基于压电-SMA变摩擦阻尼器的智能隔震系统试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构振动控制作为一种积极、有效的减震技术在土木工程中的研究和应用已经有近40年的历史,而近年来将磁流变(MR)、形状记忆合金(SMA)和压电陶瓷(PZT)等智能材料引入其中,为建造大震不倒的结构提供了光辉灿烂的前景,也为振动控制的研究平添了无穷的活力。目前对MR阻尼器的研究已经比较深入和成熟,故有必要加强对其它半主动控制装置的研究与开发。本文基于形状记忆合金(SMA)和压电陶瓷(PZT)两种智能材料的特点,提出了三种压电复合变摩擦阻尼器,它们充分利用PZT的正、逆压电效应和响应速度快的优点以及SMA丝出力大、性能稳定的特性,结合摩擦阻尼器的简单构造,改善了现有压电阻尼器的性能,力图推进压电阻尼器的实用化进程。
     在电场作用下,变形被约束的叠层压电陶瓷驱动器能够瞬间提供可控的驱动力(即逆压电效应),而且控制系统简单可靠,这些特点为其实用化提供了方便。利用这个特点,分别研发了水平面内无方向性的压电变摩擦阻尼器和压电-SMA复合变摩擦阻尼器,与圆形隔震橡胶支座协调工作,能够在水平各个方向提供可控的摩擦阻尼。对安装有新型阻尼器的智能隔震结构进行了理论分析和试验研究。在此基础上,还提出了压电自发电的智能隔震系统的理论构想。主要工作包括以下几个方面:
     (1)针对新型的压电阻尼器和压电-SMA变摩擦阻尼器,制作了其实验室比例的模型。分别进行了压电陶瓷出力性能试验、SMA丝材料性能试验和两种新型阻尼器的动力性能试验:压电驱动器出力性能试验结果表明,开始阶段预压力的增加能提高压电陶瓷驱动器的出力,但随着约束钢架被预压得越来越紧密,压电驱动器出力趋于稳定。阻尼器性能试验主要研究其动力特性,研究了施加固定预压力(对应于“被动关”状态)和同时施加预压力和变电压下阻尼力(对应于半主动控制状态)的特性,特别是研究了双向滑动时压电摩擦阻尼器的动力特性,还测试了大行程下SMA丝提供的阻尼力特性。结果表明,SMA丝能够在隔震层位移较大时,提供很好的复位力。智能阻尼器半主动和被动状态下的可控阻尼力稳定,滞回性能在低频段基本不随加载频率的变化而改变。双向滑动时,起滑阶段x、y方向初始刚度相差较大,滑移稳定后双向的动力特性稳定。
     (2)由于压电-SMA复合变摩擦阻尼器构造复杂,而且两种智能材料(叠层压电驱动器和SMA丝)都在贡献阻尼力时导致阻尼器变形,而目前研究中基于单向胡克定律的压电可调正压力计算公式已经不再适用。所以,提出了基于有限元分析的智能阻尼器可调阻尼力计算模型和带电压参数的形状系数计算公式。通过Ansys分析还证明了长行程的压电复合阻尼器中,压电正压力偏心,对可调阻尼力的影响非常小,并推导了可调阻尼力偏心影响的计算公式。在此基础上,还优化了复合智能阻尼器的刚度参数。
     (3)对基于压电-SMA复合变摩擦阻尼器的智能高位层间隔震系统进行了仿真分析。以一14层的高位(第9层)层间隔震实际工程为算例,进行了限幅最优半主动控制和被动开、关控制以及最优电压控制的比较分析,首先确定了加层隔震抗震加固的智能隔震结构的控制效果评价指标,应用限幅最优控制策略和最优电压被动控制策略对层间隔震结构的地震响应进行了分析。结果表明,最优电压被动控制能取得半主动控制非常接近的控制效果,有效减小结构的地震响应(特别是隔震层的层间位移)。
     (4)进行了安装压电-SMA摩擦阻尼器的钢框架隔震模型结构(包括基础隔震和层间隔震)的振动台试验。试验结果表明,新型智能阻尼器的主要构件(压电套筒、约束钢架和SMA丝调节阀)都能在隔震层与圆形隔震垫协调工作,提供水平任一方向的可控阻尼力。比较分析了不同地震波输入下压电摩擦阻尼器的控制效果,特别是研究了隔震层位置不同时(基础隔震、首层隔震),智能隔震的控制效果。试验结果表明,压电-SMA复合变摩擦阻尼器和相应的控制策略都是非常有效的:被动开、关控制和最优电压控制均能减小结构的响应,最优电压控制不仅费效比是最好的,而且能充分发挥压电-SMA摩擦阻尼器的性能,获得很好的控制效果,特别是大幅减少了隔震层的位移,对层间隔震结构而言,不仅仅提高了隔震结构性能,而且也减少了P-Δ效应引起的弯矩和剪力,提高了层间隔震系统的可靠性。
     (5)对于偶然偏心作用导致结构的地震扭转响应,压电-SMA复合变摩擦阻尼器中的SMA丝能够提供抗扭拉力和阻尼,抵抗偶然偏心的作用。数值分析和振动台实验都证明,当压电-SMA复合阻尼器安装在结构平面位置的中心时,偶然偏心不会导致结构有明显的扭转振动。而一般的智能阻尼器都要求布置在结构平面位置的四周来抗扭,以牺牲半主动控制力为代价。
     (6)提出了一种压电自发电的变摩擦阻尼器和相应的智能层间隔震系统的理论构想。以隔震层地震波输出激励为发电激振力,设计了强制式叠层压电发电装置,推导了地震激励下发电装置发电能力的计算公式,并对两质点层间隔震模型进行了仿真分析,理论证明了压电自发电智能隔震系统的可行性
As a kind of active and effective countermeasure for seismic protection, the vibration control in civil engineering has be studied over the past40years. In recent years, the application of intelligent material (such as MR、PZT and SMA) and smart structure are becoming one of the hotspots in the research field of civil engineering control. At present, MR damper has been more mature, so it is necessary to strengthen research and development of the other semi-active control devices. This dissertation puts forward three new types of piezoelectric friction dampers, and by making full use of the quick action of PZT and the direct and converse piezoelectric effect, they improve the performance of existing piezoelectric damper, to promote the practical process of the piezoelectric dampers.
     Piezoelectric actuator possess the converse effect. Namely, it can generate adjustable force by controlling the applied voltage, and it is characterized by simple and reliable control system which provide a convenient for its practical application. In this dissertation, commercially available multilayer piezoelectric stack actuators are considered for driving variable friction damper, and by using SMA wires and friction damper, a PZT and SMA compound friction dampers is proposed innovatively. It is considered that the applications of independently developed PZT-SMA combined dampers in the semi-active and passive control. The theoretical analysis and experiment of structural control system were performed, Theoretical conception is proposed on the self-powered PF damper. The primary contents include as follows:
     (1) Two kinds of new type piezoelectric friction dampers with and without SMA are proposed, and the scale dampers are designed and fabricated. Firstly, the force generation of the piezoelectric actuator is tested and shows the force increases as the voltage. Secondly, the performance experiment is carried out under varying voltage to identify its motion-independent characteristics on two-way slide. Experimental results indicate that the load-displacement curves are stable and independent of the excitation in low frequency range (0.01-0.06Hz). On two-way slide, the larger difference in the initial stiffness of the x, y direction is existing at the sliding phase, but after sliding stability, two-way dynamic characteristics is stable.
     (2) Because of the complex structures of the new damper, it is no longer applicable for piezoelectric adjustable pressure formula currently based on one-way Hook theorem. Therefore, the finite element analysis program ANSYS is put to use and deformation test is done to prove correctness of calculation. The shape factor of piezoelectric damper is decided based on the analysis. it also demonstrates that piezoelectric normal pressure eccentric has little effect to the adjustable damping force, and the eccentric impact formula is derived. At the same times, the optimization on the parameters of smart damper stiffness is done by using the finite element analysis.
     (3) The simulation analysis for the intelligent high inter-story seismic system has been done. The proposed control strategy was applied to a14-story isolation structure which is an actual project to simulate its seismic effectiveness under five ground motion records, The control evaluating index are decided, moreover the control algorithms of there composite friction dampers are further investigated, and the Optimal-Voltage Control and Clipped-Optimal Control are the proposed two kinds of methods of control strategies. Numerical simulation shows the two kinds of methods are all effective for suppressing the seismic responses. The implementation of optimal-voltage control needs only power-supply, so the control cost decrease and the reliability increase. And the application value is clear.
     (4) Experimental validation is also carried out by using a series of shake table tests on a4-story steel isolated structure model (including base-isolation and first-story isolation) controlled with the smart dampers with SMA and without SMA. The performance of the compound smart friction damper and the control strategy are evaluated experimentally. Before the tests, numerical modeling and simulation were conducted. The analysis results were contrasted with the test results under different earthquake waves. The comparison indicate that the simulation is correct and the damper is effective in mitigating earthquake responses on both passive control (optimal-voltage control) and the semi-active control. The optimal-voltage control can achieve better performance. the effectiveness of the control strategy was verified with shake table tests conducted on a1/4scale,4-story isolation. In order to simplify the installation, the piezoelectric friction dampers are located at the centre of the isolation structure.
     (5) When accidental eccentricity leads to the seismic torsional effects, the smart damper can provide anti-torsional tension and damping by using SMA wire. Both the numerical simulation and shake table tests have all proved that the accidental eccentricity does not lead to the larger torsional vibration. And the current smart dampers are required to be arranged in the structure around the plane to anti-torsion.
     (6)A self-powered piezoelectric damper is proposed, through it the smart inter-story isolation system is established theoretically. It makes full use of the quick action of PZT and the direct and converse piezoelectric effect, so the smart isolation can get rid of the external power supply. Seismic waves is the power generation excitation, then piezoelectric power generation is designed and the formula for calculating the piezoelectric power generation is derived. Numerical simulations for inter-story isolation equipped with this system excited by historical earthquakes are conducted and shows it can suppress the seismic responses.
引文
[1]周福霖.工程结构减震控制.北京:地震出版社,1997
    [2]黄尚廉.智能结构系统防灾减灾的研究前沿.土木工程学报,2000,33(4):1-5
    [3]T. T. Soong. Active Structural Control:Theory and Practice. Longman Scientific & Technical, New York, USA.1990
    [4]周福霖,谭平,阎维明.结构半主动减震控制新体系的理论与试验研究.广州大学学报(自然科学版),2002,1(1):69-74
    [5]Yao J P. Concept of structural control. Journal of Structrual Division,1972, 98(ST7):1567-1573
    [6]Spencer B F, Nagarajaiash S. State of the art of structural control. ASCE Journal of Structural Engineering,2003,129(7):845-856
    [7]Housner G W,Bergman L A, Caughey T K,et,al. Structural control:past,present, and future.Journalof Engineering Mechanics,1997,123(9):897-971.
    [8]欧进萍.结构振动控制—主动、半主动和智能控制.北京:科学出版社,2003
    [9]李宏男.结构振动与控制.北京:中国建筑工业出版社,2005
    [10]李宏男,阎石.中国结构控制的研究与应用.地震工程与工程振动,1999,19(1):107-112
    [11]李宏男.结构振动控制实践的新进展.世界地震工程,1995,11(2):34-39
    [12]中华人民共和国国家标准(GB50011-2010).建筑抗震设计规范.北京:中国建筑工业出版社,2010
    [13]周锡元,吴育才.工程抗震的新发展.北京:清华大学出版社,2002
    [14]武田寿一.建筑物隔震、防振与控振.北京:中国建筑工业出版社,1993.
    [15]Ramallo J.C., Johnson E.A., Spencer J.F. Smart base isolation. Journal of Engineering Mechanics,2002,128(10):1008-1099
    [16]杨迪雄,李刚,程耿东.隔震结构的研究概况和主要问题.力学进展2003,33(3):302-212.
    [17]苏经宇,曾德民.我国建筑结构隔震技术的研究与应用.地震工程与工程振动,2001,21(4):94-101.
    [18]施卫星,李正升.建筑结构基础隔震系统的发展及应用.结构工程师,1997,13(1):14-18
    [19]张克猛,范晓军,黄幼玲.一种新型隔震器的研制.西安交通大学学报,2002,36(1):70-73
    [20]Kelly J M, Skinner R I, Heine A J. Mechanisms of energy absorption in special devices for use in earthquake resistant strueture. Bulletin of N.Z. society for Earthquake Engineering,1972,5(3):63-88
    [21]周云.摩擦耗能减震结构设计.武汉:武汉理工大学出版社,2006
    [22]周云,刘季.圆环耗能器的研究.世界地震工程,1996,12(4):1-8
    [23]周云,刘季.双环软钢耗能器的研究.地震工程与工程振动,1998,18(2):117-123
    [24]李宏男,李钢,李中军等.钢筋混凝土框架结构利用“双功能”软钢阻尼器的抗震设计.建筑结构学报,2007,28(4):36-43
    [25]Pall S, Marsh C.. Response of friction damper braced frames. Journal of Struetural Division,1982,108(6):1313-1323
    [26]吴斌,张纪刚.基于几何非线性的Pall型摩擦阻尼器滞回特性分析与试验验证.地震工程与工程振动,2001,21(4):60-65
    [27]吴斌,张纪刚,欧进萍Pall型摩擦阻尼器的试验研究与数值分析.建筑结构学报,2003,24(2):7-13
    [28]吴斌,张纪刚,欧进萍Pall型摩擦阻尼支撑内力计算方法.世界地震工程,2004,20(2):6-11
    [29]吴斌,欧进萍.拟粘滞摩擦耗能器的性能试验与分析.世界地震工程,1999,15(1):1-12
    [30]昊斌,张纪刚,欧进萍.拟粘滞摩擦耗能器滞回特性及支撑内力分析.哈尔滨工业大学学报,2003,35(7):834-839
    [31]张纪刚.两种摩擦阻尼器抗震性能的数值分析和试验研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2002
    [32]吴波,李惠.液压粘弹性控制系统对建筑结构抗震控制的研究.地震工程与工程振动,1996,16(2):67-75
    [33]徐赵东,周洲,赵鸿铁等.粘弹性阻尼器的计算模型.工程力学,2001,18(6):88-93
    [34]吴波,郭安薪.设有粘弹性阻尼器的结构体系的受力分析.世界地震工程,1998,14(3):6-14
    [35]陈月明.建筑结构的粘弹阻尼振动控制:[博士学位论文].哈尔滨:哈尔滨建筑大学,1998.
    [36]魏文晖,瞿伟廉.设置FVD框架结构的非线性地震反应控制研究.东南大学学报(自然科学版),2004,34(13):386-389.
    [37]周云,刘季.粘弹性阻尼器结构的抗震设计方法.世界地震工程,1996,12(1):23-31
    [38]Miyazaki M,Arima F,Kidate Y,etal. Earthquake response control design of building using viscous damping walls.Proeeedings of the first East-Asia Pacific conference,1986,3:1882-1891
    [39]宋智斌.消能技术在抗震加固中的研究与应用.第六届全国地震工程学术会议,南京,2002
    [40]孙树民.自立式独柱平台的TMD减震控制研究.中国海洋平台,2000,15(6):6-9
    [41]LinYY,Cheng C M,Lee C H. A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of long-span bridges. Engineering Struetures,2000,22(9):1195-1204
    [42]顾明,项海帆.杨浦大桥抖振及控制分析.同济大学学报1993,21(3):307-314
    [43]顾明,吴炜,项海帆.大跨桥梁颤振控制的试验研究.同济大学学报,1996,24(2):124-129
    [44]陈艾容,项海帆.斜拉桥涡激扭转振动的被动控制.同济大学学报,1994,22(4):487-492
    [45]赵光恒.土建结构振动控制研究进展.地震学刊,1999:35-42
    [46]胡继军,黄金枝,李春祥.网壳-TMD风振控制分析.建筑结构学报,2001,22(3):31-35
    [47]叶继红,陈月明,沈世钊.网壳结构TMD减震系统的优化设计.振动工程学报,2000,13(3):376-384
    [48]Chen G D,Wu J N. Optimal placement of multiple tune mass dampers for seismic structures. Journal of Structural Engineering,2001,127(9):1054-1062
    [49]蔡国平,孙峰,黄金枝MTMD控制结构地震反应的特性研究.工程力学,2000,17(3):55-59
    [50]李春祥.地震作用下高层钢结构的最优MTMD控制策略及设计.计算力学学报,2002,19(1):83-88
    [51]李宏男,阎石,贾连光.利用调液阻尼器减振的结构控制研究进展.地震工程与工程振动,1995,15(3):99-110
    [52]李宏男,张玲,杨玉石.利用多个调液阻尼器减小高层建筑地震反应的研究.地震工程与工程振动,1997,17(1):23-31
    [53]瞿伟廉,宋波,陈研桂等.TLD对珠海金山大厦主楼风振控制设计.建筑结构学报,1995,16(3):21-36.
    [54]程文澳,瞿伟廉,陆勤等.南京电视塔的风振控制.土木工程学报,1993,26(4):14-20
    [55]钱稼如等.用TLD减小电视塔动力反应的振动台实验研究.建筑结构学报,1995,16(5):2-39
    [56]Zhu B L.Test research on vibration of 1:50 model structure of 459m Shanghai ratio and TV tower with water tanks.USA/China/Japan Triateral workshop on structure,1992
    [57]井秦阳.大连国贸大厦高层水箱减振控制研究与应用:(硕士学位论文).大连:大连理工大学:2005
    [58]Rasouli S K,Yahyai M. Control of response of structures with passive and active tuned mass dampers. The Strueture Design of Tall Buildings,2002,11(1):1-14
    [59]宋根由.结构主动控制(AMD)系统实验与分析:[博士学位论文].哈尔滨:哈尔滨工业大学,1996
    [60]田石柱,刘季.结构模型的AMD主动控制实验.地震工程与工程振动,1999,19(4):90-94
    [61]欧进萍,王刚,田石柱.海洋平台结构的AMD主动控制试验研究.高技术通讯,2002,12(10):85-90
    [62]Cao H,Reinhorn A M,Soong T T. Design of an active mass damper for a tall TV tower in Nanjing,China. Engineering Structures,1998,20(3),134-143
    [63]吴波,刘汾涛,魏德敏.变刚度半主动控制结构的抗震设计方法.振动工程学报,2003,16(3):306-310
    [64]吴波,刘汾涛,魏德敏.变刚度半主动控制结构的拟振型分解法.华南理工大学学报(自然科学版),2002,30(9):85-90
    [65]何玉敖,冯德平.主动变刚度结构体系(AvS)多模态优化控制研究.建筑结构学报,2000,21(3):53-59
    [66]李敏霞,欧进萍,王刚等.足尺变刚度控制系统性能试验与计算模型.地震工程与工程振动,2000,20(4):96-100
    [67]李敏霞,刘季.变刚度半主动结构振动控制的试验研究.地震工程与工程振动,1998,18(4):90-95
    [68]李敏霞,刘季.电液式变刚度结构振动控制系统的稳定性分析.振动与冲击,1999,18(2):81-83
    [69]Yang N. J., Wu J. C., Li Z., Control of seismic excited buildings using active variable stiffness systems. Engineering Structures,1996,18(8):589-596
    [70]孙作玉.变阻尼半主动结构控制,[哈尔滨建筑大学博士学位论文].哈尔滨:哈尔滨建筑大学,1998
    [71]谭平.主动变阻尼变刚度控制,[湖南大学博士学位论文].长沙:湖南大学,1998
    [72]瞿伟廉,吕明云,李学安.屋盖MR智能隔震系统对升船机结构顶部厂房地震鞭梢效应的模糊控制.地震工程与工程振动,2002,22(3):129-137.
    [73]瞿伟廉,周耀.MR阻尼器对地震反应的模糊半主动控制.武汉理工大学学 报,2005,27(1):44-46.
    [74]瞿伟廉,刘嘉,涂建维,闺淼,程海斌.500kN足尺磁流变液阻尼器设计的关键技术.地震工程与工程振动.2007,27(2):124-1 30
    [75]周强,瞿维廉.安装MR阻尼器工程结构的非参数模型自适应控制.地震工程与工程振动,2004,24(4):127-132.
    [76]Xu Y. L., Qu W. L., Ko J. M. Seismic response control of frame structures using MR/ER dampers. Earthquake Engineering and Structural Dynamics,2000,29(5): 557-575.
    [77]Xu Y L,Chen J, NgCL. Semiactive seismic response control of buildings with podium structure. Journal of Structural Engineering,2005,131(6):890-899.
    [78]Li Z X,Xu L H. Performance tests and hysteresis model of MRF-04Kdamper. Journal of Structural Engineering,2005,131 (8):1303-1306.
    [79]李忠献,姜南,徐龙河等.不同控制策略下安装MRD的模型结构振动台试验与分析.建筑结构学报,2004,25(6):15-21.
    [80]Y.Q. Ni, J.M. Ko, Z.Q. Chen, B.F. Spence. Lessons Learned from Application of semiactive MR dampers to bridge cables for wind-rain induced vibration control. Proceedings of China-Japan workshop on vibration control andhealth monitoring of structures. Shanghai China.2002
    [81]Y.L.Xu and C.L.Ng. Seismic Protection of Building Complex Using Variable Friction Damper:Experimental Investigation. Journal of Engineering Mechanics Vol.114,No.8 August,2008 637-649
    [82]Chen C. C, Chen G. D. Shake table tests of a quarterscale three story building model with piezoelectric friction dampers. Struct. Control Health Monit.,11(4), 239-257
    [83]Chen G.D., Chen C.C.. Semiactive control of the 20-story benchmark building with piezoelectric friction dampers. J. Eng. Mech.,130(4),393-400
    [84]Chen G.D., Garrett G.T., Chen C.C., Cheng F.Y.. Piezoelectric friction dampers for earthquake mitigation of buildings:Design, fabrication, and characterization. Struct. Eng.Mech.,17(3-4),539-556
    [85]Kobori T., Takahashi M.,Nasu T. Seismic response controlled structure with active variable stiffness system. Earthquake Engineering and Structural Dynamics,1993,22(11):925-941.
    [86]李人厚.智能控制理论和方法.西安:西安电子科技大学出版社,1999.
    [87]王永骥.神经元网络控制.北京:机械工业出版社,1999.
    [88]李宏男,阎石.智能结构控制发展综述.地震工程与工程振动,1999,19(2):29-36.
    [89]瞿伟廉,陈朝晖,徐幼麟.压电材料智能摩擦阻尼器对高耸钢塔结构风振反映的半主动控制.地震工程与工程振动2000,26(3):94-99
    [90]瞿伟廉,陈波,李学安等.压电材料智能力矩控制器对具有不确定参数升船结构顶部厂房地震反应的鲁棒控制.地震工程与工程振动,2001,21(2):145-151.
    [91]李书进,瞿伟廉,王军武.压电材料智能控制器对框架结构地震反应的主动控制.地震工程与工程振动,2000,20(1):100-104.
    [92]李爱群,瞿伟廉,程文壤.南京电视塔风振的混合振动控制研究.建筑结构学报,1996,17(3):9-17
    [93]Makris N. Rigidity-plasticity-viscosity:Can electrorheological dampers protect base-isolated structures from near-source ground motions. Earthquake Engineering and Structural Dynamics,1997,26:571-591.
    [94]欧进萍,杨飏.压电T型变摩擦阻尼器及其性能试验与分析,地震工程与工程振动2003,23(4):171-177
    [95]杨飏,欧进萍,刘光聪.T型压电变摩擦阻尼器性能试验与分析,压电与声光,2005,27(5):580-582
    [96]欧进萍,关新春,吴斌等.智能型压电-摩擦耗能器.地震工程与工程振动,2000,20(1):81-85
    [97]杨飏.结构振动控制的智能阻尼器性能与智能隔振系统:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2003
    [98]杜永峰.被动与智能隔震结构地震响应分析及控制算法.[大连理工大学博士学位论文],大连.2003
    [99]何晴光.万向型压电摩擦阻尼器及其在高层建筑减振控制中的应用[兰州理工大学硕士研究生学位论文].兰州:兰州理工大学,2004
    [100]杜永峰.安装智能摩擦阻尼器的高层建筑结构振动控制的一般算法.兰州理工大学学报,2005,31(2):103-106
    [101]刘季,孙作玉.结构可变阻尼半主动拉制.地震工程与工程振动,1997,17(2):92-97
    [102]周锡元,吴育才.工程抗震的新发展[M],广州:暨南大学出版社,2002年
    [103]胡卫兵,王骏涛.压电摩擦阻尼隔震结构地震响应及控制分析.振动与冲击,2007,26(2):79-83
    [104]李立州,胡卫兵.新型压电阻尼器本构模型分析.西安建筑科技大学学报,2003,35(2):123-126.
    [105]李军.智能压电摩擦阻尼器的控制理论与试验研究:[硕士学位论文].大连:大连理工大学,2005
    [106]Makris N. Nearsource earthquake base-isolated structures and semi-active dampers. Advances in Earthquake Engineering,1996,2:291-300
    [107]Makris N. Rigidity-plasticity-viscosity:Can eletrorheological dampers protect base-isolated structures from near source ground motions. Earthquake Engineering and structure Dynamics,1997,26(5):571-591
    [108]丁文镜.减振理论.北京,清华大学出版社,1988
    [109]Kelly J M. The role of damping in seismic isolation. Earthquake Engineering and structure Dynamics,1999,28:571-591
    [110]Makris N, Chang S. Effect of viscous, viscoelastic and friction damping on the response of seismic isolated structures. Earthquake Engineering and structure Dynamics,2000,29(1):88-107
    [111]Sahasrabudhe S, Nagarajaiah S, Hard C. Experimental study of sliding isolated with smart dampers subjected to near source ground motions. ASCE Proceedings of 12th Engineering Mechanics,2000,Austin,Texas,USA
    [112]Jangid R S, Kelly J M. Base isolation for near-fault motions. Earthquake Engineering and Structural Dynamics 2001,30(5):691-707
    [113]Rao P. B., Jangid R. S., Performance of sliding systems under near-fault motion. Nuclear Engineering and Design,2001,203:259-272
    [114]Yang J. N., Agranal A. K., Semi-active hybrid control system for nonlinear buildings against near-field earthquake. Engineering Structures,2002,24(3): 271-280
    [115]郑凯,阎邵泽,温诗铸等.预压力对压电叠层作动器性能的影响.压电与声光.2003(10):363-365
    [116]张福学,王丽坤.现代压电学.北京:科学出版社,2002
    [117]王剑,郭吉丰,郭帅.压电发电技术研究综述,压电与声光2011(06):394-397
    [118]齐洪东,杨涛,岳高铭等.微型压电陶瓷振动发电技术研究综述.传感器与微系统,2007,26(5):1-4
    [119]Stephen R P, Farritor S.H, Aider H. On low frequency electric power generation with PZT ceramics [J]. IEEE/ASME Transactions,2005,10(2) 240-252.-398
    [120]闫世伟,杨志刚,阚君武,等.压电陶瓷能量转换系统.吉林大学学报.2008,38(2):343-348.
    [121]林玲,刘辉.压电发电技术研究应用.硅谷,2008,14:120-121.
    [122]方科,李欣欣,杨志刚,等.压电式能量获取装置的研究现状.传感器与微系统,2006,25(10):7-9
    [123]新浪科技,世界首条可发电公路即将亮相以色列http://www.sina.com.cn, 2009-09-14.
    [124]新华网,发电地板亮相东京,走过踩过就可发电http://news.xinhuanet. com/tech/200812/10/content 10481247.htm,2008-12-10
    [125]Chu S Y, Soong T T, Reinhorn A M, et al. Integration issues in implementation of structural control systems.Journal of Structure Control,2002,9(1):31-58
    [126]Symans M D, Constantinou M C. Semi-active control systems for seismic protection of structures:a state-of-the-art review. Engineering Structures, 1999,21(6):469-487
    [127]Kurata N, Kobori T, Takahashi M,et al. Actual seismic response controlled building with semi-actived damper system. Earthquake Engineering and Structural Dynamics,1999,28(11):1427-1447
    [128]Watakabe M, Tohdo M., Chiba O.. Response control performance of a hybrid mass damper applied to a tall building. Earthquake Engineering and Structural Dynamics,2001,30(11):1655-1676
    [129]吴彦文.高层建筑风振控制的A/TMD方法:[武汉工业大学博士学位论文].武汉:武汉工业大学,1999
    [130]Yang J N, Li Z., Danielians A.. A seismic hybrid control of nonlinear and hyteretic structures. Journal of Engineering Mechanics,1992,118(7): 1423-1456
    [131]Yang J N, Wu J C, Kawashima K, et al. Hybrid control of seismic-excited bridge structures. Earthquake Engineering and Structural Dynamics,1995, 24(11):1437-1451
    [132]Madden G J, Wongprasert N,Symans M D. Analytical and numerical study of a smart sliding base isolation system for seismic protection of buildings. Computer-Aided Civil and Infrastructure Engineering,2003,18(1):18-30
    [133]Nagashima I, Maseki R, Asami Y.. Performance of hybrid mass damper system applied to a 36-story high-rise building. Earthquake Engineering and Structural Dynamics,2001,30(11):1615-1637
    [134]李爱群,瞿伟廉,程文壤.南京电视塔风振的混合振动控制研究.建筑结构学报,1996,17(3):9-17
    [135]杨大智.智能材料与智能系统.天津:天津大学出版社,2000
    [136]瞿伟廉,李卓球,姜德生等.智能材料-结构系统在土木工程中的应用.地震工程与工程振动,1999,19(3):87-95
    [137]姜德生,Glaus R O智能材料器件结构及其应用.武汉:武汉工业出版社.2000
    [138]杜善义.冷劲松,王殿富.智能材料系统与结构.北京:科学出版社,2001
    [139]李宏男,李东升,赵柏东.光纤健康监测方法在士木工程中的研究与应用进展.地震工程与工程振动,2002,22(6):76-83
    [140]孙丽.光纤光栅传感技术与工程应用:[大连理工大学博士学位论文].大连:大连理工大学,2006
    [141]李宏男,赵晓燕.压电智能传感结构在土木工程中的研究与应用.地震工程与工程振动,2004,24(6):165-172
    [142]焦莉,李宏男.PZT的EMI技术在土木工程健康监测中的研究进展.防灾减灾工程学报,2006,26(1):102-108
    [143]吴波,李惠,孙科学.形状记忆合金在土木工程中的应用研究.世界地震工程,1999,15(3):1-13
    [144]周云,谭平.磁流变阻尼控制理论与技术.北京:科学出版社,2007
    [145]胡卫兵,王骏涛.压电摩擦阻尼隔震结构地震响应及控制分析.振动与冲击,.2007,26(2):79-83
    [146]张永兵,张永申,李双蓓,等.3层基准建筑非线性地震反应的智能控制.土木建筑与环境工程,2009,31(1):49-54
    [147]张永兵,秦荣,李双蓓,等.压电变摩擦阻尼器对高层建筑非线性地震反应的模糊控制算法.振动与冲击,2008,27(11):142-146
    [148]亓兴军,李小军,唐晖.曲线桥梁弯扭耦合减震半主动控制分析.公路交通科技,2006,23(1):54-57.
    [149]丘湘泉,周福霖,徐忠根,罗学海.汕头博物馆隔震设计的几个问题.第三届全国结构减震控制学术讨论会论文集.63-69,广州,1995
    [150]徐忠根,周福霖.汕头博物馆结构动力分析.世界地震工程,1996(2):33-36
    [151]吴建桥,施卫星,王群.旧房改造中的层间隔震方法.上海建设科技1997(3)43-44
    [152]施卫星,王群.层间隔震原理和设计方法 工程抗震1997(4)20-22
    [153]趟听,李杰.层间隔震结构隔震垫的有限元模拟.建筑结构.2001,31(11):66-68
    [154]趟听,叶德传,章萍,等.层间隔震房屋振动台试验与分析.东南大学学报2002,,32(增刊):365-368
    [155]李向真,欧海龙,林舒.层间隔震结构计算模型的简化分析.地震工程与工程振动,2002,22(1):121-125
    [156]Villaverde R, Aguirre M, Hamilton C. Aseismic roof isolation built with steel oval dampers[C]. Proceedings of 13th WCEE Vancouver Canada.2004 Paper No.3374
    [157]Villaverde R. Roof isolation system to reduce the seismic response of buildings:a preliminary assessment. Earthquake Spectra,1998,14(3):521-532
    [158]Villaverde R. Aseismic roof isolation system:feasibility study with 13-story building. Journal of Structural Engineering ASCE 2002,128(2):188-196
    [159]Villaverde R, Mosqueda G. Aseismic roof isolation system:analytic and shake table studies. Earthquake Engineering and Structural Dynamics 2002,28(3): 217-234
    [160]祁皑等.层间隔震结构工作机理研究.地震工程与工程振动,2006,26(4):239-243
    [162]Kelly J M, Eidinger J M. Experimental Result of an Earthquake Isolation System Using Natural Rubber Bearings. Report No. UCB/EERC 78/03, CA, USA,1978
    [163]唐家祥.工程结构基础隔震技术的发展与应用.第二届全国结构减震控制学术会议论文集,武汉,1992,9-40
    [164]Tarics A G. The implementation of bass isolation for the Foothill Communities Law and Justice Center. Report to the National Science Foundation and the County of San Bernardino, Reid and Tarios Associates, San Francisco, CA, 1984
    [165]Lindley P B. Natural rubber structural bearings. Joint Sealing and Bearing System for Concrete Structures,1981, ACI-1:353-378
    [166]周福霖,冼巧玲,高向宇等.我国首栋橡胶垫隔震房屋的设计与试验研究.第三届全国结构减震控制学术研讨会论文集,广州,1995,1-15
    [167]杨亲民.智能材料的研究与开发.功能材料,1999,30(6):575-581
    [168]郑智能,张永兴,董强.智能材料及其在土木工程中的应用.重庆交通学院学报,2005,24(6):91-94
    [169]Patter W., Sun J., Li,G.. Field test of an intelligent stiffener for bridges. Earthquake Engineering and Structural Dynamics,1998,27(11):1267-1276
    [170]Yoshida,K., Yoshida,S., Takeda,Y. Semi-Active control of base isolation using feed forward information of disturbance. Proc. of the second world conference on structural control, Kyoto, Japan,1990(1)377-386
    [171]陈海泉,李忠献.应用形状记忆合金的高层建筑结构智能隔震.天津大学学报(自然科学与工程技术版)2002,(6):761-765
    [172]Ribakov, Y., Gluck, J., Selective controlled based isolation system with magnetorheological dampers. Earthquake Engineering and Structural Dynamics.2002(31):1301-1324
    [173]李宏男,李军.采用智能压电材料的土木工程结构控制研究进展.建筑结构学报,2005,26(3):1-9
    [174]]Kamada T., Fujita T., Hatayama T., Active vibration control of flexural-shear type frame structures with smart structures using piezoeleetric actuators. Smart Material and Structure,1998,7(4):479-488
    [175]Fujita T. Active microvibration control of precision manufacturing factories with smart structure using piezoeleetric actuators. Proeeedings of SPIE,Newport Beach, CA,2001,4330:449-459
    [176]Song G.B., Sethib V.. Vibration control of civil structures using piezoceramic smart materials:a review. Engineering Struetures,2006,28(11):1513-1524
    [177]Song G.B., Vlattas J..Truss active vibration control of a space truss using PZT stack actuator. American Soeiety of Mechanieal Engineers, Aerospace Division,1999,59:263-268
    [178]阎绍泽,吴德隆,叶青等.用于自适应可展结构的压电智能主动杆.清华大学学报,2002,42(6):762-765
    [179]Morita K, Fujita T, Ise S. Development and appliacation of induced strain actuators for building structures. Proceedings of SPIE,2001,4330:426-437
    [180]Han S. J. Active/Passive Seismic Control of Structures:[dissertation]. The Catholie University of America,2002
    [181]Chen G D,Smith D.. Efficienecy of piezoelectric wedge actuators for fine tuning of mass dampers in structural applications.15th ASCE Engineering Mechanics Conference,Columbia University,NewYork,2002
    [182]Durmaz O. Clark W. Experimental and analytical studies of a novel semi-active piezoelectric coulomb damper. Proceedings of SPIE,2002,4697:258-273
    [183]Unsal M.,Nieqreeki C. A new semi-active piezoelectric-based friction damper. Proceedings of the SPIE,2003,5052:413-420
    [184]徐祖耀.形状记忆材料.上海:上海交通大学出版社,2000
    [185]Peter W. C, Ian D. A, James M. K. Experimental and analytical studies of shape memory alloy damper for structural control. Proceedings of SPIE,1995,2445:241-251
    [186]Williams K, Chiu G, Bernhard R. Passive adaptive vibration absorbers using shape memory alloys. Proceedings of SPIE 199923:630-641
    [187]陈健,林萍华,王寅岗等.SMA树脂复合结构梁振动特性的研究.东南大学学报.1999,29(5):151-155
    [188]韩玉林,李爱群,林萍华等.基于形状记忆合金的结构振动控制研究与展望.东南大学学报,2000,30(1):146-154
    [189]Graesser E J, Cozzarelli F A. Shape memory alloys as new materials for seismic isolation. Journal of Engineering Mechanics,1991,117(11):2590-2608
    [190]薛素铎,董军辉,卞晓芳.一种新型形状记忆合金阻尼器.建筑结构学报,2005,26(3):45-50
    [191]李惠,毛晨曦.新型SMA耗能器及结构地震反应控制试验研究.地震工程与工程振动,2003,23(1):133-139
    [192]Zuo Xiao-Bao, Chang Wei, Li Ai-Qun. Design and experimental investigation of a superelastic SMA damper. Materials Science and Engineering,2006,A 438-440,1150-1153
    [193]纪名刚等.机械设计.北京:高等教育出版社.2006年
    [194]成大先.机械设计手册.轴及其连接.北京:化学工业出版社.2010
    [195]Yi-Kwei Wen. Method for random vibration of hysteretic system. Journal of the Engineering Mechanics Division, ASCE, Vol.102, No.EM2,249-263,1976
    [196]Y.J.ParK, Y.K.wen, A.H-S Ang., Random vibration of hysteretic systems under bi-directional ground motions, Earthquake Engineering and Structural Dynamics, Vol.14,543-557,1986
    [197]王建强.基础隔震结构多维及平-扭耦联地震反应分析:[西安建筑科技大学博士学位论文].西安:西安建筑科技大学,2003
    [198]Liang Z, Lee G C. Representation of damping matrix. Engineering Mechanics ASCE,1991,117(5):126-131
    [199]Liang Z, Lee G C. On complex damping of MDOF systems, Proc.8th Int. Model Analysis Conf., Society of Experimental Mechanics,1990
    [200]Wen Y K. Equivalent linearization of hysteretie systems under random excitation. Journal of Applied Mechanics,1980,47(EM2):150-154.
    [201]A.S.Mokha, M.C.Constantinou, A.M.Reinhorn. Verification of friction model of teflon bearings under triaxial load. Journal of Structure Engineering, ASCE, Vol.119, No.1,240-261,1993
    [202]A.S.Mokha, M.C.Constantinou, A.M.Reihom:Teflon bearings in base isolation. I:Testing, Journal of Structural Engineering, ASCE.Vol.116, No.2,438-454, 1990
    [203]M.C.Constantinou, A. Mokha A.M.Reihorn:Teflon bearings in base isolation. Ⅱ Medeling, Journal of Structural Engineering, ASCE, Vol.116, No.2,455-474, 1990
    [204]王社良,赵祥,朱军强.含形状记忆合金复位阻尼器隔震结构的地震反应分析.建筑结构学报,2006,27(5):112-117
    [205]谭平.高速公路跨线桥地震反应的智能磁流变控制.自然灾害学报,2007,16(3):138-146
    [206]Nerves A C,Krishnan R A. Strategy for Active Control of Tall Civil Structures Using Regenerative Electric Actuators, LINYK, SUTC. Proceedings of 11th ASCE Engineering Mechanics Specialists Conference. Lauderdale:ASCE, 1996:503-506.
    [207]程树良,王焕定,孙作玉.隔震换能系统换能效果试验研究.工程力学,2006,23(11):38-44
    [208]陈政清.自供电磁流变智能减振系统:中国专利101086179.2007-12-12
    [209]张颖.层间隔震体系的减震机理与减震性能研究:[湖南大学博士学位论文].长沙:湖南大学,2009
    [210]Sherrit S.,Xiaoqi Bao, Jones, C.M Piezoelectric multilayer actuator life test. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2011,58(4):820-828
    [211]Stewart Sherrit,Christopher Jones. Characterization of piezoelectric stacks for space applications. Proceedings of the 11th Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments,2008,323:1473-1480
    [212]王社良,樊禹江,刘苗苗.新型压电摩擦阻尼器动态力学性能的理论分析,水利与建筑工程学报,2011,9(3)34-53
    [213]王社良,马乾瑛,朱军强等.压电主动杆件在结构抗震控制中的优化设计及实验研究.地震工程与工程振动,2010,30(2):113-118
    [214]朱军强,马少波,王社良等.单层网壳结构振动压电控制分析与实验研究.地震工程与工程振动,2011,31(4):114-119
    [215]赵大海.基于压电摩擦阻尼器的结构振动控制理论与试验研究:[大连理工大学博士学位论文].大连:大连理工大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700