超声波送料机理与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动送料器在自动加工与装配等领域有着重要应用。目前的驱动方式有电磁式与压电式,传统的电磁振动送料器,电磁干扰严重,近年出现了压电振动方式,解决了电磁干扰问题,但振幅较大,对微小物体的整列性能及输送稳定性还不理想。这两类振动送料器的工作频率在50-300Hz之间,噪音大,在要求高清洁、低噪声的生产场合,使用上受到限制。
     超声波振动的传统应用为电学与声学领域,超声波马达的成功开发应用证明了它在机械驱动领域的应用前景。本文提出以超声波振动代替传统方式驱动振动送料器工作,是超声波振动在这一领域的新的应用。提出利用声频以外的高频超声振动来消除送料时振动噪音的方法,利用超声振动振幅更小的特点,提高对轻薄细小物料输送的平稳性和整列性能。
     本文提出以压电超声换能器为振动源,通过合理的机械结构形成超声波振动对送料器的驱动,使料盘表面获得的运动叠加或合成以形成椭圆运动,从而具备推动与之接触物料移动的能力。
     具体工作包括:设计了超声波振动送料的原理样机,对超声波振动送料器的驱动部件-压电超声换能器的设计方法进行了理论分析,对结构参数进行了设计计算,利用ANSYS软件分析了振动模态,对基本参数进行了测试。
     综合考虑超声波振动送料器构件形状、重量、空间位置及其交互关系与耦合影响,建立超声波振动驱动过程的运动学与动力学模型,通过理论分析、数值运算和有限元分析,获得力学、结构参数对驱动性能的影响规律;研究超声波驱动状态下物料与料盘表面之间的相互作用规律,获取料盘表面椭圆运动的形成机理,取得超声波送料机构动力学参数与结构优化设计方法。
     对超声波振动送料器的谐振特性进行了分析,提出了谐振频率的跟踪方法,在此基础上,根据超声波振动送料器的特点,设计了驱动电路。搭建了集相位检测、信号处理与反馈控制等功能于一体的超声波振动送料器专用控制器,从而保证了送料器协调、稳定地工作,提高了对物料的输送质量与效率。
     对超声波振动送料器的性能进行了测试研究,验证了理论与仿真分析所得出的结论,验证了结构设计的方法。研究与测试结果表明,超声波振动送料的输送稳定性和整列性能相比于现有送料方式更佳,噪音更小,同时总结了工况变化对送料器输送性能的影响规律。从理论与试验两方面说明以超声波振动驱动送料器工作是可行的。
The traditional electromagnetic vibration feeder is restricted to the production occasions of high cleaning and low noise due to unfavorable factors, such as serious magnetic interference, severe work noisy and so on. One of the most effective solutions to reduce the noise is to adopt the drive mode except sonic vibrations; while the most radical solution to solve the magnetic interference problem is a non-magnetic drive mode. And the piezoelectric actuation is precisely meeting the above requirements.
     The ultrasonic vibration feeder developed in this paper is under the support of Chinese Natural Science Foundation program“The driving mechanisim and study of ultrasonic vibration feeder”, and national 863 program“The research and development of vertical-driven-piezoelectric feeder”. Because of ultrasonic actuation traditionally applied to the electrical and acoustic fields, its mechanical drive capability was known only in recent years. Ultrasonic motor is a successful example of ultrasound-driven applications, and current study of ultrasonic actuation is focused on motor direction yet. So ultrasonic vibration to the feed can be seen as further development and application of ultrasound-driven capability, which through reasonable structure form ultrasonic vibration to drive the system, so that the surface of feed plate’s movements are superimposed or combined and finally form elliptical motion, enabling it to promote the materials contacting with them continuous movement, it is active exploration of ultrasonic actuation technology in handling material direction.
     1. The research purpose of ultrasonic feeder
     As an indispensable part of production line, automatic feeding device determines the pros and cons of automated production processes to a large extent and thus we call high requirements on its structure, noise, working principle, delivery precision. Because of vibration is vibration feeders’intrinsic properties during its work, the only way to reduce noise is to adopt the drive mode except sonic vibrations, and the use of ultrasonic vibration may be the best choice to solve this problem. Ultrasonic Piezoelectric vibration feeder is more quiet, lower altitude ,smooth delivery, lower electro-magnetic interference, better array performance, lower prices, faster response speed than the traditional electro-magnetic and low frequency Piezoelectric vibration feeder, it’s what the current vibration feeder can not match.
     2. Design of piezoelectric transducer
     Ultrasonic transducer has many different types according to vibration mode, the direction of stretching vibration and piezoelectric conversion mode, depending on the different applications, we choose a different structure of piezoelectric vibrator, and they have their own features respectively. This article discusses the basic technical theory of the vibration mode of ultrasonic transducer, and in accordance with relevant analysis and calculation, we select the piezoelectric ultrasonic transducer of bolt-type fastening of the vertical vibration mode; design and calculate its structural parameters; analyze the transducer vibration mode by ANSYS software; test the resonant frequency and impedance of the designed transducer by precision impedance analyzer and measured the end amplitude of the transducer by experiments. The results of principle analysis and experimental verification tells us that the ultrasonic piezoelectric transducer can meet the design requirements of ultrasonic feeders in the regard of the operating frequency, electromechanical conversion efficiency, transmission power, the output amplitude and so on.
     3. The modeling and simulation of kinetics, kinematics of ultrasonic feeder
     In this paper, we present a new type of ultrasonic vibration feeder prototype and determine the vibration of the basic structure of the feed device; based on the analysis of the structure of ultrasonic vibration to the feeding mode to enhance the driving capacity, we focuses on the effects of the materials and the structure of the major components to ultrasonic feeder. Through the establishment of ultrasonic feeder’s mechanical model and the analysis of the system’s dynamic part, we obtain the mathematical relationship between the natural frequency and vibration frequency of the system. We established ultrasonic vibrating feeding system’s dynamics model, analyzed the relationship between the natural frequency and vibration frequency by ANSYS software and carry out the kinetic analysis to guide the structural design of the various components, manufacture and the assembly of the ultrasound feeder prototype. Through the establishment of differential equations of motion of materials, the analysis of the conditions how material can slip and jump in feed tray, the scope of the working abilities of the feeder can be determined. Through the establishment of kinematics mathematical model of material conveyor, the analysis of the formation mechanism of elliptical motion, the analysis of the trajectories of the feed tray particle using ANSYS software, we verified the works of ultrasonic vibration feeder. Through the analyses and experiments of drag reduction mechanism of ultrasonic suspension, the establishment of the relevant motion equations, we analyzed the affect of drag-reducing on the ultrasonic suspension feeder’s drives capacity.
     4. The structural design and specificity analysis of ultrasonic feeder
     On the basis of the above mathematical analysis and FEM simulation, the design of base, feed tray, support parts and flexible connecting piece were optimized. The performance parameters of the various parts of the ultrasonic feeder were determined and the ultrasonic feeder’s structure was further optimized on the basis of the assembly, approach and cross-experiment. Through the establishment of equivalent circuit of the system, the resonant characteristics of the system were analyzed and calculated. On the basis of the test of the relationship between ultrasonic feeder’s resonant frequency and impedance characteristics by various methods, we obtained ultrasonic vibration feeder’s impedance phase characteristic values under the state of resonance, further more the new method of using direct phase method to track the resonant frequency ultrasound was proposed. Through the establishment of mathematical model of ultrasonic feeder, the impedance matching meaning, matching methods and performance were studied and based on comparing several matching methods, the impedance matching program was determined.
     5. The design of ultrasonic piezoelectric digital controller
     By the works of ultrasonic feeders, only under the resonant state, ultrasonic feeders performs good transmission capacity. Since factors like material quality in feed tray changes, the resonant frequency of ultrasonic feeders is shifted. Therefore, the drive power of ultrasonic feeder needs to have the ability to track its resonant frequency. Based on the above analysis of the feeder, a dedicated digital drive power was designed for the ultrasonic feeder, which uses DSP as control core, uses inverter topology and uses transformer-isolated output. We have modeled and analyzed the topology structure of the main circuit, designed the circuit of resonant frequency tracking and control and the control software, conducted a test and performance analysis on the drive power.
     6. The research on the performance of the ultrasonic feeder
     A prototype of a new ultrasonic feeder has been made, and has done some experiments. The results showed that ultrasonic feeder has the ability to make feed tray promote materials continuous moving by the longitudinal vibration of ultrasonic transducer, and under the resonant state can get the best transmission capacity. Experiments show that when working frequency is 15.3 kHz, spring thickness is 5mm, the conveyor speed of metal sheets of diameter of 3mm can get up to 6mm per second, at the same time, as the piezoelectric ultrasonic-based driven mode, the possibility of electromagnetic interference and noise was eliminated theoretically. It has been proved that, the ultrasonic feeder is able to form elliptical motion of elastic surface body, thus obtains capabilities to promote material movement with a well-designed structure which synthesizes one or more ultrasonic vibrations on an elastomer to make them vibrate in accordance with a plan mode. And frequency-tracking experiment proved that, under the changing conditions, ultrasonic feeder could work stably in the vicinity of the resonant frequency with the drive power automatically tracking the changing resonant frequency.
引文
[1]姜斌,刘晓论,杨志刚,田丰君,于跃.垂直驱动型超声波送料器的研究[J] .光学精密工程,2008,16(6):1082-1086
    [2]王运池.国内振动给料设备的现状与发展[J] .媒质技术,2003,(4):29-31
    [3] Anna Perelomova,Driving force of acoustic streaming caused by aperiodic sound beam in unbounded volumes[J] .Ultrasonics.2009,49:583-587
    [4] G. Acciani, G. Brunetti, G. Fornarelli. Giaquinto.Angular and axial evaluation of superficial defects on non-accessible pipes by wavelet transform and neural network-based classification[J] .Ultrasonics.2009,49:1-13
    [5] M. Lam, E. Le Clézio, H. Amorín, M. Algueró, Janez Holc, Marija Kosec, A.C. Hladky-Hennion,G. Feuillard.Acoustic wave transmission through piezoelectric structured materials [J] . Ultrasonics. 2009,49:424-431
    [6] Yong-Moo Cheong ,Dong-Hoon Lee,Hyun-Kyu Jung.Ultrasonic guided wave parameters for detection of axial cracks in feeder pipes of PHWR nuclear power plants [J] . Ultrasonics . 2004 , 42: 883-888
    [7] Akihiro Iino , Kenji Suzuki , Masao Kasuga , Makoto Suzuki , Takashi Yamanaka . Development of a self-oscillating ultrasonic micro-motor and its application to a watch[J].Ultrasonics 38 (2000);54~59
    [8] Riccardo Carotenuto,Nicola Lamberti,Antonio Iula,Massimo Pappalardo.A new linear piezoelectric actuator for low voltage and large displacement applications[J].Sensors and Actuators A 72 (1999);262~268
    [9]闻邦椿,刘凤翘.振动机械的理论及应用[M].北京:机械工业出版社,1982.19-21,265--342
    [10]张西良,路欣,电磁振动给料器工作特性分析及应用,农业机械学报,2003年9月,第34卷第5期
    [11]闻邦椿,刘凤翘,刘杰.振动筛、振动给料机、振动输送机的设计与调试[M].北京:化学工业出版社,1989:468
    [12]张长键.垂直驱动式压电直线振动给料器的机理分析及实验研究[D].吉林大学硕士学位论文,2007.4
    [13]丹原秀铭,浅妻辰男.压电驱动补品供给装置[J].(日本)自动化术.1994
    [14]青木登等著,庄恩保译,压电式零部件送料器系统及其应用实例[J],日刊:自动化技术,1988
    [15] Yung Ting , Ho-Chin Jar, Chung-Yi Lin, Jeng-Shen Huang,A new type of parts feeder driven by bimorph piezoactuator[J].Ultrasonics 43 (2005) 566-573
    [16] Nebojsa I. Jaksic,Gary P. Maul,Development of a model for part reorientation in vibratory bowl feeders with active air jet tooling[J].Robotics and Computer Integrated Manufacturing 17(2001) 145-149
    [17]焦其伟、崔文会、孙宝元、何承宇,压电式振动给料器的研制[J].传感器技术,2001年第20卷第4期
    [18]杜玉明,关志华,刘久富.压电式振动给料机的技术反求[J].机械设计,1999年4月
    [19]陈中奎.垂直驱动式压电振动给料器的设计和实验研究[D].吉林大学硕士论文,2007
    [20]吴文福、田忠静、韩峰,压电振动送料装置的研究现状及其应用[J],中国科技论文在线
    [21] S.B.Choi; D.H.Lee.Modal analysis and control of a bowl parts feeder activated by piezoelectric actuators[J]. Journal of Sound and Vibration 275 (2004) 452-458
    [22]张贵林,郭浩,赵淳生,超声波粉体输送装置及其应用[J],振动、测试与诊断,第21卷第3期,2001年9月
    [23]张贵林,郭浩,赵淳生,超声波粉体输送装置输送能力的实验研究[J],压电与声光,第24卷第6期,2002年12月
    [24]张贵林,郭浩,赵淳生,行波型超声粉体输送装置输送机理的研究[J],振动、测试与诊断,第23卷第1期,2003年3月
    [25]王宏祥.驻波型超声振动精密给料装置[P].专利号:200420031314.7
    [26]郭浩.行波型超声粉体输送装置的研究[D].南京航空航天大学硕士学位论文,2002
    [27]何勍,王宏祥,于威.一种新型高频低幅振动给料装置的研究[J].机械科学与技术,2006. 9
    [28] Sadayuki Ueha , Yoshiki Hashimoto, Yoshikazu Koike.Non-contact transportation using near-field acoustic levitation[J].Ultrasonics.2000,38:26-32
    [29] M.Mracek, J.Wallaschek.A system for powder transport based on pizo-electrically excited ultrasonic progressive waves[J].Materials Chemistry andPhysics, 2005(90)
    [30] Yung Ting, A new type of parts feeder driven by bimorph piezo actuator[J]. Ultrasonics .2005, 43 : 566– 573
    [31] Masaya Takasaki,Optimum contact conditions for miniaturized surface acoustic wave linear motor[J]. Ultrasonics.2000,38:51-53
    [32] J. Tsujino ,T. Ueoka, T. Kashino, F. Sugahara.Transverse and torsional complex vibration systems for ultrasonic seam welding of metal plates[J].Ultrasonics.2000,38:67-71
    [33] E. Matsuo, Y. Koike, K. Nakamura, S. Ueha, Y. Hashimoto,Holding characteristics of planar objects suspended by near-field acoustic levitation[J].Ultrasonics.2000,38:60-63
    [34] H.C. Starrit, C.L. Hoad, F.A. Duck, D.K. Nassiri, I.R. Summers, W. Vennart, Measurement of acoustic streaming using magnetic resonance[J].Ultrasound in Medicine and Biology .2000,26 (2) : 321–333.
    [35] H. Mitome, T. Kozuka, T. Tuziuti, Measurement of the establishment process of acoustic streaming using laser Doppler velocimetry[J].Ultrasonics. 1996,34 : 527–530.
    [36] B. Lotter, Flexible assembly lines for precision engineering,Assembly[J].Automation.1985,5 (2).
    [37] G. Boothroyd, P. Dewhurstm, Parts presentation costs in robot assembly[J].Assembly Automation .1985,5 (3).
    [38] Y.M. Yink, Methodology for parts feeder[J].Cirp Ammals .1994,43 (1):19–22.
    [39] J. Hartley, Cost versus faults-the optimum balance in debugging,Assembly Automation .1986,6 (1).
    [40] W.P. Robbins, D.L. Polla, D.E. Glumac, Compact, high-displacement piezoelectric actuator with potential micromechanical application[C].IEEE Ultrasonics Symposium, December, 1990, pp.1191–1195.
    [41] W.P. Robbins, High-displacement piezoelectric actuator utilizing a meander-line geometry—Part II: Theory[C].IEEE Transactions on Ultrasonic, Ferroelectrics and Frequency Control .1991,38 (5):461–467.
    [42] M. Mracek, J. Wallaschek. A system for powder transport based on piezoelectrically excited ultrasonic progressive waves[J]. Materials Chemistry and Physics 90 (2005) 378–38
    [43] Yamada Noriaki; Kato Terumasa . vibratory characteristics of newly designed fork-type piezoactuator[J].Japanese Journal of Applied Physics,Part1: Regular Papers and Short Notes and Review Papers 32(9B) (1993 9) 4202-4204
    [44] Nobuhiro Kanbe,Yoshiro Tomikawa and Takehiro Takano, Powder-feeding device using hollow cylindrical piezoelectric ceramics[J], Jpn.J.Appl.Phys.Vol.32(1993)pp.2405-2407
    [45]常颖,吴博达,程光明,杨志刚,田丰君.超声波轴承用压电换能器模态分析及实验研究[J].哈尔滨工业大学学报,2006.5
    [46]胡敏强,金龙,顾菊平编著.超声波电机原理与设计[M].北京:科学出版社,2005
    [47]王应彪,刘传绍,赵波,功率超声技术的研究现状及其应用进展[J],机械研究与应用,2006年8月,第19卷第4期
    [48]陈桂生.超声换能器设计[M] .海洋出版社,1984年.
    [49] Sprovieri John.piezoelectric feeder handle sensitive parts[J].Assemblly 46(4)(2003):10
    [50]王应彪,刘传绍,赵波,功率超声技术的研究现状及其应用进展[J],机械研究与应用, 2006年8月,第19卷第4期
    [51]彭太江,杨志刚,阚君武,曾平,超声波悬浮能力及其试验研究[J] .压电与声光,2006年4月,第28卷第2期
    [52] O.V. Rudenko, S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics[M].Plenum New York, 1977.
    [53] A. Perelomova, Acoustic radiation force and streaming caused by non-periodic acoustic source[J].Acta Acustica united with Acustica .2003,89 : 754–763.
    [54] A. Perelomova, Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound[J].Physics Letters A. 2006,357 : 42–47.
    [55] A.D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications[J].Acoustical Society of America, Woodbury, New York, 1989.
    [56] M.J. Lighthill, Viscosity effects in sound waves of finite amplitude, in: G.K.Batchelor, R.M. Davies (Eds.) [J]. Surveys in Mechanics, Cambridge University Press, Cambridge, England, 1956, pp. 250–351.
    [57] T. Kamakura, K. Matsuda, Yo. Kumamoto, M. Breazeale, Acoustic streaming induced in focused Gaussian beams[J].Journal of Acoustical Society of America 97 .1995 ,(5) : 2740–2746.
    [58] L.A. Orr, A.J. Mulholland, R.L. O’Leary, A. Parr, R.A. Pethrick, G. Hayward,Theoretical modelling of frequency dependent elastic loss in composite piezoelectric transducers[J]. Ultrasonics,2007, 47:130–137
    [59]何涛,林书玉,梁召峰.多频扭转夹心式换能器研究[J] .陕西师范大学学报(自然科学版),2004年3月,第32卷,第1期
    [60]栾桂冬、张金铎、王仁乾.压电换能器和换能器阵(修订版)北京大学出版社[J] .2007年7月第1版
    [61]贾宝贤,边文凤,赵万生,王振龙.压电超声换能器的应用与发展[J] .第27卷第2期,2005年4月:131-135
    [62] W.P. Robbins, D.L. Polla, D.E. Glumac, High-displacement piezoelectric actuator utilizing a meander-line geometry—Part I:Experimental characterization[C].IEEE Transactions on Ultrasonic,Ferroelectrics and Frequency Control .1991,38 (5):454–460.
    [63] C.Y. Lin, Modeling and analysis of meander-line and stepping motor actuated by bimorph actuator[J].Master Thesis, Department of Mechanical Engineering, Chung Yuan Christian University,2003.
    [64] T.W. Yang, The design and research of piezoelectrically actuated vibratory parts feeder[J].Master Thesis, Department of Mechanical Engineering, National Taiwan University, 1997.
    [65] M. Takashi, Effect of the hydrodynamic bearing on rotor/stator contact in a ring-type ultrasonic motor[C]. IEEE Ultrasonics Symposium, December 1991, pp. 933–936.
    [66] Y. Ting, et al. Analysis and design of a four-bar linkage type of vibratory parts feeder driven by piezoelectric actuator[J].Proceedings of the ASME Design Engineering Technical Conference,vol. 2002,2, December, pp. 43–50.
    [67] W.Y. Du, Motion tracking of a part on a vibratory feeder,advanced intelligent mechatronics[J].Proceedings 2001 IEEE/ASME International Conference.2001, vol. 1, July, pp. 75–80.
    [68] J. Sutanto, Syafrudin, Analysis of DC–DC converter based on single phase full bridge inverter operating in zero voltage Switching[C].IEEE 4th International Conference on Power Electronics and Drive Systems, 2001,vol. 2, October, pp. 432–436.
    [69] F.J. Lin, R.Y. Duan, J.C. Yu, An ultrasonic motor drive using a current-source parallel-resonant inverter with energy feedback[C].IEEE Transactions on Power Electronics.1999,14 (1):31–42.
    [70] C.A. Lai, Driving control circuitry design for high-frequency and low-frequency piezoelectric actuators[J].Master Thesis, Department of Mechanical Engineering, Chung Yuan Christian University,August 2003.
    [71]尚远志.压电超声换能器的性能分析及应用领域[J] .压电与声光,1994年2月,第16卷第1期
    [72]林书钰.超声换能器的原理与设计[M].科学出版社,2004年6月第1版
    [73]袁易全,超声换能器[M,DB] .南京大学出版社出版,1992年9月
    [74] S. Makarov, M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics[J].Part I, Acta Acustica united with Acustica .1996,82:579–606.
    [75] O.V. Rudenko, A.P. Sarvazyan, S.Y. Emelianov.Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium[J].Journal of Acoustical Society of America .1996,99 (5) :2791–2798.
    [76] S. Tjotta, J. Naze Tjotta, Acoustic streaming in ultrasonic beams[J]. H. Hobaek (Ed.), Advances in Nonlinear Acoustics, Proceedings of the 13th International Symposium on Nonlinear Acoustics, World Scientific, Singapore, 1993, pp. 601–606.
    [77] V. Gusev, O. Rudenko.Nonsteady quasi-one-dimensional acoustic streaming in unbounded volumes with hydrodynamic nonlinearity[J].Soviet Physical Acoustics .1979,25 :493–497.
    [78] T. Kamakura, T. Sudo, K. Matsuda, Yo. Kumamoto. Time evolution of acoustic streaming from a planar ultrasonic source[J]. Journal of Acoustical Society of America .1996,100 (1):132–137.
    [79] K. Matsuda, T. Kamakura, Yo. Kumamoto. Acoustic streaming by a focused sound source, in: H. Hobaek (Ed.) [J].Advances in Nonlinear Acoustics, Proceedings of the 13th International Symposium on Nonlinear Acoustics, World Scientific, Singapore, 1993, pp. 595–600.
    [80]尹奇异,肖定全等.无铅压电陶瓷及应用[J].金属功能材料,2004,12
    [81]马海峰.压电陶瓷机械品质因数及其温度稳定性[J].湖北大学学报,2005,3
    [82] (美)B.贾菲.压电陶瓷[M].科学出版社,1979,6
    [83]张福学,王丽坤.现代压电学(上,中,下)[M].北京:科学出版社,2001
    [84] J.范兰德拉特,R.E.塞德林顿主编彭浩波等译压电陶瓷[M].北京:科学出版社,1981
    [85]张福学主编,现代压电学(上、中、下)[M].科学出版社,2001年
    [86] Haitao Huang, Peter Hing.Energy Balance Model for the Vickers Hardness of Ferroelectric PZT Ceramics[J].Journal of Materials Science,1999, Vol.18:1675 -1677
    [87] Takehiro Takano,Yoshiro Tomikawa.Excitation of a progressive wave in a lossy ultrasonic trans- mission line and an application to a powder-feeding device[J].Smart Struct,1998,7 (6):417-421
    [88] Akehiro takano, Yoshiro Tomikawa. Characteristics of a Powder Supplying Device Using Flexural Progressive Waves in a Lossy Ultrsonic Transmission line[J].World Congress on Utrasonics, 1997(8):24-27
    [89] Strugach Michael G(US).Piezoelectric vibrating device[P].Inventive Patent.Europe Bureau of Patent.No:552370.1995.
    [90]甘国友,严继康,孙加林等.压电复合材料的现状与展望[J].功能材料,2000,31(5): 456-459
    [91]万德安,刘春节.超声变幅杆的模态分析[J].机械与电子,2004,(4):10-1
    [92]林书玉.超声换能器的原理与设计[M].科学出版社,2004.6
    [93]关春光.采用纵振换能器的超声振动给料系统的实验研究[D].吉林大学硕士学位论文,2007.4
    [94]彭太江.超声波悬浮与减摩能力的研究[D].吉林大学硕士学位论文,2003
    [95]高野刚浩,富川义朗.屈曲进行波利用すち粉体搬送デバィスと粉体流量せソサ[J].振动-音响新技术ッソボヅム讲演论论文集,1999
    [96]佐藤壮征,超音波進行波を応用した粉体移送システム[J],超音波TECHNO,1996.11,45-48
    [97]何承宇.压电双晶片执行器的研究及其在振动给料器中的应用[D].大连理工大学硕士论文,1999
    [98] Doke,H.Tuboi,N.Parts Feeding Apparatus of the Piezoelectric Drive Type[J].US patent.No:4795025,1989.
    [99] Yamada Noriaki; Kato Terumasa,vibratory characteristics of newly designed fork-type piezoactuator[J]. Japanese Journal of Applied Physics,Part1:Regular Papers and Short Notes and Review Papers 32(9B) (1993 9) 4202-4204
    [100] Takehiro Takano and Yoshiro Tomikawa.Excitation of a progressive wave in a lossy ultrasonic transmission line and an application to a powder-feeding device[J].Smart Mater. Struct. 7 (1998) 417-421
    [101]邵蕴秋编著.ANSYS8.0有限元分析实例导航[M] .中国铁道出版社2004年4月第1版
    [102]博嘉科技编著.有限元分析软件—ANSYS融会与贯通[J] .北京:中国水利水电出版社,2002
    [103]夏铁坚,周利坚,鲁诣斌.有限元和变界元在纵向式换能器设计中的应用[J] .声学与电子工程,2000(1)
    [104]张义民编著.机械振动力学[M] .吉林科学技术出版社,2000.8
    [105]刘井权,闫久春,杨士勤.超声刀切割系统的模态分析[J] .哈尔滨工业大学学报,2001,33(4):435-438
    [106]王光灿,林宇,王丽坤,李光.Cymbal换能器的有限元动力学分析[J] .压电与声光,2003.10,25(5)
    [107]上羽贞行,富川义朗著.超声波马达理论与应用[M].杨志刚,郑学伦译.上海:上海科技出版社,1998
    [108]韩良、徐卫良.振动料斗的研究现状和前景展望[J] .电子工业专用设备,1999年第1期,第28卷:6-13
    [109]李建生.共振式电磁振动给料机振动系统的计算与分析[J] .贵州农学院学报,16(2):70-75,1997
    [110]闻邦椿,刘凤翘,刘杰.振动筛振动给料机振动输送机的设计与调试[M] .北京:化学工业出版社,1989:443-468
    [111]詹启贤.自动机械设计[M] .北京:轻工业出版社,1987:225-226
    [112]任雅珍,昝清珍,谢勇.螺旋式振动送料机构的设计、试制及理论分析[J].一重技术,1999年3月
    [113]曹纯柱、王健、全厚波.振动上料装置的动力学分析及主要参数计算[J] .沈阳工业学院院报,1996年6月,第15卷第2期
    [114]伍利群.电磁振动供料器工件的受力和运动分析[J] .研究·设计·制造,文章编号:100522895 (2003) 0120030203
    [115]欧阳惠芳.斗式电磁振动给料器中物件相对运动规律的研究[J] .江西农业大学学报,1994年6月,第16卷第2期
    [116]伍利群.电磁振动供料器工件的受力和运动分析[J].轻工机械,2003年第1期
    [117]林颖,马志军.电磁振动料斗上料速度的试验研究[J] .现代制造工程2004 (5)
    [118]陈永亮,李云梅,徐燕申,杜玉明.基于有限元的模块化振动料斗动态分析[J] .现代制造工程,2005年3月
    [119]彭太江,杨志刚,阚君武,曾平.超声波悬浮能力及其实验研究[J].压电与声光,2006.4,第28卷第2期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700