应变幅值大于7%时,法向力随着剪切应变的增加急剧地减小,这与MRE内部铁颗粒链的断裂密切相关。该部分的研究工作为MRE在作动器和减振器等工程器械方面的应用奠定了基础。
     2.采用改进的SHPB测试系统研究了MRE在高应变率条件下的动态压缩力学性能,得到了MRE的动态压缩力学性能与外加磁场和应变率的关系,并提出了相应的本构方程。在屈服前的阶段,MRE的动态压缩力学性能具有明显的磁场相关性和应变率相关性。随着外加磁场的增加,杨氏模量增加,屈服应力增加,而屈服应变减小。随着应变率的增加,杨氏模量增加,屈服应力增加,而屈服应变减小。为了描述MRE在屈服前的动态压缩力学性能,提出了一个由超弹性、粘弹性和磁致应力组成的本构模型。实验和理论的对比表明,所提出的本构模型可以很好地描述MRE在高应变率下的动态压缩力学性能。在屈服后的阶段,当应变大于屈服应变时,MRE的应力表现出逐渐减小的趋势。随着应变的进一步增加,应力达到最小值。当应变大于0.2时,应力表现出逐渐增加的趋势。MRE屈服后的过程可以看作是其内部铁颗粒链逐渐被破坏和MRE逐渐被压实的过程。该部分的研究工作为MRE在抗冲击方面的应用提供了实验基础。
     3.在传统MRE吸振器的基础上,通过增加主动力控制,设计了移频范围宽且阻尼小的MRE主动自调谐式吸振器。主动自调谐式吸振器采用音圈电机作为阻尼补偿元件,通过主动力控制使得所设计的吸振器在保留传统MRE吸振器固有频率快速可调特点的同时又克服了传统MRE吸振器阻尼大、减振性能差的缺点。该部分研究对于解决工程实践中振动控制相关的问题具有一定的意义。
     4.为了提高半主动吸振器刚度控制的精度和速度,设计了一种基于相位差的MRE吸振器刚度控制算法。该算法不依赖于吸振器控制量与固有频率的精确模型,具有调整时间快、稳定性好和易实现等优点。实验和仿真的结果都验证了算法的可行性和有效性。该部分研究不仅可用于MRE吸振器的刚度控制,对所有的半主动吸振器均具有较好的控制效果,对于提高半主动吸振器刚度控制的速度和精度具有重要的意义。
     5.采用MRE作为变刚度元件,音圈电机作为变阻尼元件设计了刚度和阻尼实时可控的MRE隔振器原理样机及其控制算法。实验结果表明在ON-OFF控制下,MRE隔振器具有较好的隔振效果,可以有效地减小负载的振动响应。尤其对负载在固有频率附近的振动也具有较好的隔振效果。该部分研究对于解决工程实践中振动控制相关的问题具有一定的意义。
Magnetorheological elastomer (MRE) is a kind of smart composite consisting of micron sized ferromagnetic particles and rubber-like matrix. Its properties, such as modulus, damping, deformation, electric impedance and so on, can be controlled by the external magnetic field rapidly, continuously and reversibly. Due to these unique properties, magnetorheological elastomer can be used in many engineering fields. Recently, the study of magnetorheological elastomer is focused on the shear property, while few reports on the normal properties can be found. In addition, the magnetorheological elastomer can bear more loads in the compression status than that in the shear status. Therefore, the magnetorheological elastomer may be more proper to work in the compression status than in the shear status. The work in this dissertation first discussed the normal properties of magnetorheological elastomer, including the normal force and the compressive property under high strain rate. Then, based on the studies on the normal properties and the reported work by the other researchers, the work in this dissertation further discussed the application of magnetorheological elastomer in the vibration absorbing and vibration isolation. The details are as follows.
     1. The normal force of magnetorheological elastomer under compression status, quasi-static shear and oscillatory shear were studied using Anton Paar MCR301rheometer respectively. The relation among the normal force of magnetorheological elastomer, the external magnetic field, the temperature, the pre-compression force and the distribution of the iron particles were analyzed. It was found that the normal force of magnetorheological elastomer increased with increasing magnetic field under compression status. When the embedded iron particle reached magnetic saturation, the normal force reached the maximum value. Besides, the normal force of magnetorheological elastomer was influenced by the particle distribution, pre-compression force, environmental temperature and the loading process of magnetic field. Under quasi-static shear, the normal force of magnetorheological elastomer was related to the shear strain. When the external magnetic field was low, the normal force of magnetorheological elastomer decreased with increasing shear strain. When the external magnetic was high, the normal force increased with increasing shear strain. The complex relation between the normal force and the shear strain was resulted from the elastic modulus in the pre-compression direction and the magnetic torque applied on the iron chain in the magnetic field. Under oscillatory shear, the normal force of magnetorheological elastomer was influenced by the amplitude of the shear strain. When the strain amplitude was smaller than7%, the tendency of the normal force with increasing shear strain was similar to that in the quasi-static shear. However, when the strain amplitude was larger than7%, the normal force decreased sharply with increasing shear strain which was due to the change or break of the iron chain. The work in this part would provide the experimental data for the application of magnetorheological elastomer in vibration absorber, actuator and so on.
     2. The dynamic compression property of magnetorheological elastomer under high strain rate was investigated using modified SHPB technology. The relation among the dynamic compression property of magnetorheological elastomer, the magnetic field and the strain rate were discussed. In the pre-yield region, the compression property of magnetorheological elastomer was influenced by the external magnetic field and the strain rate significantly. With increasing magnetic field, the Young's modulus and the yield stress increased while the yield strain decreased. With increasing strain rate, the Young's modulus and the yield stress increased while the yield strain decreased. To characterize the compression property of magnetorheological elastomer, a constitute model consisting of hyperelasticity, viscoelasticity and a magnetic part was proposed. Calculation results showed that the proposed constitute model agreed well with the experimental data. In the post-yield region, the stress first decreased to a minimum value and then increased smoothly with increasing strain when the strain exceeded the yield strain, which was due to the change of the iron chain. The work in this part would provide experimental data for the application of magnetorheological elastomer in shock absorbing.
     3. A kind of magnetorheological elastomer based adaptive tuned vibration absorber, which was named magnetorheological elastomer based active adaptive tuned vibration absorber, was designed to overcome the disadvantage of large damping in the traditional magnetorheological elastomer vibration absorber. A voice coil motor controlled by the velocity feedback was incorporated into the vibration absorber to compensate the damping force so as to reduce the damping of the magnetorheological elastomer vibration absorber. Experimental results showed that the damping of the proposed vibration absorber was low. The frequency shift property and the vibration attenuation property were satisfying. The proposed vibration absorber in this part could be used in vibration control in engineering.
     4. A kind of phase based stiffness tuning algorithm was proposed for the magnetorheological elastomer tuned vibration absorber to improve the stiffness control effect and speed. The proposed stiffness tuning algorithm did not rely on the accurate description of the relation between the control signal and the nature frequency. Experimental results demonstrated that the proposed algorithm was efficient and fast for the magnetorheological elastomer based tuned vibration absorber to track the excitation frequency. The proposed stiffness tuning algorithm is efficient for not only the magnetorheological elastomer tuned vibration absorber but also the other semi-active dynamic vibration absorber.
     5. A vibration isolator prototype with real-time tunable stiffness and damping was proposed using magnetorheological elastomer as its tunable stiffness and voice coil motor controlled by the velocity feedback as its tunable damping. Experimental results demonstrated that the proposed vibration isolator showed satisfying isolation effect under the ON-OFF control strategy. The response of the payload was significantly suppressed in comparison to the passive system especially in the frequency band around the nature frequency. The proposed vibration isolator in this part could be used in vibration control in engineering.
引文
[1]Rabinow J. The magnetic fluid clutch [J]. Electrical Engineering,1948,67(12):1167-.
    [2]Carlson J D. What makes a good MR fluid? [J]. J Intell Mater Syst Struct,2002, 13(7-8):431-5.
    [3]LORD MR products http://www.lordmrstore.com/lord-mr-products [M].
    [4]Park B, Song K, Park B, et al. Miniemulsion fabricated Fe 3 O 4/poly (methyl methacrylate) composite particles and their magnetorheological characteristics [J]. J Appl Phys,2010, 107(9):09A506-09A-3.
    [5]Choi H, Park B, Cho M, et al. Core-shell structured poly (methyl methacrylate) coated carbonyl iron particles and their magnetorheological characteristics [J]. J Magn Magn Mater, 2007,310(2):2835-7.
    [6]Jiang W, Zhu H, Guo C, et al. Poly (methyl methacrylate)-coated carbonyl iron particles and their magnetorheological characteristics [J]. Polymer International,2010,59(7):879-83.
    [7]Cao L, Park H, Dodbiba G, et al. SYNTHESIS OF AN IONIC LIQUID-BASED MAGNETORHEOLOGICAL FLUID DISPERSING Fe 84 Nb 3 V 4 B 9 NANOCRYSTALLINE POWDERS [J]. Int J Mod Phys B,2010,24(10):1227-34.
    [8]Noma J, Abe H, Kikuchi T, et al. Magnetorheology of colloidal dispersion containing Fe nanoparticles synthesized by the arc-plasma method [J]. J Magn Magn Mater,2010,322(13): 1868-71.
    [9]Jonsdottir F, Gudmundsson K H, Dijkman T B, et al. Rheology of perfluorinated polyether-based MR fluids with nanoparticles [J]. J Intell Mater Syst Struct,2010,21(11): 1051-60.
    [10]郭朝阳.磁流变液法向力及减振器研究[D];中国科学技术大学,2013.
    [11]Ivers D, Leroy D. Improving vehicle performance and operator ergonomics:Commercial application of smart materials and systems [J]. J Intell Mater Syst Struct,2013,24(8):903-7.
    [12]Milecki A, Hauke M. Application of magnetorheological fluid in industrial shock absorbers [J]. Mechanical Systems and Signal Processing,2012,28(528-41.
    [13]Chen C, Liao W H. A self-sensing magnetorheological damper with power generation [J]. Smart Mater Struct,2012,21(2):
    [14]Wang D H, Liao W H. Magnetorheological fluid dampers:a review of parametric modelling [J]. Smart Mater Struct,2011,20(2):
    [15]Peng W, Li S, Guan C, et al. Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing (vol 52,043401,2013) [J]. Optical Engineering,2013,52(11):
    [16]Jang K-I, Nam E, Lee C-Y, et al. Mechanism of synergetic material removal by electrochemomechanical magnetorheological polishing [J]. International Journal of Machine Tools & Manufacture,2013,70(88-92.
    [17]Kim P, Seok J. Viscoplastic flow in slightly varying channels with wall slip pertaining to a magnetorheological (MR) polishing process [J]. Journal of Non-Newtonian Fluid Mechanics, 2011,166(17-18):972-92.
    [18]Kordonsky W. Magnetorheological effect as a base of new devices and technologies [J]. J Magn Magn Mater,1993,122(1):395-8.
    [19]Gorodkin S R, Kolomentsev A V, Kordonsky W I, et al. Magnetorheological valve and devices incorporating magnetorheological elements [M]. US Patent.1995.
    [20]Guo C, Gong X, Xuan S, et al. Compression behaviors of magnetorheological fluids under nonuniform magnetic field [J]. Rheol Acta,2013,52(2):165-76.
    [21]温洪昌,廖昌荣,严小锐.磁流变液阻尼器的电流驱动器设计与实验测试[J].电子测量技术,2008,31(7):52-5.
    [22]易成建,彭向和,李海涛.静磁场下磁流变液微结构形态稳定性分析[J].功能材料,2008,39(12):1961-4.
    [23]李金海,关新春,刘敏,et a1.斜拉索磁流变液阻尼器半主动振动控制系统的设计与应用[J].功能材料,2006,37(5):827-30.
    [24]仇中军,张飞虎.光学玻璃研抛用磁流变液的研究[J].光学技术,2002,28(6):497-8.
    [25]Zielinski T G, Rak M. Acoustic absorption of foams coated with MR fluid under the influence of magnetic field [J]. J Intell Mater Syst Struct,2010,21(2):125-31.
    [26]Carlson J D, Jolly M R. MR fluid, foam and elastomer devices [J]. Mechatronics,2000,10(4): 555-69.
    [27]Maranville C, Ginder J. Small-strain dynamic mechanical behavior of magnetorheological fluids entrained in foams [J]. Int J Appl Electromagn Mech,2005,22(1):25-38.
    [28]Ju B, Yu M, Fu J, et al. Magnetic Field-Dependent Normal Force of Magnetorheological Gel [J]. Ind Eng Chem Res,2013,52(33):11583-9.
    [29]Zubarev A. Magnetodeformation of ferrogels and ferroelastomers. Effect of microstructure of the particles'spatial disposition [J]. Physica A,2013,392(20):4824-36.
    [30]Zubarev A Y. On the theory of the magnetic deformation of ferrogels [J]. Soft Matter,2012, 8(11):3174-9.
    [31]Yangguang X, Xinglong G, Shouhu X. Soft magnetorheological polymer gels with controllable rheological properties [J]. Smart Mater Struct,2013,22(7):075029 (10 pp.)-(10 pp.).
    [32]Wu J, Gong X, Fan Y, et al. Physically crosslinked poly(vinyl alcohol) hydrogels with magnetic field controlled modulus [J]. Soft Matter,2011,7(13):6205-12.
    [33]Shiga T, Okada A, Kurauchi T. MAGNETROVISCOELASTIC BEHAVIOR OF COMPOSITE GELS [J]. J Appl Polym Sci,1995,58(4):787-92.
    [34]Mitsumata T, Ikeda K, Gong J P, et al. Magnetism and compressive modulus of magnetic fluid containing gels [J]. J Appl Phys,1999,85(12):8451-5.
    [35]Wilson M J, Fuchs A, Gordaninejad F. Development and characterization of magnetorheological polymer gels [J]. J Appl Polym Sci,2002,84(14):2733-42.
    [36]Wei B, Gong X, Jiang W, et al. Study on the properties of magnetorheological gel based on polyurethane [J]. J Appl Polym Sci,2010,118(5):2765-71.
    [37]Woods B K S, Wereley N, Hoffmaster R, et al. Manufacture of bulk magnetorheological elastomers using vacuum assisted resin transfer molding [J]. Int J Mod Phys B,2007, 21(28-29):5010-7.
    [38]Von Lockette P R, Lofland S E, Koo J-H, et al. Dynamic characterization of bimodal particle mixtures in silicone rubber magnetorheological materials [J]. Polym Test,2008,27(8):931-5.
    [39]Chen L, Gong X L, Jiang W Q, et al. Investigation on magnetorheological elastomers based on natural rubber [J]. J Mater Sci,2007,42(14):5483-9.
    [40]Boczkowska A, Awietjan S F, Wroblewski R. Microstructure-property relationships of urethane magnetorheological elastomers [J]. Smart Mater Struct,2007,16(5):1924.
    [41]Wu J, Gong X, Fan Y, et al. Improving the magnetorheological properties of polyurethane magnetorheological elastomer through plasticization [J]. J Appl Polym Sci,
    [42]Fan Y, Gong X, Xuan S, et al. Effect of Cross-Link Density of the Matrix on the Damping Properties of Magnetorheological Elastomers [J]. Ind Eng Chem Res,2013,52(2):771-8.
    [43]Fan Y C, Gong X L, Jiang W Q, et al. Effect of maleic anhydride on the damping property of magnetorheological elastomers [J]. Smart Mater Struct,2010,19(055015 (8 pp.).
    [44]Hu Y, Wang Y, Gong X, et al. New magnetorheological elastomers based on polyurethane/Si-rubber hybrid [J]. Polym Test,2005,24(3):324-9.
    [45]Hu Y, Wang Y, Gong X, et al. Magnetorheological elastomers based on polyurethane/Si-rubber hybrid [J]. Int J Mod Phys B,2005,19(07n09):1114-20.
    [46]Zhang W, Gong X, Xuan S, et al. High-performance hybrid magnetorheological materials: preparation and mechanical properties [J]. Ind Eng Chem Res,2010,49(24):12471-6.
    [47]Demchuk S, Kuz'min V. Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation [J]. Journal of Engineering Physics and Thermophysics,2002, 75(2):396-400.
    [48]Lokander M, Stenberg B. Improving the magnetorheological effect in isotropic magnetorheological rubber materials [J]. Polym Test,2003,22(6):677-80.
    [49]Lokander M, Stenberg B. Performance of isotropic magnetorheological rubber materials [J]. Polym Test,2003,22(3):245-51.
    [50]Alberdi-Muniain A, Gil-Negrete N, Kari L. Influence of carbon black and plasticisers on dynamic properties of isotropic magnetosensitive natural rubber [J]. Plastics, rubber and composites,2012,41(7):310-7.
    [51]Yang J, Gong X, Zong L, et al. Silicon carbide-strengthened magnetorheological elastomer: Preparation and mechanical property [J]. Polymer Engineering & Science,2013,53(12): 2615-23.
    [52]Yang J, Gong X, Deng H, et al. Investigation on the mechanism of damping behavior of magnetorheological elastomers [J]. Smart Mater Struct,2012,21(12):125015.
    [53]Bica I. Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles [J]. Materials Letters,2009, 63(26):2230-2.
    [54]Li J F, Gong X L, Xu Z B, et al. The effect of pre-structure process on magnetorheological elastomer performance [J]. Int J Mater Res,2008,99(12):1358-64.
    [55]李剑锋.硅橡胶基MRE的研制及其优化设计[D];中国科学技术大学,2009.
    [56]Kaleta J, Krolewicz M, Lewandowski D. Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices [J]. Smart Mater Struct,2011,20(8):085006.
    [57]Li J, Gong X, Zhu H, et al. Influence of particle coating on dynamic mechanical behaviors of magnetorheological elastomers [J]. Polym Test,2009,28(3):331-7.
    [58]Gong X, Zhang X, Zhang P. Study of mechanical behavior and microstructure of magnetorheological elastomers [J]. Int J Mod Phys B,2005,19(07n09):1304-10.
    [59]Gong X, Zhang X, Zhang P. Fabrication and characterization of isotropic magnetorheological elastomers [J]. Polym Test,2005,24(5):669-76.
    [60]Zhang X, Peng S, Wen W, et al. Analysis and fabrication of patterned magnetorheological elastomers [J]. Smart Mater Struct,2008,17(4):045001.
    [61]Jiang W-Q, Yao J-J, Gong X-L, et al. Enhancement in magnetorheological effect of magnetorheological elastomers by surface modification of iron particles [J]. Chin J Chem Phys,2008,21(1):87-92.
    [62]陈琳.MRE的研制及其力学行为的表征[D];中国科学技术大学,2009.
    [63]Chen L, Gong X L, Li W H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers [J]. Smart Mater Struct,2007,16(6):2645-50.
    [64]Chen L, Gong X L, Li W H. Damping of Magnetorheological Elastomers [J]. Chin J Chem Phys,2008,21(6):581-5.
    [65]Li J F, Gong X L. Dynamic damping property of magnetorheological elastomer [J]. Journal of Central South University of Technology,2008,15(261-5.
    [66]Li J F, Gong X L. Influence of curing time on the anisotropic microstructure of magnetorheological elastomer [J]. Advances in Heterogeneous Material Mechanics 2008, 2008,754-8.
    [67]Fan Y, Gong X, Xuan S, et al. Interfacial friction damping properties in magnetorheological elastomers [J]. Smart Mater Struct,2011,20(3):
    [68]Fan Y C, Gong X L, Jiang W Q, et al. Effect of maleic anhydride on the damping property of magnetorheological elastomers [J]. Smart Mater Struct,2010,19(5):
    [69]Sun T L, Gong X L, Jiang W Q, et al. Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber [J]. Polym Test,2008, 27(4):520-6.
    [70]Zhang W, Gong X L, Xuan S H, et al. High-Performance Hybrid Magnetorheological Materials:Preparation and Mechanical Properties [J]. Ind Eng Chem Res,2010,49(24): 12471-6.
    [71]Zhang W, Gong X L, Xuan S H, et al. Temperature-Dependent Mechanical Properties and Model of Magnetorheological Elastomers [J]. Ind Eng Chem Res,2011,50(11):6704-12.
    [72]Zhang W, Gong X L, Sun T L, et al. Effect of Cyclic Deformation on Magnetorheological Elastomers [J]. Chin J Chem Phys,2010,23(2):226-30.
    [73]Zhang W, Gong X L, Li J F, et al. Radiation Vulcanization of Magnetorheological Elastomers Based on Silicone Rubber [J]. Chin J Chem Phys,2009,22(5):535-40.
    [74]Zhang W, Gong X L, Jiang W Q, et al. Investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber [J]. Smart Mater Struct,2010,085008 (10 pp.).
    [75]Zhang W, Gong X L, Chen L. A Gaussian distribution model of anisotropic magnetorheological elastomers [J]. J Magn Magn Mater,2010,322(23):3797-801.
    [76]Zhang W, Gong X, Xuan S, et al. Temperature-Dependent Mechanical Properties and Model of Magnetorheological Elastomers [J]. Ind Eng Chem Res,2011,50(11):6704-12.
    [77]Ginder J M, Clark S M, Schlotter W F, et al. Magnetostrictive phenomena in magnetorheological elastomers [J]. Int J Mod Phys B,2002,16(17-18):2412-8.
    [78]Zhou G Y. Shear properties of a magnetorheological elastomer [J]. Smart Mater Struct,2003, 12(1):139-46.
    [79]Jolly M R, Carlson J D, Munoz B C, et al. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix [J]. J Intell Mater Syst Struct,1996,7(6):613-22.
    [80]Dong X, Ma N, Qi M, et al. The pressure-dependent MR effect of magnetorheological elastomers [J]. Smart Mater Struct,2012,21(7):
    [81]Tian T F, Li W H, Alici G, et al. Microstructure and magnetorheology of graphite-based MR elastomers [J]. Rheol Acta,2011,1-12.
    [82]Bossis G, Abbo C, Cutillas S, et al. Electroactive and electrostructured elastomers [J]. Int J Mod Phys B,2001,15(6-7):564-73.
    [83]Coquelle E, Bossis G. Mullins effect in elastomers filled with particles aligned by a magnetic field [J]. Int J Solids Struct,2006,43(25-26):7659-72.
    [84]Shen Y, Golnaraghi M F, Heppler G R. Experimental research and modeling of magnetorheological elastomers [J]. J Intell Mater Syst Struct,2004,15(1):27-35.
    [85]Farshad M, Le Roux M. Compression properties of magnetostrictive polymer composite gels [J]. Polym Test,2005,24(2):163-8.
    [86]Jiang W C, Yao J J, Gong X L, et al. Enhancement in magnetorheological effect of magnetorheological elastomers by surface modification of iron particles [J]. Chin J Chem Phys,2008,21(1):87-92.
    [87]Abramchuk S, Kramarenko E, Stepanov G, et al. Novel highly elastic magnetic materials for dampers and seals:Part I. Preparation and characterization of the elastic materials [J]. Polymers for Advanced Technologies,2007,1.8(11):883-90.
    [88]Koo J H, Khan F, Jang D D, et al. Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings [J]. Journal of Physics: Conference Series,2009,012093 (4 pp.).
    [89]Kallio M, Lindroos T, Aalto S, et al. Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer [J]. Smart Mater Struct,2007,16(2): 506-14.
    [90]Guan X C, Dong X F, Ou J P. Magnetostrictive effect of magnetorheological elastomer [J]. J Magn Magn Mater,2008,320(3-4):158-63.
    [91]Zhou G Y, Jiang Z Y. Deformation in magnetorheological elastomer and elastomer-ferromagnet composite driven by a magnetic field [J]. Smart Mater Struct,2004, 13(2):309-16.
    [92]Gong X L, Liao G J, Xuan S H. Full-field deformation of magnetorheological elastomer under uniform magnetic field [J]. Appl Phys Lett,2012,100(21):
    [93]Stolbov O V, Raikher Y L, Balasoiu M. Modelling of magnetodipolar striction in soft magnetic elastomers [J]. Soft Matter,2011,7(18):8484-7.
    [94]Kchit N, Bossis G. Piezoresistivity of magnetorheological elastomers [J]. Journal of Physics: Condensed Matter,2008,204136 (5 pp.).
    [95]Bica I. The influence of hydrostatic pressure and transverse magnetic field on the electric conductivity of the magnetorheological elastomers [J]. J Ind Eng Chem,2012,18(1):483-6.
    [96]Tian T F, Li W H, Alici G, et al. Microstructure and magnetorheology of graphite-based MR elastomers [J]. Rheol Acta,2011,50(9-10):825-36.
    [97]Tian T, Li W, Deng Y. Sensing capabilities of graphite based MR elastomers [J]. Smart Mater Struct,2011,20(2):025022.
    [98]Jolly M R, Carlson J D, Mufioz B C, et al. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix [J]. J Intell Mater Syst Struct,1996,7(6):613-22.
    [99]Bossis G, Abbo C, Cutillas S, et al. Electroactive and electrostructured elastomers [J]. Int J Mod Phys B,2001,15(06n07):564-73.
    [100]Stepanov G, Chertovich A, Kramarenko E Y. Magnetorheological and deformation properties of magnetically controlled elastomers with hard magnetic filler [J]. J Magn Magn Mater,2012,324(21):3448-51.
    [101]Lokander M, Reitberger T, Stenberg B. Oxidation of natural rubber-based magnetorheological elastomers [J]. Polymer Degradation and Stability,2004,86(3):467-71.
    [102]Zhou Y, Jerrams S, Chen L. Multi-axial fatigue in magnetorheological elastomers using bubble inflation [J]. Materials and Design,2013,50(68-71.
    [103]Sinko R, Karnes M, Koo J H, et al. Design and test of an adaptive vibration absorber based on magnetorheological elastomers and a hybrid electromagnet [J]. J Intell Mater Syst Struct, 2013,24(7):803-12.
    [104]Kexiang W, Guang M, Hong Y, et al. Study on a new semi-active vibration isolation system [J]. Proceedings of the SPIE-The International Society for Optical Engineering,2009, 749357 (4 pp.).
    [105]Lerner A A, Cunefare K A. Performance of MRE-based vibration absorbers [J]. J Intell Mater Syst Struct,2008,19(5):551-63.
    [106]Deng H X, Gong X L. Application of magnetorheological elastomer to vibration absorber [J]. Communications in Nonlinear Science and Numerical Simulation,2008,13(9):1938-47.
    [107]Deng H X, Gong X L. Application of magnetorheological elastomer to vibration control [J]. Nonlinear Science and Complexity,2007,1(462-70.
    [108]Sinko R, Karnes M, Koo J-H, et al. Design and test of an adaptive vibration absorber based on magnetorheological elastomers and a hybrid electromagnet [J]. J Intell Mater Syst Struct, 2013,24(7):803-12.
    [109]Young-Keun K, Jeong-Hoi K, Kyung-Soo K, et al. Developing a real time controlled adaptive MRE-based tunable vibration absorber system for a linear cryogenic cooler [J].2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2011), 2011,
    [110]Kim Y K, Koo J H, Kim K S, et al. Suppressing harmonic vibrations of a miniature cryogenic cooler using an adaptive tunable vibration absorber based on magneto-rheological elastomers [J]. Rev Sci Instrum,2011,82(3):
    [111]Blom P, Kari L. Smart audio frequency energy flow control by magneto-sensitive rubber isolators [J]. Smart Mater Struct,2008,17(1):
    [112]Opie S, Yim W. Design and Control of a Real-Time Variable Modulus Vibration Isolator [J]. J Intell Mater Syst Struct,2011,22(2):113-25.
    [113]Opie S, Yim W. Design and Control of a Real-Time Variable Stiffness Vibration Isolator [J]. 2009 Ieee/Asme International Conference on Advanced Intelligent Mechatronics, Vols 1-3, 2009,380-5.
    [114]Opie S, Yim W, Asme. A tunable vibration isolator using a magnetorheological elastomer with a field induced modulus bias [M]. New York:Amer Soc Mechanical Engineers,2008.
    [115]Li Y, Li J, Li W, et al. Development and characterization of a magnetorheological elastomer based adaptive seismic isolator [J]. Smart Mater Struct,2013,22(3):
    [116]Alberdi-Muniain A, Gil-Negrete N, Kari L. Indirect energy flow measurement in magneto-sensitive vibration isolator systems [J]. Appl Acoust,2013,74(4):575-84.
    [117]Eem S H, Jung H J, Koo J H. Application of MR Elastomers for Improving Seismic Protection of Base-Isolated Structures [J]. IEEE Trans Magn,2011,47(10):2901-4.
    [118]Farshad M, Le Roux M. A new active noise abatement barrier system [J]. Polym Test,2004, 23(7):855-60.
    [119]Nayak B, Dwivedy S K, Murthy K S R K. Vibration analysis of a three-layer magnetorheological elastomer embedded sandwich beam with conductive skins using finite element method [J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2013,227(C4):714-29.
    [120]Nayak B, Dwivedy S K, Murthy K S R K. Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions [J]. J Sound Vibr,2011,330(9):1837-59.
    [121]Korobko E V, Mikhasev G I, Novikova Z A, et al. On damping vibrations of three-layered beam containing magnetorheological elastomer [J]. J Intell Mater Syst Struct,2012,23(9): 1019-23.
    [122]Hu G L, Guo M, Li W H, et al. Experimental Investigation of the Vibration Characteristics of a Magnetorheological Elastomer Sandwich beam Under Non-homogeneous Small Magnetic Fields [J]. Smart Mater Struct,2011,20(12):
    [123]Choi W J, Xiong Y P, Shenoi R A. Vibration Characteristics of Sandwich Beams with Steel Skins and Magnetorheological Elastomer Cores [J]. Adv Struct Eng,2010,13(5):837-47.
    [124]Ying Z G, Ni Y Q. Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass [J]. Smart Mater Struct,2009,095005 (13 pp.).
    [125]Zhou G Y, Lin K C, Wang Q. Finite element studies on field-dependent rigidities of sandwich beams with magnetorheological elastomer cores [J]. Smart Mater Struct,2006, 15(3):787-91.
    [126]Abramchuk S, Kramarenko E, Grishin D, et al. Novel highly elastic magnetic materials for dampers and seals:part II. Material behavior in a magnetic field [J]. Polymers for Advanced Technologies,2007,18(7):513-8.
    [127]Koo J H, Dawson A, Jung H J. Characterization of actuation properties of magnetorheological elastomers with embedded hard magnetic particles [J]. J Intell Mater Syst Struct,2012,23(9):1049-54.
    [128]Bose H, Rabindranath R, Ehrlich J. Soft magnetorheological elastomers as new actuators for valves [J]. J Intell Mater Syst Struct,2012,23(9):989-94.
    [129]Weihua L, Kostidis K, Xianzhou Z, et al. Development of a force sensor working with MR elastomers [J].2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),2009,233-8.
    [130]Bica I. Magnetoresistor sensor with magnetorheological elastomers [J]. J Ind Eng Chem, 2011,17(1):83-9.
    [131]Ausanio G, Iannotti V, Ricciardi E, et al. Magneto-piezoresistance in Magnetorheological elastomers for magnetic induction gradient or position sensors [J]. Sensors and Actuators A (Physical),2014,205(235-9.
    [132]Anderson D. Elastomer roll for paper-making machine [M]. Google Patents.2003.
    [133]Frahm H. Device for damping vibrations of bodies:U.S.Patent,989958 [P/OL].1909.
    [134]台湾台北101大楼减振器图http://www.ivsky.com/tupian/taibei_yilingyi_dalou_j ianzhenqiv_13144/.
    [135]Brennan M J. Vibration control using a tunable vibration neutralizer [J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,1997, 211(2):91-108.
    [136]倪振华.振动力学[M].西安:西安交通大学出版社,1989.
    [137]Asami T, Nishihara O, Baz A M. Analytical solutions to H∞ and H2 optimization of dynamic vibration absorbers attached to damped linear systems [J]. Journal of Vibration and Acoustics,2002,124(2):284-95.
    [138]Pennestn E. An application of Chebyshev's min-max criterion to the optimal design of a damped dynamic vibration absorber [J]. J Sound Vibr,1998,217(4):757-65.
    [139]Asami T, Nishihara O. Closed-form exact solution to H∞ optimization of dynamic vibration absorbers (application to different transfer functions and damping systems) [J]. Journal of Vibration and Acoustics,2003,125(3):398-405.
    [140]Franchek M A, Ryan M W, Bernhard R J. Adaptive passive vibration control [J]. J Sound Vibr,1996,189(5):565-85.
    [141]Nagaya K, Kurusu A, Ikai S, et al. Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control [J]. J Sound Vibr,1999, 228(4):773-92.
    [142]Kidner M R F, Brennan M J. Varying the stiffness of a beam-like neutralizer under fuzzy logic control [J]. J Vib Acoust-Trans ASME,2002,124(1):90-9.
    [143]Liao G J, Gong X L, Kang C J, et al. The design of an active-adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance [J]. Smart Mater Struct,2011,20(7):
    [144]Xu Z B, Gong X L, Liao G J, et al. An Active-damping-compensated Magnetorheological Elastomer Adaptive Tuned Vibration Absorber [J]. J Intell Mater Syst Struct,2010,21(10): 1039-47.
    [145]Hirunyapruk C, Brennan M J, Mace B R, et al. A tunable magneto-rheological fluid-filled beam-like vibration absorber [J]. Smart Mater Struct,2010,19(5):
    [146]Rustighi E, Brennan M J, Mace B R. A shape memory alloy adaptive tuned vibration absorber:design and implementation [J]. Smart Mater Struct,2005,14(1):19-28.
    [147]Williams K A, Chiu G T C, Bernhard R J. Dynamic modelling of a shape memory alloy adaptive tuned vibration absorber [J]. J Sound Vibr,2005,280(1-2):211-34.
    [148]Williams K A, Chiu G T C, Bernhard R J. Nonlinear control of a shape memory alloy adaptive tuned vibration absorber [J]. J Sound Vibr,2005,288(4-5):1131-55.
    [149]Williams K, Chiu G, Bernhard R. Adaptive-passive absorbers using shape-memory alloys [J]. J Sound Vibr,2002,249(5):835-48.
    [150]Jalili N, Knowles D W. Structural vibration control using an active resonator absorber: modeling and control implementation [J]. Smart Mater Struct,2004,13(5):998-1005.
    [151]Morgan R A, Wang K W. Active-passive piezoelectric absorbers for systems under multiple non-stationary harmonic excitations [J]. J Sound Vibr,2002,255(4):685-700.
    [152]Chen Y D, Fuh C C, Tung P C. Application of voice coil motors in active dynamic vibration absorbers [J]. IEEE Trans Magn,2005,41(3):1149-54.
    [153]Elmali H, Renzulli M, Olgac N. Experimental comparison of delayed resonator and PD controlled vibration absorbers using electromagnetic actuators [J]. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme,2000,122(3):514-20.
    [154]上海久福减震器有限公http://www.j iufu021.com/xiangj iaogezhendian/.
    [155]王江涛.橡胶钢丝绳复合隔振器的试验研究[D];大连理工大学,2010.
    [156]孙红灵.振动主动控制若干问题的研究[D][D];合肥:中国科学技术大学,2007.
    [157]Jolly M R, Carlson J D, Munoz B C. A model of the behaviour of magnetorheological materials [J]. Smart Mater Struct,1996,5(5):607-14.
    [158]Davis L C. Model of magnetorheological elastomers [J]. J Appl Phys,1999,85(6):3348-51.
    [159]Aharoni A. Introduction to the theory of ferromagnetism [M]. Oxford:Oxford University Press,2001.
    [160]Du H P, Li W H, Zhang N. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator [J]. Smart Mater Struct,2011,20(10):
    [161]Jones R M. Mechanics of composite materials [M]. London:Taylor & Francis Inc,1975.
    [162]Martin J E, Anderson R A. Chain model of electrorheology [J]. Journal of Chemical Physics, 1996,104(12):4814-27.
    [163]De Vicente J, Gonzalez-Caballero F, Bossis G, et al. Normal force study in concentrated carbonyl iron magnetorheological suspensions [J]. Journal of Rheology,2002,46(5): 1295-303.
    [164]Xu J, Li Y B, Ge D Y, et al. Experimental investigation on constitutive behavior of PVB under impact loading [J]. Int J Impact Eng,2011,38(2-3):106-14.
    [165]Chen W, Lu F, Frew D J, et al. Dynamic compression testing of soft materials [J]. J Appl Mech-Trans ASME,2002,69(3):214-23.
    [166]Song B, Chen W. One-dimensional dynamic compressive behavior of EPDM rubber [J]. J Eng Mater Technol-Trans ASME,2003,125(3):294-301.
    [167]Shim V P W, Yang L M, Lim C T, et al. A visco-hyperelastic constitutive model to characterize both tensile and compressive behavior of rubber [J]. J Appl Polym Sci,2004, 92(1):523-31.
    [168]Yang L M, Shim V P W, Lim C T. A visco-hyperelastic approach to modelling the constitutive behaviour of rubber [J]. Int J Impact Eng,2000,24(6-7):545-60.
    [169]Ward I M. Mechanical Properties of Solid Polymers, Second Edition [M]. New York:Wiley, 1983.
    [170]Brown R P. Physical testing of rubber. Third Edition [M]. London:Chapman & Hall,1996.
    [171]Coppola G, Liu K F. Control of a unique active vibration isolator with a phase compensation technique and automatic on/off switching [J]. J Sound Vibr,2010,329(25):5233-48.
    [172]Ren M Z, Seto K, Doi F. Feedback structure-borne sound control of a flexible plate with an electromagnetic actuator:The phase lag problem [J]. J Sound Vibr,1997,205(1):57-80.
    [173]徐振邦.自调谐吸振技术研究[D];中国科学技术大学,2010.
    [174]康存军.基于DSP的自调谐动力吸振器控制系统的研究[D];中国科学技术大学,2012.
    [175]Liu K F, Liao L, Liu J. Comparison of two auto-tuning methods for a variable stiffness vibration absorber [J]. Transactions of the Canadian Society for Mechanical Engineering, 2005,29(1):81-96.
    [176]Nagarajaiah S, Varadarajan N. Short time Fourier transform algorithm for wind response control of buildings with variable stiffness TMD [J]. Eng Struct,2005,27(3):431-41.
    [177]Dyke S J, Spencer B F, Sain M K, et al. An experimental study of MR dampers for seismic protection [J]. Smart Mater Struct,1998,7(5):693-703.
    [178]Zhou Q, Nielsen S R K, Qu W L. Semi-active control of shallow cables with magnetorheological dampers under harmonic axial support motion [J]. J Sound Vibr,2008, 311(3-5):683-706.
    [179]Yu M, Dong X M, Choi S B, et al. Human simulated intelligent control of vehicle suspension system with MR dampers [J]. J Sound Vibr,2009,319(3-5):753-67.
    [180]Yang J N, Wu J C, Li Z. Control of seismic-excited buildings using active variable stiffness systems [J]. Eng Struct,1996,18(8):589-96.
    [181]Nagarajaiah S, Sonmez E. Structures with semiactive variable stiffness single/multiple tuned mass dampers [J]. J Struct Eng-ASCE,2007,133(1):67-77.
    [182]Liu Y Q, Matsuhisa H, Utsuno H. Semi-active vibration isolation system with variable stiffness and damping control [J]. J Sound Vibr,2008,313(1-2):16-28.
    [183]Jansen L M, Dyke S J. Semiactive control strategies for MR dampers:Comparative study [J]. Journal of Engineering Mechanics-Asce,2000,126(8):795-803.
    [184]Yang J N, Kim J H, Agrawal A K. Resetting semiactive stiffness damper for seismic response control [J]. J Struct Eng-ASCE,2000,126(12):1427-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700