材料应变率效应对钢筋混凝土框—剪结构地震反应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土结构是应用最为广泛的一种结构形式,在役期间,不可避免的要遭受到地震等动力荷载的作用。近年来,强烈地震时有发生,地震力作用导致钢筋混凝土结构破坏的现象经常出现。由于钢筋和混凝土均为应变率敏感性材料,在地震等动力荷载作用下材料的力学性能将会发生改变,地震力作用下的钢筋混凝土构件及结构的力学性能、变形性能和破坏模式都会受到材料应变率效应的影响。目前,关于地震力作用下应变率效应对结构材料以及材料应变率效应对钢筋混凝土结构及构件影响的研究相对较少。本文采用试验研究、数值模拟及理论分析的方法对动力模型试验用微粒混凝土和镀锌铁丝在地震作用应变率范围内的动态抗压性能和动态拉伸性能,钢筋混凝土框架-剪力墙结构动力模型试验,材料应变率效应对钢筋混凝土剪力墙动态性能的影响,材料应变率效应对钢筋混凝土结构地震反应的影响几方面进行了研究,完成了以下主要研究内容:
     (1)对钢筋混凝土结构动力模型试验中经常用来代替混凝土的微粒混凝土进行了地震作用应变率下的动态抗压性能试验。根据试验结果,回归分析得到了微粒混凝土抗压强度和弹性模量动力提高系数(DIF)与应变率之间的关系。基于混凝土结构设计规范(GB50010-2010)给出了微粒混凝土单轴受压率相关本构模型。采用ABAQUS软件中的混凝土损伤塑性模型结合所提出的微粒混凝土单轴受压率相关本构模型对微粒混凝土的动态抗压性能进行了数值模拟,与试验结果的对比分析表明微粒混凝土单轴受压率相关本构模型能够很好的描述微粒混凝土的动态抗压性能。
     (2)钢筋混凝土结构动力模型试验中的钢筋通常使用镀锌铁丝来模拟,对三种不同型号的镀锌铁丝进行了动态拉伸试验研究,对比分析了地震作用应变率下三种不同型号镀锌铁丝的力学和变形特性。根据试验结果,通过回归分析的方法给出了镀锌铁丝动、静拉伸强度与应变率之间的关系方程。通过与钢筋模型的对比分析表明,两者的动态拉伸性能较为相似,在振动台试验中用镀锌铁丝来模拟钢筋的动态力学性能是可行的。
     (3)根据相似理论设计并制作了一个三层偏心钢筋混凝土框架-剪力墙结构振动台试验模型。利用地震模拟振动台对钢筋混凝土框架-剪力墙模型进行了水平和竖向地震波同时输入下的双向加载振动台试验。通过试验了解了偏心钢筋混凝土框架-剪力墙结构在地震作用下的反应特性与破坏形态。同时,试验结果也为验证后续章节中考虑材料应变率效应的钢筋混凝土结构弹塑性地震反应分析的准确性提供了依据。
     (4)钢筋混凝土剪力墙是混凝土结构中的重要构件,关于钢筋混凝土剪力墙动态性能方面的研究工作相对较少。为了解材料应变率效应对钢筋混凝土剪力墙动态性能的影响,作者基于ABAQUS软件建立了钢筋混凝土剪力墙的有限元模型,分别对不同剪跨比和轴压比的钢筋混凝土剪力墙在不同应变率的动力荷载作用下的动态性能进行了数值模拟,数值模拟结果可以为钢筋混凝土剪力墙动态性能的试验研究提供一些可供参考的理论依据。
     (5)针对钢筋混凝土结构弹塑性地震反应分析的研究中很少考虑材料应变率效应,本章进行了考虑材料应变率效应的钢筋混凝土结构弹塑性地震反应分析。开发了基于ABAQUS软件可以考虑材料应变率效应的微粒混凝土动态纤维梁单元子程序,建立了振动台试验中偏心钢筋混凝土框架-剪力墙结构的有限元模型,在通用有限元软件ABAQUS中调用子程序对试验模型进行了弹塑性地震反应分析,分析中考虑了材料应变率效应的影响,研究结果表明:数值模拟结果与试验结果吻合较好,验证了微粒混凝土动态纤维梁单元子程序对模型进行考虑材料应变率效应弹塑性地震反应分析的准确性;并对考虑材料应变率效应与未考虑材料应变率效应的计算结果进行对比分析,分析结果显示,考虑材料应变率效应时的计算结果较为准确。同时,建立了一个高层剪力墙结构的有限元模型,分别进行了考虑材料应变率效应和未考虑材料应变率效应的弹塑性地震反应分析,研究结果表明:考虑材料应变率效应下的分析结果与未考虑材料应变率效应时存在一定的差别,随着地震输入加速度峰值的增大,应变率效应对结构地震反应的影响越发明显,因此应该在抗震设计与分析中适当考虑材料应变率效应。
The reinforced concrete structures are widely used and required to resist dynamic loads when subjected to seismic loading during the period of its active service. In recent years, the reinforced concrete structure may suffer distress under the action of unforeseen strong earthquake which is often occurs. Reinforcing steel and concrete are both sensitive to strain rate, hence, the mechanical properties of them will be changed by the strain rate effect. The mechanical properties, deformational properties and failure mode of reinforced concrete structures and members will be changed, too. There is very little research about the effects of strain rate on reinforced concrete materials, members and structures subjected to seismic loading. In this paper, the strain rate sensitivities of microconcrete and galvanized wire, the effects of strain rate on reinforced concrete shear walls and structures under seismic loading were investigated. A shaking table test of reinforced concrete shear wall structure was also carried out. The main aspects of research work in this thesis are listed as follows:
     (1) The dynamic compressive properties of miroconcrete which is most popular used in dynamic model test for replacing concrete are experimentally investigated under the strain rate of earthquakes. Based on the tested results, the dynamic increasing factor (DIF) of compressive strength and elastic modulus which are function of strain rate are obtained by regression analysis. The uniaxial compressive constitutive model of the microconcrete with strain rate effect is fitted by using the compressive stress-strain relationship of concrete in the China code for design of concrete structures (GB50010-2010). The dynamic compressive properties of microconcrete are analyzed in finite software ABAQUS by using the damaged plasticity model and the presented uniaxial compressive constitutive model of the microconcrete. The comparison between the numerical results and tested results show that the presented model can describe the dynamic properties of microconcrete very well.
     (2) The galvanized wires are often used to simulate the reinforcing steel in the dynamic model test. The dynamic tensile test on galvanized wires are carried out, and the mechanical and deformation properties of galvanized wire under the seismic strain rate are investigated. Based on tested data, the relationship of dynamic increasing factor of yield strength and tensile strength which are function of strain rate-are gotten. According to the comparison with the reinforcing steel models, the dynamic tensile properties of galvanized wire and reinforcing steel are very similar. In the dynamic model tests, it is feasible for using the galvanized wires to simulate the reinforcing steels.
     (3) A three-story reinforced concrete frame-wall shaking table test model is designed and made on the basis of the similarity theory, and bi-directional shaking table experiment was carried out. The seismic response and failure mode of reinforced concrete frame-wall structure are investigated by the shaking table test. Meanwhile, the tested results which are obtained from the shaking table test provide evidence for the nonlinear seismic response analysis of the reinforced concrete structure.
     (4) Reinforced concrete shear wall is the typical member in reinforced concrete structure. The research about the dynamic properties of shear wall is relatively scarce. In order to understand the effects of strain rate on the dynamic properties of reinforced concrete shear wall, the finite element model of reinforced concrete shear walls are established in the software ABAQUS. The numerical simulation of the dynamic properties of reinforced concrete shear walls under different strain rates are carried out, which consist of different height-to-width ratio and axial compressive ratio. The numerical results provide theoretical basis for the dynamic experiments of the reinforced concrete shear wall.
     (5) The research about strain rate effect of materials affected on the response of reinforced concrete structure under seismic loading is limited, hence, the elastoplastic seismic response analysis with strain rate effect of reinforced concrete structure are studied. Based on the uniaxial compressive constitutive model of microconcrete with strain rate effect, the dynamic fiber beam element subroutine of microconcrete in software ABAQUS is given. The finite element model of reinforced concrete frame-wall structure in the shaking table test in this paper is established, and the elastoplastic seismic response analysis with strain rate effect is carried out by using the dynamic fiber beam element subroutine of microconcrete. The numerical results are consistent with the tested results, and the comparison between the numerical results and tested results show that the dynamic response of reinforced concrete shaking table model can simulate by the dynamic fiber beam element subroutine of microconcrete in software ABAQUS accurately. The calculated results with strain rate effect and without strain rate effect are compared with eachother, and results show that the case with strain rate effect is more accurate. Meanwhile, a finite element model of high-rise shear wall structure is established and the effects of strain rate on the dynamic response of the model under seismic loading are investigated. The results show that the effects of strain rate are more obvious with the increasing peak value acceleration of input motion. Hence, the strain rate effect should be considered properly in the seismic design and analysis.
引文
[1]李宏男.结构多维抗震理论[M].北京:科学出版社,1996.
    [2]肖诗云.混凝土率型本构模型及其在拱坝动力分析中的应用[D].大连:大连理工大学,2002.
    [3]Abrams D A. Effect of rate of application of load on the compressive strength of concrete [C]. Proceedings of American Society for Testing Materials,1917,17: 364-377.
    [4]Jones P G, Richart F E. The effect of testing speed on strength and elastic properties of concrete [C]. Proceedings of American Society for Testing Materials,1936,36: 380-391.
    [5]Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete [J]. ACI Journal.1953,49:729-744.
    [6]Cowell W L. Dynamic properties of plain Portland cement concrete [R]. Technical Report No. R447, US Naval Civil Engineering Laboratory. Port Hueneme, California, 1966.
    [7]Dhir R K, Sangha C M. A study of relationships between time, strength, deformation and fracture of plain concrete [J]. Magazine of Concrete Research,1972,24(81): 197-208.
    [8]Hughes B P, Gregory R. Concrete subjected to high rates of loading in compression [J]. Magazine of Concrete Research,1972,24(78):25-36.
    [9]Hughes B P, Watson A J. Compressive strength and ultimate strain of concrete under impact loading [J]. Magazine of Concrete Research,1978,30(105):189-197.
    [10]Spark P R, Menzies J B. The effect of rate loading upon the static and fatigue strengths of plain concrete in compression [J]. Magazine of Concrete Research, 1973,25(83):73-80.
    [11]Evan R H. Effect of rate of loading on some mechanical properties of concrete [C]. Proceedings of conference on mechanical properties of non-metallic brittle materials, London,1968,175-192.
    [12]Wakabayshi M, et al. Dynamic loading effects on the structural performance of concrete and steel materials and beams. Proceedings of Seventh World Conference on Earthquake Engineering, Istanbul, Turkey,1980,6(3):271-278.
    [13]Atchley B L, Furr H L. Strength and energy absorption capabilities of plain concrete under dynamic and static loadings [J]. ACI Journal,1967,64(11):745-756.
    [14]Tedesco J W, Powell J C, Ross C A, et al. A strain-rate dependent concrete material model for ADINA [J]. Computers and Structures,1997,64(5/6):1053-1067.
    [15]Zheng S, Haussler-combe U, Eibl J. New approach to strain rate sensitivity of concrete in compression [J]. Journal of Engineering Mechanics.1999,10: 1403-1410.
    [16]Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates [J]. Materials and Structures,1991,24:425-450.
    [17]Fu, H C, Erki, M A, and Seckin, M. Review of effects of loading rate on concrete in compression [J]. Journal of Structural Engineering,1991,117(12):3645-3659.
    [18]陈肇元,阚永魁.高标号混凝土用于抗爆结构的若干问题[R].科学研究报告集第四集:钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社.1986.
    [19]董毓利,谢和平, 赵鹏.不同应变率下混凝土受压全过程的实验研究及其本构关系[J].水利学报,1997,7:72-77.
    [20]肖诗云, 林皋,逯静洲等.应变率对混凝土抗压特性的影响[J].哈尔滨建筑大学学报,2002,35(5):35-39.
    [21]闫东明,林皋.混凝土动态单轴压缩特性试验研究[J].水科学与工程技术,2005,6:8-10.
    [22]Bischoff P H. Compressive response of concrete to hard impact [D]. London:Imperial College of Science and Technology,1988.
    [23]Mel linger F M, Birkimer D. Measurement of stress and strain on cylindrical test specimens of rock and concrete under impact loading [R]. Technical Report 4-46, U. S Army corps of Engineers, Ohlo River Division Laboratories, Cincinnati, Ohio, Apr.1966,71.
    [24]Birkimer D L, Lindemann R. The impact strength of concrete materials [J]. ACI Journal.1971,68:47-49.
    [25]Mcvay M K. Spall damage of concrete structures [R], Technical Report SL-88-22, U. S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Miss,1988.
    [26]Ross C A, Jerome D M, Tedesco J W, et al. Moisture and strain rate effects on concrete strength [J]. ACI Materials Journal,1996,93(33):293-300.
    [27]Ross C A, Tedesco J W, Kuennen S T. Effect of strain rate on concrete strength [J]. ACI Materials Journal,1995,92(1):37-47.
    [28]Tedesco J W, Ross C A, Kuennen S T. Experimental and numerical analysis of high strain rate splitting tensile test [J]. ACI Materials Journal,1993,90(2): 162-169.
    [29]Tedesco J W, Ross C A. Numerical Analysis of high strain rate concrete direct tension tests [J]. Computers and Structures,1991,40(2):313-327.
    [30]Ross C A, Thompson P Y, Tedesco J W. Split-Hopkinson pressure bartests on concrete and mortar in tension and compression [J]. ACI Materials Journal,1989,86(5): 475-481.
    [31]Tedesco J W, Ross C A, Brunair R M. Numerical analysis of dynamic split cylinder tests [J]. Computers and Structures,1989,32(3/4):609-624.
    [32]Zielinski J, Reinhardt H W, Kormeling H A. Experiments on concrete under uniaxial impact tensile loading [J]. Material and Structures,1981,14(2):103-112.
    [33]Reinhardt H W, Rossi P Van Mier, Jan G M. Joint investigation of concrete at high rates of loading [J]. Materials and Structures,1990,23(3):213-216.
    [34]Rossi P, Van Mier Jan G M, Boulay C. The dynamic behaviour of concrete influence of free water [J]. Materials and Structures,1992,25:509-514.
    [35]Rossi P. Van Mier, Jan G M. Toutlemonde F, et al. Effect of loading rate on the strength of concrete subjected to uniaxial tension [J]. Materials and Structures, 1994,27(5):260-264.
    [36]Rossi P, Toutlemonde F. Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms [J]. Materials and Structures,1996, 29(186):116-118.
    [37]Rossi P. Strain rate effects in concrete structures:the LCPC experience [J]. Materials and Structures,1997,30(S1):54-62.
    [38]Bischoff P H, Perry S H. Impact behavior of plain concrete loaded in uniaxial compression [J]. Journal of Engineering Mechanics,1995,121(6):685-693.
    [39]尚仁杰.混凝土动态本构行为研究[D].大连:大连理工大学,1994.
    [40]闫东明.不同应变速率下混凝土直接拉伸试验研究[J].土木工程学报,2005,38(6):97-103.
    [41]Malvar L J, Ross C A. Review of strain rate effects for concrete in tension [J]. ACI Materials Journal,1998,95(6):435-439.
    [42]Suaris W, Shah S P. Properties of concrete subjected to impact [J]. Journal of Structural Engineering,1983,109(7):1727-1741.
    [43]Fu H C, Erki M A, Seckin M. Review of effects of loading rate on reinforced concrete [J]. Journal of Structural Engineering,1991,117(12):3660-3679.
    [44]闫东明,林皋等.变幅循环荷载作用下混凝土的单轴拉伸特性[J].水利学报,2005, 36(5):593-597.
    [45]Takeda J, Tachikawa H, Fujimoto K. Mechanical behavior of concrete under higher rate loading than in static test [J]. Mechanical Behavior of Materials,1974,2: 479-486.
    [46]Gran J K, Florence A L, Colton J D. Dynamic triaxialtests of high-strength concrete [J]. Journal of Engineering Mechanics,1989,115(5):891-904.
    [47]Fujikake K, Mori K, Uebayashi K, et al. Dynamic properties of concrete materials with high rates of tri-axial compressive loads [J]. Structures and Materials,2000, 8:511-522.
    [48]吕培印.混凝土单轴、双轴动态强度和变形试验研究[D].大连:大连理工大学,2002.
    [49]闫东明.混凝土动态力学性能试验与理论研究[D].大连:大连理工大学,2006.
    [50]Ragueneau F, Gatuingt F. Inelastic behavior modeling of concrte in low and high strain rate dynamics [J]. Computers and Structures,2003,81(12):1287-1299.
    [51]Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures,2003,40:343-360.
    [52]Zhou X Q, Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate [J]. International Journal of Solids and Structures,2008, 45:4648-4661.
    [53]Klepaczko J R, Brara A. An experimental method for dynamic tensile testing of concrete by spalling [J]. International Journal of Impact Engineering,2001,25: 387-409.
    [54]张磊,胡时胜,陈德兴等.混凝土材料的层裂特性[J].爆炸与冲击,2008,28(3):193-197.
    [55]Scott B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates [J]. ACI Journal,1982,79(2): 13-27.
    [56]Dilger W H, Koch R, Kowalczyk R. Ductility of plain and confined concrete under different strain rates [J]. ACI Journal,1984,81(1):73-81.
    [57]Soroushian P, Choi K B, Alhamad A. Dynamic constitutive behavior of concrete [J]. ACI Journal,1986,83(26):251-259.
    [58]Mander J B, Priestley J N, Park R. Observed stress-strain behavior of confined concrete [J]. Journal of structural engineering,1988,114(8):1827-1849.
    [59]Mander J B, Priestley J N, Park R. Theoretical stress-strain model for confined concrete [J]. Journal of structural engineering,1988,114(8):1804-1826.
    [60]Ahmad S H, Shah S P. Behavior of hoop confined concrete under high strain rates [J]. ACI,1985,82(55):634-647.
    [61]Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]. 14th International Symposium on Ballistics, Quebec, Canada,1993.
    [62]陈书宇,沈成康.基于OTTOSEN准则的混凝土粘塑性力学模型[J].固体力学学报,2005,26(1): 67-71.
    [63]陈书宇,沈成康,金吾根.有限变形下的混凝土动态本构关系研究[J].应用数学和力学,2004,25(12):1257-1263.
    [64]唐志平,田兰桥,朱兆祥等.高应变率下环氧树脂的力学性能[C].第二届全国爆炸力学会议,扬州,1980.
    [65]唐志平.高应变率下环氧树脂的动态力学性能[D].合肥:中国科学技术大学,1981.
    [66]冯明辉.粘弹塑性统一本构理论[D].大连:大连理工大学,2000.
    [67]刘长春.粘塑性统一本构理论及其在混凝土中的应用[D].大连:大连理工大学,2007.
    [68]杨桂通,熊祝华.塑性动力学[M].北京:清华大学出版社,1984.
    [69]Perzyna P. Fundamental problems in visco-plasticity [J]. Advances in Applied Mechanics,1966,9:243-377.
    [70]Perzyna P. Thermodynamic theory of viscoplasticity [J]. Advances in Applied Mechanics,1971,11:313-354.
    [71]Duvaut G, Lions J L. Inequalities in mechanics and physics [M]. Berlin and New York:springer-Verlag,1976.
    [72]Pandey A K, Kumar R, Paul D K, et al. Strain rate model for dynamic analysis of reinforced concrete structures [J]. Journal of Structural Engineering,2006, 132(9):1393-1401.
    [73]吴红晓,陈向欣,严万松.钢筋混凝土板动力非线性有限元分析[J].计算力学学报,2002,19(3):336-339.
    [74]Iaauddin B A, Fang Q. Rate-sensitive analysis of framed structures. Part1:model formulation and verification [J]. Structural Engineering and Mechanics,1997, 5(3):221-238.
    [75]Fang Q, Iaauddin B A. Rate-sensitive analysis of framed structures. Part2: implementation and application to steel and R/C frames [J]. Structural Engineering and Mechanics,1997,5(3):239-256.
    [76]方秦,陈力,张亚栋,柳锦春.爆炸荷载作用下钢筋混凝土结构的动态响应与破坏模式的数值分析[J].工程力学,2007,24(s2):135-154.
    [77]Farag H M, Leach P. Material modeling for transient dynamic analysis of reinforced concrete structures [J]. International Journal for Numerical Methods in Engineering,1996,39:2111-2129.
    [78]Bicanic N, Zienkiewicz 0 C. Constitutive model for concrete under dynamic loading [J]. Earthquake Engineering and Structural Dynamics,1983,11:689-710.
    [79]Nard H L, Bailly P. Dynamic behavior of concrete:the structural effects on compressive strength increase [J]. Mechanics of Cohesive-Frictional Materials, 2000,5(6):491-510.
    [80]Georgin J F, Reynouard J M. Modeling of structures subjected to impact:concrete behavior under high strain rate [J]. Cement and Concrete Composites,2003,25(1): 131-143.
    [81]Jose J, Cela L. Analysis of reinforced concrete structures subjected to dynamic loads wi th a wiscoplastic drucket-Prager model [J]. Applied Mathematical Modeling, 1998,22:495-515.
    [82]Wang W. Stationary and propagative instabilities in metals-a computational point of view [D]. Netherlands: TU Delft. 1997.
    [83]Winnicki A, Pearce C J, Bicanic N. Viscoplastic hoffman consistency model for concrete [J]. Computers and Structures, 2001, 79(1): 7-19.
    [84]肖诗云,林皋,王哲Drucker-Prager材料一致率型本构模型[J].工程力学,2003,20(4):147-151.
    [85]肖诗云,林皋,李宏男.混凝土ww三参数率相关动态本构模型[J].计算力学学报,2004,21(6):641-646.
    [86]李庆斌,张楚汉,王光纶.单轴状态下混凝土的动力损伤本构模型[J].水利学报,1994(12):55-60.
    [87]白以龙.材料和结构的动态响应[M].合肥:中国科学技术大学出版社,2005.
    [88]陈建云,李静,林皋.基于速率相关混凝土损伤模型的高拱坝地震响应分析[J].土木工程学报,2003,36(10):46-50.
    [89]Suaris W, Shah S P. Constitutive model for dynamic loading of concrete [J]. Journal of Structural Engineering, 1985, 111(3): 563-576.
    [90]Dube J F, Pi jandier-Cabot G, Borderie C L. Rate dependent damage model for concrete in dynamic [J]. Journal of Engineering Mechanics, 1996, 22(10): 939-947.
    [91]Challamel N, Lanos C, Casandjian C. Creep damage modeling for quasi-brittle materials [J]. European Journal of Mechanics - A/Solids, 2005, 24(4): 593-613.
    [92]宁建国,刘海峰,商霖.强冲击荷载作用下混凝土材料动态力学特性及本构模型[J].中国科学,2008,38(6):759-772.
    [93]刘海峰,宁建国.强冲击荷载作用下混凝土材料动态本构模型[J].固体力学学报,2008,29(3):234-238.
    [94]李兆霞,Mroz Z.一个综合模糊裂纹和损伤的混凝土应变软化本构模型[J].固体力学学报,1995,16(3):22-30.
    [95]Cervera M, Oliver J, Mamnzoli O. A rate-dependent isotropic damage model for the seismic analysis of concrete dams [J]. Earthquake Engineering and Structural Dynamics, 1996, 25(9): 987-1010.
    [96]李杰,任晓丹,黄桥平.混凝土黏塑性动力损伤本构关系[J].力学学报,2011,43(1)193-201.
    [97]Ragueneau F, Gatuingt F. Inelastic behavior modeling of concrte in low and high strain rate dynamics [J]. Computers and Structures, 2003, 81(12): 1287-1299.
    [98]郑丹,李庆斌.考虑细观缺陷和静力本构的混凝土动力本构模型[J].清华大学学报(自然科学版),2004,44(3):410-412.
    [99]Davis E A. The effect of speed of stretching and the rate of loading on the yielding of mild steel [J]. J. Appl. Much., 1938, 5(4): 137-140.
    [100]Manjoine M J. Influence of rate of strain and temperature on yield stress of mild steel [J]. Journal of Applied Mechanics,1944,11:211-218.
    [101]Mahin S A, Bertero V V. Rate of loading effects on uncracked and repaired reinforced concrete members [R]. Rep. No. EERC 72-9, Universtity of California, Berkeley, California,1972.
    [102]Chang K C, Lee G C. Strain rate effect on structural steel under cyclic loading [J]. Journal of Engineering Mechanics,1987,113(9):1292-1301.
    [103]EIBL J. Concrete structures under impact and impulsive loading (CEB-Bulletin d' information, NO.187) [R] Dubrovnik:Comite Euro-International du Beton,1988.
    [104]Restrepo-Posada J I, Dodd L L, Park R et al. Variables affecting cyclic behavior of reinforcing steel [J]. Journal of Structural Engineering,1994,120(11): 3178-3196.
    [105]陈肇元,曹炽康,李庆标.建筑钢筋在快速变形下的力学性能[R].抗爆结构研究报告第一集:结构材料的动力性能及其计算强度.北京:清华大学,1971.
    [106]陈肇元.高强钢筋在快速变形下的性能及其在抗爆结构中的应用[R].科学研究报告第四集:钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社.1986.
    [107]宋军.应变率敏感材料物理参量的研究及其工程应用[D].北京:清华大学,1990.
    [108]林峰,顾祥林,匡昕昕,等.高应变率下建筑钢筋的本构模型[J].建筑材料学报,2008,11 (1) : 14-20.
    [109]李敏,李宏男.建筑钢筋动态试验及本构模型[J].土木工程学报,2010,43(4):70-75.
    [110]Soroushian P, Choi k B. Steel mechanical properties at different strain rates [J]. Journal of Structural Engineering,1987,113(4):663-672.
    [111]Malvar L J, Crawford J E. Dynamic increase factors for steel reinforcing bars [C]. Twenty-Eighth DDESB Seminar. Orlando, FL,1998.
    [112]Vos E, Reinhardt H W. Influence of loading rate on bond behaviour of reinforcing steel and prestressing strands [J]. Materials and Structures,1982,15(1):3-10.
    [113]Chung L, Shah S P. Effect of loading rate on anchorage bond and beam-column joints [J]. ACI Structural Journal,1989,86(2):132-142.
    [114]Weathersby JH. Investigation of bond slip between concrete and steel reinforcement under dynamic loading conditions [D]. Louisiana State University and Agricultural and Mechanical college,2003.
    [115]洪小健,赵鸣.加载速率对锈蚀钢筋与混凝土粘结性能的影响[J].同济大学学报,2002,30(7):792-796.
    [116]Soroushian P, Obaseki K. Strain rate-dependent interaction diagrams for reinforced concrete sections [J]. ACI Journal,1986,83(1):108-116.
    [117]Al-Haddad M S. Curvature ductility of reinforced concrete beams under low and high strain rates [J]. ACI Structural Journal,1995,92(5):526-534.
    [118]Bertero V V, Rea D, Mahin S, et al. Rate of loading effects on uncracked and repaired reinforced concrete members [C]. Proceeding of fifth world conference on earthquake engineering, Rome,1973(1):1461-1471.
    [119]Mutsuyoshi H, Machida A. Dynamic properties of reinforced concrete piers [C]. Proceeding of eighth world conference on earthquake engineering, San Francisco, 1984(6):299-306.
    [120]Shah S, Wang M L, Chung L. Model concrete beam-column joints subjected to cyclic loading at two rates [J]. Materials and Structures,1987,20(2):85-95.
    [121]Nagataki Y, Kitagawa Y, Midorikawa M, et al. Dynamic response analysis with effects of strain rate and stress relaxation [C].Proceedings of Ninth World Conference on Earthquake Engineering,1988,(4):693-698.
    [122]Chung L, Shah S P. Effects of loading rate on anchorage bond and beam-column joints [J]. ACI Journal,1989,86(2):132-142.
    [123]Gutierrez E, Magonette G, Verzeletti G. Experimental studys of loading rate effects on reinforced concrete columns [J]. Journal of Engineering Mechanics, 1993,119(5):887-904.
    [124]Kulkarni S M, Shah S P. Response of reinforced concrete beams at high strain rates [J]. ACI Structural Journal,1998,95(6):705-715.
    [125]Otanl S, Kaneko T, Shiohara H. Strain rate effect on performance of reinforced concrete members [C]. Concrete structures in seismic regions:FiB,2003.
    [126]Zhang X X, Ruiz G, Yu R C. Experimental study of combined size and strain rate effects on the fracture of reinforced concrete [J]. Journal of Materials in Civil Engineering,2008,20(8):544-551.
    [127]陈肇元,史岚青.钢筋混凝土梁在静速和快速变形下的弯曲性能[R].科学研究报告第四集:钢筋混凝土结构构件在冲击荷载下的性能。北京:清华大学出版社,1986.
    [128]陈肇元,罗家谦.钢筋混凝土轴压和偏压构件在快速变形下的性能[R].科学研究报告第四集:钢筋混凝土结构构件在冲击荷载下的性能。北京:清华大学出版社,1986.
    [129]陈俊名.钢筋混凝土剪刀力墙动力加载试验及考虑应变率效应的有限元模拟[D].和沙:湖南大学,2010.
    [130]龙业平.钢筋混凝土柱快速加载试验及动力滞回规律研究[D].长沙:湖南大学,2010.
    [131]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997.
    [132]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [133]韦锋.钢筋混凝土框架和框架-剪刀墙结构非弹性地震反应性态的识别[D].重庆:重庆大学,2005.
    [134]Pankaj P, Lin E. Material modeling in the seismic response analysis for the design of RC framed structures [J]. Engineering Structures,2005,27(7):1014-1023.
    [135]阎石,张亮,王丹.钢筋混凝土板在爆炸荷载作用下的破坏模式分析[J].沈阳建筑大学学报.2005,21(3):177-180.
    [136]Wei J, Quintero R, Galati, et al. Failure modeling of bridge components subjected to blast loading, part1:Strain rate-dependent damage model for concrete [J]. International Journal of Concrete Structures and Materials,2007,1(1):19-28.
    [137]Chen L, Fang Q, Zhang Y, et al. Rate-sensitive numerical analysis of dynamic responses of arched blast doors subjected to blast loading [J]. Transactions of Tianjin University,2008,14(5):348-352.
    [138]Shimazaki K, Wada A. Dynamic analysis of a reinforced concrete shear wall with strain rate effect [J].ACI Structural Journal,1998,95(5):488-497.
    [139]Nagataki Y, Kitagawa Y, Midorikawa M, et al. Dynamic response analysis with effects of strain rate and stress relaxation [C]. Proceeding of ninth world conference on earthquake engineering, Tokyo,1988,4:693-698.
    [140]方秦,柳锦春,张亚栋,等.爆炸荷载作用下钢筋混凝土梁破坏形态有限元分析[J].工程力学,2001,18(2):1-8.
    [141]柳锦春,方秦,龚自明,等.爆炸荷载作用下钢筋混凝土梁的动力响应及破坏形态分析[J].爆炸与冲击.2003,23(1):25-30.
    [142]师燕超,李忠献,郝洪.爆炸荷载作用下钢筋混凝土框架结构的连续倒塌分析[J].解放军理工大学学报.2007,8(6):652-658.
    [143]师燕超,李忠献.爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式[J].建筑结构学报.2008,29(4):112-117.
    [144]邱法维.结构抗震实验方法进展[J].土木工程学报.2004, 37(10):19-27.
    [145]李兵.钢筋混凝土框-剪结构多维非线性地震反应分析[D].大连:大连理工大学,2005.
    [146]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [147]Kabeyasawa T, Shioara T H, Otani S. U. S. Japan coopertive research on R/C full-scale building test, Part 5:Disscussion of Dynamic Response System. Proc.8th of WCEE, SanFrancisco,1984.
    [148]周颖,卢文胜,吕西林.模拟地震振动台模型实用设计方法[J].结构工程师.2003, (3):30-38
    [149]杨玉成,黄浩华,孙景江,等.七层钢筋混凝土异形柱支撑框架结构模型振动台试验研究[J].地震工程与工程震动.1995,15(1):53-66.
    [150]杜宏彪,沈聚敏.空间钢筋混凝土框架结构模型的振动台试验研究[J].建筑结构学报.1995,16(1):60-69.
    [151]叶献国,刘涛,徐勤,等.振动台三维模拟地震试验研究[J].合肥工业大学学报.1998,21(S1): 1-6.
    [152]朱杰江,吕西林,邹昀.上海金融中心模型结构振动台试验与理论分析对比研究[J].土木工程学报.2005,38(10):18-26.
    [153]赵斌,吕西林,卢文胜,等.局域大空间复杂体型高层结构整体模型振动台实验研究[J].建筑结构学报.2007,28(S1):1-7.
    [154]吕西林,陈跃,卢文胜,等.高位转换超限高层结构整体模型振动台试验研究[J].同济大学学报.2008,36(6):711-716.
    [155]刘铁军,欧进萍.高阻尼混凝土框架的动力特性与抗震试验[J].地震工程与工程振动.2008,8(2):72-76
    [156]潘汉明,周福霖,梁硕.广州新电视塔整体结构振动台试验研究[J].工程力学.2008,25(11):78-85.
    [157]Sun J J, Wang T, Qi H. Earthquake simulator tests and associated study of an 1/6-scale nine-story RC model[J]. Earthquake Engineering and Engineering Vibration,2007,6(3):281-288.
    [158]张敏政.地震模拟实验中相似律应用的若干问题[J].地震工程与工程振动.1997,17(2):52-58.
    [159]黄维平,王连广.人工质量在砖混结构振动台试验中的应用[J].地震工程与工程振动.2001,21(3):99-103.
    [160]周颖,吕西林,卢文胜.不同结构的振动台试验模型等效设计方法[J].结构工程师.2006,22(4):37-40.
    [161]林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报.2000,40(1):1-8.
    [162]杨树标,李荣华,刘建平,等.振动台试验模型和原型相似关系的理论研究[J].河北工程大学学报.2007,24(1):8-11.
    [163]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [164]杨政,廖红建,楼康禺.微粒混凝土受压应力应变全曲线试验研究[LJ].工程力学,2002,19(2): 90-94.
    [165]沈德建,吕西林.模型试验的微粒混凝土力学性能试验研究[J].土木工程学报,2010,43(10):14-21.
    [166]GB 50010-2010混凝土设计规范[S].北京:中国建筑工业出版社,2010.
    [167]庄茁,由小川,廖建晖,等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.
    [168]Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structure[J]. Journal of Engineering Mechanics,1998,124(8):892-900.
    [169]沈德建,吕西林.模型试验金属材料力学性能试验研究[J].结构工程师,2007,23(1):67-71.
    [170]GB/T、228-2002.金属材料室温拉伸试验方法[S].中国标准出版社,2002.
    [171]田利.输电塔-线体系多维多点地震输入的试验研究与响应分析[M].大连:大连理工大学,2011.
    [172]FBG传感器在粘土心墙坝模型试验中的应用[J].光电子·激光,2011,22(8):1124-1129.
    [173]建筑抗震弹塑性分析-原理、模型与在ABAQUS,MSC. MARC和SAP2000上的实践[M].北京:中国建筑工业出版社,2009.
    [174]Milev J I. Two dimentional analytical model of reinforce concrete shear walls[C]. Proceeding of 11th world conference on earthquake engineering, Acapulco, Mexico, 1996.
    [175]Vulcano A, Bertero V V. Analytical model for predicating the lateral response of RC shear wall:evaluation of their reliability[R]. University of California, UCB/EERC Report. No.87/19, Berkeley, California.
    [176]Linda P. Bachmann H. Dynamic modeling and design of earthquake-resistant walls[J]. Earthquake Engineering and Structure Dynamic,1994,23(12):1331-1350.
    [177]张隆飞.配有高强钢筋的高强混凝土剪力墙抗震性能研究[D].沈阳:沈阳建筑大学,2007.
    [178]GB 50010-2002,混凝土设计规范[S].北京:中国建筑工业出版社,2002.
    [179]Cela J. Material identification procedure for elastoplastic drucker-prager model [J]. Journal of Engineering Mechanics,2002,128(5):586-591.
    [180]Chen W F. Plasticity in reinforced concrete[M]. McGraw-Hill, New York,1982.
    [181]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [182]ABAQUS analysis user's manual[M]. American:ABAQUS INC,2003.
    [183]王金昌,陈页开ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700