苯并噻唑硫酮类化合物和对巯基苯胺在金上的拉曼光谱实验及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于硫与金属能够形成化学键,硫醇(酮)类化合物尤其是芳香族硫醇(酮)类化合物被广泛用于电极表面的改性与功能化修饰、纳米粒子的合成、表面增强拉曼散射(SERS)光谱的增强机理等基础研究以及金属缓蚀、矿物浮选等应用研究中。将Raman实验结合密度泛函理论(DFT)计算研究硫醇(酮)类化合物与金属的结合能力、分子簇的性质、溶剂化效应具有重要的理论意义和应用前景。本论文分两大部分:
     第一部分苯并噻唑硫酮类化合物的Raman光谱及理论研究
     借助于Raman光谱和DFTL理论系统地研究了苯并噻唑-2-硫酮(BTT)及其4种衍生物(FBTT、DBTT、CMBTT、NTT)在不同状态下的稳定构型,并讨论了异构化反应过程中质子迁移的三种可能途径及溶剂化影响:还比较了其稳定存在的硫酮式结构与金的结合能力,最后结合势能分布分析(PEDs)讨论了DBTT分子在金表面的吸附方式及取向,结果表明:
     1.BTT及其4种衍生物均以硫酮式结构稳定存在于气相、固相以及水溶液、甲醇溶液中,苯环上取代基影响了部分键参数和苯环及杂环上原子的电荷分布,但未改变硫醇式和硫酮式结构的相对稳定性顺序。
     2.研究了异构化反应发生质子迁移的三种可能途径((a)分子内,(b)水助,(c)甲醇助),其中直接进行的分子内质子迁移过程由于形成张力较大的四元环过渡态,需要最大的活化能;当水或甲醇参与时,形成较稳定的六元环过渡态,反应活化能降低,氢键的形成是水助质子迁移和甲醇助质子迁移活化能降低的重要原因。溶剂化效应没有明显改变活化能垒。在各影响因素中,均以DBTT的能量变化最大。
     3.根据HOMO能量、NBO电荷和分子与金的结合能的计算,得出BTT及其4种衍生物与金的结合能力即反应活性顺序为:DBTT≈NTT>BTT≈CMBTT>FBTT。
     苯环上的取代基能够与苯环、杂环上的孤对电子形成共轭体系是增强BTT分子与金属的结合能力的原因。
     4.通过PEDs和SERS光谱,我们推测DBTT分子是以硫酮式结构同时通过N原子和环外S原子化学吸附在金表面,其分子平面垂直于金表面。
     第二部分对巯基苯胺(PATP)在金表面的光谱电化学及理论研究
     利用电化学方法、Raman光谱结合量化计算对该分子在金表面的电化学行为以及溶液的酸碱度对PATP在金/银纳米粒子上存在形态的影响进行了研究,结果如下:
     1.PATP能够通过S-Au化学键形成单分子膜(SAM)而组装在金表面,该膜对Cu的欠电位沉积过程产生一定的阻碍作用;在酸性条件下,PATP的SAM在金电极上发生不可逆的电化学—化学—电化学反应:吸附于电极表面的PATP分子氧化为阳离子自由基,该阳离子自由基与邻近的PATP分子通过头尾相接生成二聚体4′-巯基-N-苯基苯醌二亚胺(NPQD),在还原过程中NPQD被还原为4′-巯基-4-氨基二苯胺给出一对对称的氧化还原峰,此过程为双电子双质子电化学过程。NPQD在酸中极易发生水解生成4′-巯基-N-苯基苯醌单亚胺(NPQM),NPQM在电极表面被还原为4′-巯基-4-羟基二苯胺,该过程为表面聚合过程。
     2.利用DFT理论在B3LYP/6-311++G**水平上,在Cs对称限制下,计算得到了PATP的优化结构和Raman光谱,并用量子力学校正程序根据实验频率对理论计算值进行了校正,得到PATP的频率校正因子N-H伸缩振动为0.884,C-C,C-H,S-H,C-S伸缩振动为0.938,其余频率为0.990。按照Wilson的GF矩阵方法得到校正振动频率和振动基频的势能分布(PEDs),对振动基频的对称性及振动模式进行了归属。有关C-N、C-S、N-H的谱带归属与文献差别较大,PATP的模拟Raman谱图与固体的常规Raman谱图基本一致。
     3.利用DFT理论在B3LYP/6-311+G**(C,H,N,S)/LANL2DZ(Au,Ag)水平上,对PATP与一个Au/Ag原子形成的复合物在不同酸碱度溶液中可能存在的芳环和醌式共五种构型进行了几何优化并计算其振动基频。根据r(S-Au)和NBO电荷分析、特征峰的相对强度和位移,最后得出:酸性溶液中PATP是以质子化的芳环形式,碱性溶液中以醌式结构存在于Au纳米粒子上;而在银纳米粒子上均以醌式构型存在,与溶液的pH值无关。
The thiol(thione) molecules,especially aromatic compounds,have been widely used both in fundmental and in practical studies,such as the electrode surface modification and functionalization,nanoparticals synthesis,the probe for the SERS mechanism studies, corrosion inhibitor and the minerals flotation,etc.In this dissertation,the binding capacities with metals,the properties of clusters and solvent effect of the aromatic thiol(thione) compounds for both practical and theoretical consideration are investigated by combining Raman spectroscopy and density function theory(DFT).The main results and conclusions of the dissertation are listed as follows:
     Ⅰ.Raman spectra and theory study of benzothiazolinethione Compounds
     The stable forms of benzothiazoline-2-thione(BTT) and its derivatives(FBTT,DBTT, CMBTT,NTT) were confirmed in different states by Raman spectroscopy and DFT calculation results.The three possible reaction pathways in the proton transfer processes between the thione and the thiol tautomer were investigated.We also compared the binding capacity of the stable thione forms with gold surface.The adsorption behavior of DBTT on gold surface was deduced by SERS together with potential energy distribution (PED) analysis.
     1.It revealed that the four derivatives exhibited stable conformation of benzothiazoline-2-thione(BTT) form not only in gas,solid and solution but also on gold surfaces.Namely,the tautomeric preference of the BTT molecule was not influenced by the inclusion of substitute groups in benzene ring.The substitute groups have changed some geometric parameters and the charge distribution on atoms in benzothiazoline cycle.
     2.The three possible reaction pathways were investigated:(a) intramolecular proton transfer;(b) water-assisted intermolecular transfer and(c) methanol-assisted intermolecular transfer.The process(a) has higher activation energies because of the formation of four-membered ring transition complex,while the processes(b) and(c) have relatively lower activation due to six-membered ring hydrogen-bonded complex. It is likely that the hydrogen bonds formed in the clusters play an important role in the proton transfer processes in the later two reaction pathways.The solvent effects on the tautomerization reactions of BTT and its derivatives observed by the Onsager model did not significantly change the barrier height.The energies of DBTT have the major difference from others of the all effect factors.
     3.The reactive behaviors of BTT and its derivatives were discussed theoretically based on the chemical parameters such as the energies of HOMO,NBO charges and the binding energies with gold.The binding capability of the molecules with gold is in the sequence of DBTT≈NTT>BTT≈CMBTT>FBTT.The derivatives with the electron-donor substitutes in benzene ring were favorable to bind the metal for the p-πconjugate effect.
     4.Based on the results of PEDs and SERS,we deduce the DBTT molecule is chemisorbed to the gold through both N and the exocyclic S atoms in its thione form and its molecular plane is perpendicular to the surface which is similarly as the adsorption configuration of BTT.
     Ⅱ.Spectroscopic electrochemistry and theory study of PATP on gold
     The electrochemical behaviors of PATP on gold were investigated by electrochemical technique,SERS and quantum chemistry calculation.The pH-dependent configurations of PATP on gold and silver nanoparticals were also evaluated by SERS and DFT theory.Results are listed as follows.
     1.The self assembly monolayer(SAM) can inhibit the under potential deposition process of copper at a certain extent.The electrochemical transformation of PATP on gold electrode involves an electrochemical followed with chemical reaction in acidic solution.The surface-binding PATP was oxidized to a cation radical firstly,which interacted with the adjacent PATP molecules to form a surface-confined aniline dimer, 4'-mercapto-N-phenylquinone diimine(NPQD),through the head-to-tail coupling, which involves two electrons and two protons electrochemical kinetics.Following that, NPQD underwent the hydrolysis to yield 4'-mercapto-N-phenylquinone monoimine (NPQM).The above mechanism was confirmed by FT-SERS and DFT calculation results.
     2.We calculated the optimized geometry and Raman spectra by using the density functional method at the B3LYP/6-311++G~(**) level,which confined at the Cs point group symmetrical operation.The theoretical frequencies were scaled according to the scaled quantum mechanical(SQM) procedure.The result scaling factors are 0.884 for the N-H stretching modes,0.938 for the C-C,C-H,C-S and S-H stretching modes and 0.990 for other modes,such as ring in-plane deformation,ring out-of-plane deformation,C-H in-plane bending and C-H out-of-plane bending modes.The final harmonic vibrational wavenumbers and the potential energy distributions(PEDs) were derived by the Wilson's GF matrix method from the SQMF-DFT force field.The assignments of some bands relating to C-N、C-S、N-H modes have major difference by comparing the results from references.The simulated Raman spectrum is well accorded with the experimental.
     3.The pH-dependent SERS of PATP on gold and silver nanoparticals were studied by DFT theory.The optimized geometries,vibrational force fields and Raman intensities of possible Au(Ag)SC_6H_4NH_2 complexes in aromatic and quinonoidic states were calculated by using B3LYP method with 6-311+G~(**)(C,H,N,S)/LANL2DZ(Au,Ag) basis set.Based on the relative intensity and Raman shift of vibrational bands together with the PEDs results,the possible forms of PATP is existed in acidic solution with the aromatic structure and the quinonoidic one in alkaline solution on gold nanoparticals, while it keeps the quinonoidic state on silver nanoparticals independent of pH values of solution.
引文
[1]Raman C.V.,Krishnan K.S.,Nature,1928,121:50.
    [2]Fleischmann M.,Hendra P.J.,Mcquillan A.J.,Chem.Phys.Lett.,1974,26:163.
    [3]Jeanmaire D.L.,Van Duyne R.P.,J.Electroanal.Chem.,1977,84:1.
    [4]Albrecht M.G.,Creighton J.A.,J.Am.Chem.Soc.,1977,99:5212.
    [5]Corni S,Tomasi J,et al.Chem.Phys.Lett.,2001,342:135.
    [6]Lopez T.I.,Centeno S P.J.Mol.Struc.,2001,565-566:369.
    [7]Lee S.J.,Kim K.,Chem.Phys.Lett.,2003,378:122.
    [8]胡冰,徐蔚青等,吉林大学自然科学学报,2001,(2):1.
    [9]Wu D.,Fang Y.J.Colloild.Interf.Sci.,2003,265:234.
    [10]Ayars E.J.,Hallen H.D.,Appl.Phys.Lett.,2000,76(26):3911.
    [11]Patrice G.,Xavier Q.,Physica B,2000,279:52.
    [12]田中群,第十二届全国光散射学术会议论文摘要集,2003.
    [13]黎源,孙健等,感光科学与光化学,2002,20(1):27.
    [14]Sarkar U.K.,Chem.Phys.Lett.,2003,374:341.
    [15]Xu L.L.,Fang Y.,Spectroscopy,2003,18(11):26.
    [16]司真民,武荣国,张鹏翔,光谱学与光谱分析,2001,21(3):343.
    [17]Otto A.,Bruckbauer A.J.Mol.Struct.,2003,661-662:501.
    [18]朱志良,郜俊影等,光谱实验室,2003,20(2):159.
    [19]朱自莹,顾仁敖,陆天虹编著,拉曼光谱在化学中的应用,东北大学出版社,1998.
    [20]Tian Z.Q.,Ren B.,Wu D.Y.,J.Phys.Chem.B,2002,106:9463-9483.
    [21]Moskovits M.,Rev.Mod.Phys.,1985,57:783.
    [22]Tian Z.Q.,Ren B.,Annu.Rev.Phys.Chem.,2004,55:197.
    [23]许小燕,酸性2,2'-联吡啶溶液及2,2'-联吡啶在金上的拉曼光谱的实验和量子化学计算研究,苏州大学硕士学位论文,2007.
    [24]Nie S.,Emory S.E.,Science,1997,275:1102.
    [25]Kneipp K.,Wang Y.,Kneipp H.,Perelman L.T.,Itzkan I.,Dasari R.R.,Feld M.S.,Phys.Rev.Lett.,1997,78:1667.
    [26]Otto A.,Phys.Stat.Sol.(a),2001,188:1455.
    [27]Tian Z.Q.,Ren B.,Infrared and Raman Spectroscopy in Analysis of Surface,in Encyclopedia of Analytical Chemistry,R.A.Meyers(Ed.) John Wiley & Sons Ltd.Chichester,2000,p9162
    [28]Campion A.,Kambhampati P.,Chem.Society reviews,1998,27:241.
    [29]任斌,王喜,光散射学报,2006,16(4):288-296.
    [30]Stockle R.M.,Suh Y.D.,Deckert V.,et al.,Chem.Phys.Lett.,2000,318(1-3):131-136.
    [31]Hayazawa N,Inouye Y Sekkat Z,et al.,Opt.Commun.,2000,183(1-4):333-336.
    [32]Anderson M.S.,Appl.Phys.Lett.,2000,76(21):3130-3132.
    [33]Pettinger B.,Picardi G.,Schuster R.,et al.,Electrochemistry,2000,68(12):942-949.
    [34]Futamata M.,Maruyama Y.,Ishikawa M.,J.Phys.Chem.B,2003,107:7607.
    [35]Futamata M.,Maruyama Y.,Ishikawa.M.,Vibrational Spectroscopy,2002,30:17.
    [36]Hao E.,Schatz G.C,J.Chem.Phys.,2004,120:357.
    [37]Tian Z.Q.,J.Raman Spectrosc.2005,36:466-470.
    [38]Wu D.Y.,Ren B.,Jiang Y.X.,Xu X.,Tian Z.Q.,J.Phys.Chem.A,2002,106:9042-9052.
    [39]Wu D.Y.,Hayashi M.,Lin S.H.,Tian Z.Q.,Spectrochim.Acta A,2004,60:137-146.
    [40]Wu D.Y.,Ren B.,Xu X.,Liu G.K.,Yang Z.L.,Tian Z.Q.,J.Chem.Phys.2003,119:1701-1709.
    [41]程建波,几种分子组装体振动光谱的密度泛函理论研究,吉林大学博士学位论文,2005.
    [42]Wu D.Y.,Ren B.,Tian Z.Q.,Isr.J.Chem.2006,46:317-327.
    [43]Wu D.Y.,Hayashi M.,Shiu Y.J.,Liang K.K.,Chang C.H.,Yeh Y.L.,Lin S.H.,J.Phys.Chem.A,2003,107:9658-9667.
    [44]Wu D.Y.,Duan S.,Ren B.,Tian Z.Q.,J.Raman Spectrosc.2005,36:533-540.
    [45]Wu D.Y.,Ren B.,Tian Z.Q.,Chem.Phys.Chem.,2006,7:619-628.
    [46]Wu D.Y.,Hayashi M.,Chang C.H.,Liang K.K.,Lin S.H.,J.Chem.Phys.,2003,118:4073-4085.
    [47]Wu D.Y.,Liu X.M.,Duan S,Xu X.,Ren B.,Lin S.H.,Tian Z.Q.,J.Phys.Chem.C,2008,112:4195-4204.
    [48]Zork译,Gaussian03用户参考手册,2004.
    [49]Carlo P.,Giuseppe T.,Can.J.Chem.,1977,55(8):1409-1414.
    [50]Newton L.D.F.,Yoshitaka G.,Wagner L.P.,Anal.Chim.Acta,1995,306(1):167-172.
    [51]Fleischmann M.,Hill I.R.,Mengoli G.,Musiani M.M.,Akhavan J.,Electrochim.Acta.,1985,30(7):879-888.
    [52]Kim K.,Lee H.S.,J.Phys.Chem.B,2005,109:18929-18934.
    [53]Zheng J.,Zhou Y.,Li X.,Ji Y.,Lu T.,Gu R.,Langmuir,2003,19:632.
    [54]Cao L.Y.,Diao P.,Tong L.M.,Zhu T.,Liu Z.F.,ChemPhysChem,2005,6:913-918.
    [55]Zhou Q.,Li X.W.,Fan Q.,Zhang X.X.,Zheng J.W.,Angew.Chem.,2006,118:1-5.
    [56]Rosario-Castro B.I.,Fachini E.R.,Hernandez J.,Perez-Davis M.E.,Cabrera C.R.,Langmuir,2006,22:6102-6108.
    [57]Wang T.,Hu X.G.,Dong S.J.,J.Phys.Chem.B,2006,110:16930-16936.
    [58]Hill W.,Wehling B.,J.Phys.Chem.,1993,97:9451-9455.
    [1]林孟海编著,量子化学简明教程,北京:化学工业出版社,2005.8 第一版.
    [2]林孟海编著,量子化学计算方法与应用,北京:科学出版社,2004.5 第一版.
    [3]Foresman J.B.,Frish E.,Exploring Chemistry with Electronic Structure Methods 2~(nd)ed.Gaussian Inc.:Pittsburgh,1996.
    [4]Becke A.D.,J.Chem.Phys.,1992,96:2155.
    [5]Lee.C.,Yang W.,Parr.R.G.,Phys.Rev.B.,1988,37:78.
    [6]Becke A.D.,Chem.Rev.A.,1986,58:1200.
    [7]Long D.A.,Raman Spectroscopy,McGraw-Hill:New York,1977.
    [8]Scott A.P.,Radom L.,Harmonic Vibrational Frequencies,J.Phys.Chem.,1996,100:16502;
    Hess B.A.,Schaad L.J.,Carsky P.,Zahradnik R.,Chem.Rev.,1986,86(4):709-730;
    Scott A.P.,Radom L.,Phys J.Chem.,1996,100:16502;
    Head-Gordon M.,Byrd E.F.C.,Sherrill C.D.,Phys J.Chem.A,2001,105(42):9736-9747;
    Schlegel H.B.,Velkovski J.,Halls M.D.,Theor.Chem.Ace.,2001,105:413-421;
    Galabov B.,Yamaguchi Y.,Remington R.B.,Schaefer H.F.,J.Phys.Chem.A,2002,106(5):819-832.
    [9]Miertus S.,Scrocco E.,Tomas J.,Chem.Phys.,1981,55:117.
    [10]Miertus S.,Tomasi J.,Chem.Phys.,1982,65:239.
    [11]Cossi M.,Barone V.,Cammi R.,Tomasi J.,Chem.Phys.Lett.,1996,255:327.
    [12]Cances M.T.,Mennucci B.,Tomasi J.,J.Chem.Phys.1997,107:3032.
    [13]Barone V.,Cossi M.,Tomasi J.,J.Chem.Phys.1997,107:3210.
    [14]Cossi M.,Barone V.,B.Mennucci,Tomasi J.,Chem.Phys.Lett.1998,286:253.
    [15]Barone V.,Cossi M.,Tomasi J.,J.Comp.Chem.1998,19:404.
    [16]Barone V.,Cossi M.,J.Phys.Chem.A,1998,102:1995.
    [17]Mennucci B.,Tomasi J.,J.Chem.Phys.,1997,106:5151.
    [18]Tomasi J.,Mennucci B.,Cances E.,J.Mol.Struct.(Theochem) 1999,464:211.
    [19]Wong M.W.,Frisch M.J.,Wiberg K.B.,J.Am.Chem.Soc.,1991,113:4776.
    [20]Wong M.W.,Wiberg K.B.,Frisch M.J.,J.Am.Chem.Soc.,1992,114:523.
    [21]Wong M.W.,Wiberg K.B.,Frisch M.J.,J.Chem.Phys.,1991,95:8991.
    [22]Wong M.W.,Wiberg K.B.,Frisch M.J.,J.Am.Chem.Soc.,1992,114:1645.
    [23] Kirkwood J. G., J. Chem. Phys., 1934, 2: 351.
    
    [24] Onsager L., J. Am. Chem. Soc., 1936, 58: 1486.
    
    [25] Eckert F., Klamt A., AIChE J., 2002,48: 369.
    
    [26] Foresman J. B., Keith T. A., Wiberg K. B., Snoonian J., Frisch M. J., J. Phys. Chem., 1996, 100: 16098.
    
    [27] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C; Dapprich, S.; Millam,J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth,G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.;Gonzalez, C.; Pople, J. A. Gaussian 98, Revision A. 5, Gaussian, Inc., Pittsburgh PA, 2003.
    
    [28] Mulliken R. S., J. Chem. Phys., 1955, 23:1833.
    
    [29] Glendening E. D., Reed A. E., Carpenter J. E., Weinhold F., NBO Version 3.1,2003.
    
    [30] Carpenter J. E., Weinhold F., J. Mol. Struct. (Theochem) 1988, 169:41.
    
    [31] Carpenter J. E., PhD thesis, University of Wisconsin, Madison, WI, 1987.
    
    [32] Foster J. P., Weinhold F., J. Am. Chem. Soc., 1980, 102: 7211.
    
    [33] Reed A. E.,Weinhold F., J. Chem. Phys., 1983, 78: 4066.
    
    [34] Reed A. E.,Weinhold F., J. Chem. Phys., 1983,1736.
    
    [35] Reed A. E., Weinstock R. B., Weinhold F., J. Chem. Phys., 1985, 83: 735.
    
    [36] Reed A. E., Curtiss L. A., Weinhold F., Chem. Rev., 1988, 88: 899.
    
    [37] Weinhold F., Carpenter J. E., Plenum, 1988,227.
    [1]Carlo P.,Giuseppe T.,Can.J.Chem.1977,55(8):1409-1414.
    [2]Newton L.D.F.,Yoshitaka G.,Wagner L.P.,Anal.Chim.Acta,1995,306(1):167-172.
    [3]Fleischmarm M.,Hill I.R.,Mengoli G.,Musiani M.M.,Akhavan J.,Electrochim.Acta.1985,30(7):879-888.
    [4]Manteli A.E.,Smith R.M.,'Critical Stability Constants',Plenum,New York,1997,3:313.
    [5]Woods R.,Hope G.A.,Watling K.,J.Appl.Electrochem.,2000,30(11):1209-1222.
    [6]Bharathi S.,Yegnaraman V.,Prabhakara Rao G.,Langmuir,1993,9:1614-1617.
    [7]Mareonano J.C.,Bulhoes L.O.,Temperini M.L.,Electrochim.Acta,1998,43(7):771-780.
    [8]李风亭,张冰如,腐蚀与防护,2002,23(8):344-348
    [9]王欣,施建成,杨海峰,Harrison A.,曹佩根等,光散射学报,2003,15(2):86-91.
    [10]Feng Y.Y.,Chen S.H.,Zhang H.L.,et al.Appl.Sur.Sci.,2006,253:2812-2819.
    [11]B(o|¨)hlig H.,Ackermann M.,Billes F.,Kudra M.,Spectrochim.Acta Part A,1999,55:2635-2646.
    [12]Rai A.K.,Singh R.,Singh K.N.,Singh V.B.,Spectrochim.Acta Part A,2006,63:483-490.
    [13]Yekeler H.,Yekeler M.,J.Mol.Model,2006,12:763-768.
    [14]Zhu L.,Zhang M.,J.Org.Chem.2004,69:7371-7374.
    [15]Kendall J.D.,Suggate H.G.,J.Chem.Soc.1949,1503.
    [16]Teppema J.,Sebrell L.B.,J.Am.Chem.Soc.1927,49:1779-1784.
    [17]Wei M.,China.Huagong Shikan,1999,13(10):25-26.
    [18]Sun R.,Li S.J.,Yao J.L.,Gu R.A.,Acta Chim.Sinica,2007,65:1741.
    [19]Becke A.D.,J.Chem.Phys.,1993,98:5648.
    [20]Becke A.D.,Phys.Rev.A,1988,38:3098.
    [21]Lee C.,Yang W.,Parr R.G.,Phys.Rev.B,1988,3:785.
    [22]Krishnan R.;Brinkley J.S.;Seeger R.;Pople J.A.,J.Chem.Phys.,1980,7:650.
    [23]Frisch M.J.,Pople J.A.,Brinkley J.S.,J.Chem.Plays.,1984,8:3265.
    [24]Clark T.,Chandrasekhar J.,Spitznagel G.W.,Schleyer P.V.R.,J.Comput.Chem.,1983,4:294.
    [25]Ulman,A.,Willand,C.S.,Kehler,W.,Robello,D.R.,Williams,D.J.,Handley L.,J.Am.Chem.Soc.,1990,11:7083.
    [26] Long D. A., Raman Spectroscopy, McGraw-Hill: New York, 1977. Neugebauer J., Reiher M., Kind C., Hess B. A., J. Comput. Chem., 2002, 23: 895.
    [27] Hay P.J., Wadt W.R., J.Chem.Phys., 1985, 82: 270;
    [28] Wadt W.R., Hay P.J., J.Chem.Phys., 1985, 82: 280;
    [29] Hay P.J., Wadt W.R., J.Chem.Phys., 1985, 82: 299;
    
    [30] Wong M. W., Frisch M. J., Wiberg K. B., J. Am. Chem. Soc. 1991, 113: 4776.
    [31] Wong M. W., Wiberg K. B., Frisch M. J., J. Am. Chem. Soc. 1992, 114: 523.
    [32] Wong M. W, Wiberg K. B., Frisch M. J., J. Chem. Phys. 1991, 95: 8991.
    [33] Wong M. W, Wiberg K. B., Frisch M. J., J. Am. Chem. Soc. 1992,114:1645.
    [34] Kirkwood J. G, J. Chem. Phys. 1934, 2: 351.
    [35] Onsager L., J. Am. Chem. Soc., 1936, 58: 1486.
    [36] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C; Dapprich, S.; Millam,J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;Ishida, M.; Nakajima, T; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;Hratchian, H. P.; Cross, J. B.; Adamo, C; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T; Al-Laham, M. A.; Peng, C. Y; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 98, Revision A. 5, Gaussian, Inc., Pittsburgh PA, 2003.
    [37] 李艳荣,国永敏,李宝宗,化学研究, 2006, 17(3): 71-73.
    [38] 徐建华,胡武洪,化学物理学报, 2003, 16(3): 189-192
    [39] Yarhgana S., Ogretira C., Csizmadia I.G., Acikkalpa E., Berberd H., Arslan T., J. Mol. Struct.(Theochem),2005, 715: 199-203.
    [40] Yekeler M., Yekeler H., Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 286:121-125.
    [41] Wang G, Harrison A., Li X., Whittaker G, Shi J., Wang X., Yang H., Cao P., Zhang Z., J. Raman Spectrosc., 2004, 35: 1016-1022
    
    [42] Carpenter J. E., Weinhold F., J. Mol. Struct. (Theochem), 1988, 169: 41 .
    [43] Carpenter J. E., PhD thesis, University of Wisconsin, Madison, WI, 1987.
    [44] Foster J. P., Weinhold R, J. Am. Chem. Soc., 1980,102: 7211.
    [45] Li W., Wu Q. F., Ye Y, Luo M. D., Hu L., Gu Y. H., Niu R, Hu J. M.. Spectrochim. Acta. A, 2004,60: 2343.
    
    [46] Liang, X. Q.; Zheng, W. X.; Wong, N. B.; Li, J. S.; Tian, A. M. J. Mol. Struct. 2004, 672, 151.
    [47] Douhal, A.; Lahmani, R; Zewail, A. H. Chem. Phys. 1996, 207,477.
    [48] Zhang, H.; Xue, Y; Xie, D.-Q.; Yan, G.-S. Acta Chim. Sinica 2005,63, 791.
    [49] Ren Y., Li M., Wong N. B., J. Mol. Model. 2005,11: 167.
    [50] 国永敏 李宝宗,化学学报, 2007, 65(16): 1561-1567.
    [51] Becke D., J. Chem. Phys. 1993, 98: 5648.
    [52] Lee C., Yang W, Parr R. G., Phys. Rev. B, 1988,37: 785.
    [53] Zhou Z. Y., Wu X., Su Z.M., etc., Acta Chim. Sinica 2004, 62:2244.
    [54] Liang G. M., Ren Y, Acta Chim. Sinica 2005,63: 2163.
    [55] Li B. Z., Acta Chim. Sinica, 2006, 64: 278.
    
    [56] Fujimoto H., Kato S., Yamabe S., Fukui K., J. Chem. Phys., 1974, 60: 572.
    [57] Vosta J., Hackerman N., Corros. Sci. 1990, 30: 949.
    [58] Vosta J., Eliasek J., Knizek P., Corrosion 1976, 32: 183.
    
    [59] Li S. J., Wu D. Y., Xu X. Y., Gu R. A., J. Raman Spectrosc., 2007, 38: 1436 -1443.
    [60] Cao P.G., Yao J.L., Ren B., Mao B.W., Gu,R.A. Tian Z.Q., Chem. Phys. Lett. 2000, 316: 1.
    [61] Cao P.G., Sun Y.H., Gu R.A., J. Raman Spectrosc. 2005, 36: 725.
    [62] Sandhyarani N., Skanth G., Berchmans Sheela, Yegnaraman V., Pradeep T., J. Coll. and Interf. Sci., 1999,209(1): 154-161.
    
    [63] Pulay P., Fogarasi G., Pang R, Boggs J. E., J Am Chem Soc 1979, 101: 2550-2560.
    [64] Xue Y, Xie D, Yan G. Int. J. Quantum Chem. 2000, 76: 686.
    
    [65] Wu D.Y., Ren B., Jiang Y. X., Xu X., Tian Z. Q., J. Phys. Chem. A 2002, 106, 9042-9052.
    [66] Wilson E. B., Decius J.C., Cross P. C., Molecular Vib., McGraw-Hill: New York, 1955.
    [67] Otto A., Mrozek I., Grabhorn H.,W. Akemann, J. Phys. Conden. Matter, 1992, 4: 1143.
    [1]Nuzzo R.G.;Dubois L.H.;Allara D.L.J.Am.Chem.Soc.1990,112:558.
    [2]Bain C.D.;Whitesides G.M.Science 1988,240:62.
    [3]Shon Y.S.;Dawson G.B.;Porter M.Langmuir 2002,18:3880.
    [4]Hayes W.A.;Shannon C.Langmuir 1996,12:3688.
    [5]Desideri P.G.;Lepri L.;Heimler D.J.Electroanal.Chem.,1971,32:225.
    [6]Batz V.;Schneeweiss M.A.;Kramer D.J.Electroanal.Chem.,2000,491:55.
    [7]Lukkari J.;Kleemola K.;Meretoja M.Langmuir,1998,14:1705.
    [8]Raj C.R.;Kitamura F.;Ohsaka T.Langmuir,2001,17:7378.
    [9]Sturrock E.J.;Chen Q.;Borchardt P.H.J.Electron.Spectrosc.Relat.Phenom.,2004,135:127.
    [10]Zhang L.;Jia J.B.;Zou X.Q.;Dong S.J.Electroanalysis 2004,16:1413.
    [11]Nie S.,Emory S.R.,Science,1997,275:1102.
    [12]Kneipp K.,Wang Y.,Kneipp H.,Perelman L.T.,Itzkan I.,Dasari R.R.,Feld M.S.,Single Molecule Detection Using Surface-Enhanced Raman Scattering(SERS),Phys.Rev.Lett.,1997,78:1667-1670.
    [13]Otto A.,Bruckbauerl A.,Chen Y.X.,J.Mol.Struct.,2003,661-662:501-514.
    [14]Futamata M.,Maruyama Y.,Ishikawa M.,Vibrational Spectroscopy,2004,35:121-129.
    [15]Vlckova B.,Moskovits M.,Pavel I.,Siskov K.,Shadkova M.,Slouf M.,Chem.Phys.Lett.,2008,455:131-134.
    [16]Kneipp K.,Kneipp H.,Itzkan I.,Dasari R.R.,Feld M.S.,Chem.Rev.,1999,99:2957.
    [17]Moskovits M.,Tay L.L.,Yang J.,Haslett T.,Top.Appl.Phys.2002,82:215.
    [18]Michaels A.M.,Jiang J.,Brus L.,J.Phys.Chem.B,2000,104:11965.
    [19]Bosnick K.A.,Jiang J.,Brus L.,J.Phys.Chem.B,2002,106:8096.
    [20]Doering W.E.,Nie,S.,J.Phys.Chem.B,2002,106:311.
    [21]Andersen P.C.,Jacobson M.L.,Rowlen K.L.,J.Phys.Chem.13,2004,108:2148.
    [22]Bizarri A.R.,Cannistraro S.,Phys.Rev.Lett.,2005,94:068303.
    [23]Schmid G.,Nanoparticles:From Theory to Application,Wiley-VCH,Weinheim,2004.
    [24]Maier S.A.,Curr.Nanosci.,2005,1:17.
    [25]杜银霄,尹国盛,尹延峰,高影,莫育俊,光谱学与光谱分析,2003,23(4):718.
    [26]王玮,黄瑛,李来明等,光谱学与光谱分析,1995,15(2):17.
    [27]Weldon M.K.,Zhelyaskov V.R.,Morris M.D.,Appl.Spectrosr,1998,52:265.
    [28]Kneipp K.,Haka A.S.,Kneipp H.,et al.Appl.Spectra.,2002,56:250.
    [29]朱自莹,顾仁敖,陆天虹编著,拉曼光谱在化学中的应用,东北大学出版社,1998.
    [30]Kim K.,Lee H.S.,J.Phys.Chem.B,2005,109:18929-18934.
    [31]Zheng J.;Zhou Y.;Li X.;Ji Y.;Lu T.;Gu R.Langmuir 2003,19:632.
    [32]Cao L.Y.,Diao P.,Tong L.M.,Zhu T.,Liu Z.F.,ChemPhysChem 2005,6:913-918.
    [33]Zhou Q.,Li X.W.,Fan Q.,Zhang X.X.,Zheng J.W.,Angew.Chem.2006,118:1-5.
    [34]Rosario-Castro B.I.,Fachini E.R.,Hernandez J.,Perez-Davis M.E.,Cabrera C.R.,Langmuir,2006,22:6102-6108.
    [35]Wang T.,Hu X.G.,Dong S.J.,J.Phys.Chem.B 2006,110:16930-16936.
    [36]Hill W.,Wehling B.,J.Phys.Chem.1993,97:9451-9455.
    [37]Osawa,M.;Matsuda,N.;Yoshii,K.;Uchida,I.J.Phys.Chem.1994,98,12702.
    [38]刘秀敏,方萍萍,吴元菲,吴德印,任斌,田中群,光散射学报,2007,19(4):304-310.
    [39]顾仁敖,孙如,曹佩根,屠一锋,光谱学与学谱分析,1999,19:50.
    [40]Lee P.C.;Meisel D.,J.Phys.Chem.,1982,86:3391.
    [41]Arima V.,Matino F.,Thompson J.,Cingolani R.,Rinaldi R.,Blyth R.I.R.,Surface Science,2005,580:63-70.
    [42]Sondag-Huethorst J.A.M.,Fokkink L.G.J.,Langmuir,1995,11:4823.
    [43]Gilbert S.E.,Cavalleri O.,Kern K.,J.Phys.Chem.,1996,100:12123.
    [44]Cavalleri O.,Gilbert S.E.,Kern K.,Chem.Phys.Lett.1997,269:479.
    [45]Eliadis E.,Nuzzo R.G.,Gewirth A.A.,Alkire R.C.,J.Electrochem.Soc.,1997,144:96.
    [46]Grummt U.-W.,Geissler M.,Schmitz-Huebsch Th.,Chem.Phys.Lett.1996,263:581.
    [47]Hagenstr(o|¨)m H.,Schneeweiss M.A.,Kolb D.M.,Langmuir,1999,15:7802.
    [48]Schneeweiss M.A.,Hagenstr(o|¨)m H.,Esplandiu M.J.,Kolb D.M.,Appl.Phys.A,1999,173:51.
    [49]Sondag-Huethorst J.A.M.,Fokkink L.G.J.,Langmuir,1995,11:4823.
    [50]Raj C.R.,Ohsaka T.,Electrochemistry Communications,2001,3:633-638.
    [51]Bryant M.A.,Crooks R.M.,Langmuir,1993,9:385-387
    [52]Wang J.M.,Zhang H.,He H.X.,Hou T.J.,Liu Z.F.,Xu X.J.,J.Mol.Struct.(Theochem),1998,451:295-303.
    [53] Johnson P. B.; Christy, R. W., Phys. Rev. B 1972, 6: 4370.
    
    [54] Gao P.; Gosztola D.; Weaver M. J., J. Phys. Chem. 1989, 93: 3753.
    
    [55] Becke, A. D. J. Chem. Phys. 1993, 98: 5648.
    
    [56] Becke, A. D. Phys. Rev. A 1988, 38: 3098.
    
    [57] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37: 785.
    
    [58] Krishnan, R.; Brinkley, J.S.; Seeger, R.; Pople, J.A.J. Chem. Phys. 1980 ,72: 650.
    
    [59] Frisch, M.J.; Pople, J.A.; Brinkley, J.S. J. Chem. Phys. 1984,80: 3265.
    
    [60] Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.;Schleyer, P.V.R. J. Comput. Chem. 1983,4: 294.
    
    [61] Hay P.J., Wadt W.R., J.Chem.Phys., 1985, 82: 270;
    
    [62] Wadt W.R., Hay P.J., J.Chem.Phys., 1985, 82: 280;
    
    [63] Hay P.J., Wadt W.R., J.Chem.Phys., 1985, 82: 299;
    
    [64] Ulman, A., Willand, C. S., Kehler, W., Robello, D. R., Williams, D. J., Handley L, J. Am. Chem. Soc. 1990, 112:7083.
    
    [65] Pulay P., Fogarasi G., Pang F., Boggs J. E., J Am Chem Soc 1979,101: 2550-2560.
    
    [66] Xue Y, Xie D, Yan G. Int. J. Quantum Chem. 2000,76:686.
    
    [67] Wilson E. B., Decius J.C., Cross P. C., Molecular Vib., McGraw-Hill: New York, 1955.
    
    [68] Long, D. A. Raman Spectroscopy; McGraw-Hill: New York, 1977.
    
    [69] Neugebauer, J.; Reiher, M.; Kind, C; Hess, B. A. J. Comput. Chem., 2002, 23: 895.
    
    [70] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam,J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez,C.;Pople,J.A.Gaussian 98,Revision A.5,Gaussian,Inc.,Pittsburgh PA,2003.
    [71]Wong M.W.,Frisch M.J.,Wiberg K.B.,J.Am.Chem.Soc.1991,113:4776.
    [72]Wong M.W.,Wiberg K.B.,Frisch M.J.,J.Am.Chem.Soc.1992,114:523.
    [73]Wong M.W.,Wiberg K.B.,Frisch M.J.,J.Chem.Phys.1991,95:8991.
    [74]Wong M.W.,Wiberg K.B.,Frisch M.J.,J.Am.Chem.Soc.1992,114:1645.
    [75]Kirkwood J.G.,J.Chem.Phys.1934,2:351.
    [76]Onsager L.,J.Am.Chem.Soc.,1936,58:1486.
    [77]Vangala V.R.;Desiraju G.R.;Jetti R.K.R.;Blaser D.;Boese R..Acta Crystallographica:Section C,2002,58(10):635.
    [78]顾仁敖,蒋芸,孙玉华,光谱学与光谱分析,2006,26(1):75-77.
    [79]顾仁敖,孙玉华,曹佩根等,光谱学与光谱分析,2000,22(6):967-969.
    [80]孙玉华,顾仁敖,曹佩根等,化学学报,2001,59(9):1522.
    [81]Cao P.G.,Qiu L.Q.,Sun Y.H.,et al.,Chem.Phys.Lett.,2003,376(5-6):806.
    [82]Gu R.A.,Cao P.G.,Sun Y.H.,et al.,J.Electroanal.Chem.,2002,528:121-126.
    [83]Cao P.G.,Gu R.A.,Qiu L.Q.,et al.,Surf.Sci.,2003,531(3):217-225.
    [84]Cao P.G.,Sun Y.H.,Yao J.L.,et al.,Langmuir,2002,18:2737-2742.
    [85]Li S.J.,Wu D.Y.,Xu X.Y.,Gu R.A.,J.Raman Spectrosc.2007,38:1436-1443.
    [86]王宝兰,高等函授学报,自然科学版,1997,1:35-37.
    [87]林孟海 编著,量子化学计算方法与应用,科学出版社,2004.5
    [1]Decher G.,Hong J.D.,Schmitt J.,Thin Solid Film,1992;210/211:831.
    [2]Frens G.,Nat.Phys.Sci,1973;241:20-21.
    [3]Doron A.,Kalz E.,Willner I.,langmuir,1995;11-13:13.
    [4]Lee P.C.,Melsel D.,J.PhyS.Chem.,1982;86:3391.
    [5]Kometani N.,Tsubonishi M,Fujita T,Asami K,Yonezawa Y,Langmuir,2001;17:578.
    [6]李淑瑾,蒋芸,仇立群,曹佩根,et al,光散射学报,2004;15(4):254.
    [7]顾仁敖,曹文东,曹佩根,孙玉华,et al,光谱学与光谱分析,2001;21(3):308-310.
    [8]Shirtcliffe N.,Nickel U.,Schneider S.,J.Colloid Interface Sci.,1999;211:122.
    [9]Zhu T.,Fu X.Y.,Mu T.,et al,Langmuir,1999;15:5197.
    [10]Emory S.R.,Nie S.,J.Phys.Chem.B,1998;102:493.
    [11]Brolo A.G.,Irish D.E.,Szymanski G.,et al,Landmuir,1998;14:517.
    [12]Akalin E.,Aky(u|¨)z S.,Journal of Molecular Structure,2003;651-653:571.
    [13]Hulst,R.;Heres,H.;Peter,N.C.M.W.;et al.,Tetrahedron:Asymmetry.1996,7(5):1373.
    [14]Froelich,O.;Bonin,M.;Quirion,J.-C.;et al.,Tetrahedron:Asymmetry.1993,4(11):2335.
    [15]Handrick,G.R.;Atkinson,E.R.;Granchelli,F.E.;et al.,J.Med.Chem.1965,8:762.
    [16]Mckennon,M.J.;Meyers,A.I.;Karlheinz,D.;et al.,J.Org.Chem.1993,58(13):3568.
    [17]Dayton M.A.,Brown J.C.,Stutts K.J.,et al.,Anal.Chem.,1980,52:946.
    [18]Kaufman,F.B.;Schroeder,A.H.;Engler,E.M.;et al.,J.Am.Chem.Soc.1980,102(2):483.
    [19]Wong,S.S.;Porter,M.D.,J.Electroanal.Chem.2000,485:135.
    [20]Zhao F.Q.,Zeng B.Ch.,Pang D.W.,Electroanalysis 2003,15(12):1060.
    [21]Sagara T.Kawamura H.Nakashima N.et al.,Langmuir 1996,12:4253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700