推进轴系回旋振动及其支撑结构振动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
推进轴系是船舶动力装置的重要组成部分,其与壳体耦合结构的振动与噪声预报及控制是船舶工程领域的重要研究课题。面对悬臂推进器在旋转过程中所产生的回旋力矩以及艉轴承的等效支撑刚度及支撑位置,准确建立其动力学模型,并研究其对轴系及耦合结构的影响均具有重要的理论意义及应用前景。本文围绕推进轴系的回旋效应、艉轴承的动力学特性、悬臂推进器对轴系的影响以及轴系与壳体的耦合结构振动问题展开了相关研究,具体的研究内容简述如下:
     采用傅里叶级数展开方法建立了基于欧拉-伯努利梁(Euler-Bernoulli beam)理论的轴系回旋振动动力学分析模型。通过与文献及有限元模型所得结果的对比验证了傅里叶级数展开方法应用的正确性,并引入狄拉克(Dirac)delta函数,将轴系推进器考虑为集中质量点,并分析其回旋力矩,推导得到了带集中质量点及考虑回旋效应的轴系控制微分方程,利用三角级数的正交性推导得到了轴系回旋振动的标准特征方程,并利用数值逐步积分方法Newmark法求解简谐激励或任意激励下的回旋振动时域响应,通过与已出版文献,国标及有限元模型得到的结果进行对比分析验证了本方法具有良好的收敛性及正确性。本方法基于连续体理论,可以求解弹性支撑边界、变轴颈、多跨距轴系回旋振动固有特性及强迫响应。
     基于Reynolds方程,利用倾斜轴颈状态下的油膜厚度公式,通过阻抗关系推导得到了无限短及无限长轴承的刚度和阻尼共8个动力特性参数的计算方法,并根据适用于有限长轴承的结合了无限长短轴承阻抗表达式的一种经验阻抗关系,得到了有限长轴承的刚度及阻尼计算方法,并由此获得有限长轴承的等效支撑刚度及支撑位置。通过与已出版文献不同倾斜角度下最大油膜压力的对比验证了本方法的正确性,并分析了艉轴承润滑特性、等效支撑刚度及支撑位置与艉轴承末端下沉量及轴系转速之间的关系,进一步研究了其对轴系回旋振动特性的影响。
     采用二维的傅里叶级数展开方法建立了弹性支撑及连接边界的多跨曲梁面内自由振动模型。从能量原理出发,将曲梁面内径向和切向位移函数表示成傅里叶级数形式,并引入辅助多项式函数用以解决弹性支撑及连接边界的不连续性,采用Rayleigh-Ritz方法求解哈密顿方程,得到关于未知位移幅值系数的标准特征值问题,求解得到多跨曲梁的固有频率和振型。同时,考虑了其他分布或者集中特征量对整体矩阵的影响。通过两跨的自由、简支、固支等经典边界及弹性边界的曲梁模型结果与有限元模型所得结果的对比验证了本方法的正确性,并对曲率对曲梁振动特性的影响及两跨曲梁中间连接刚度对其固有频率的影响作了一定的研究。
     引入波传播方法解决了圆柱壳弹性支撑边界自由振动的求解问题。首先采用波传播方法研究了经典边界圆柱壳的振动特性,研究了使用相同边界梁单元波数求解圆柱壳振动波数的方法,并另辟蹊径直接通过控制方程求解波数,并应用到弹性边界条件,通过设定弹性支撑弹簧刚度为无穷大或者零来得到与经典边界相对应的结果,并与文献及有限元模型所得结果进行了对比,并研究了各个方向弹性支撑对圆柱壳振动特性的影响。
     采用机械阻抗综合法研究梁及其支撑圆柱壳体的耦合结构振动特性。首先对机械阻抗的基本思路进行了说明,求解了基于机械阻抗综合法的结构在简谐激励下的响应。其次,推导得到了多跨梁及简支边界下圆柱壳体在点激励下频域内的阻抗表达形式,求解计算了在简谐激励下的谐响应,并与有限元模型所得结果进行了对比,结果吻合良好。对双层梁、梁-壳耦合结构进行了分析,研究了质量点质量及悬臂长度对质量点-梁-壳耦合结构响应的影响。
     设计了实验台架,定量分析弹性挠曲对轴系回旋振动的影响规律。通过推进器与整个轴系的质量比相似设计、推进器当量半径与轴系主要半径的惯量比相似设计、以及轴系长度与轴系主要半径的长径比相似设计,最后设置轴承位置来实现轴系的动力学相似性,使实验台架最大限度的体现船舶轴系的特性。通过精心的垂直及水平方向位置调心保证挠曲前的轴系状态,之后通过调整艉轴承的倾斜量分析轴系产生弹性挠曲之后其回旋振动响应特性的变化,并定量研究弹性挠曲对轴系回旋振动的影响规律。
The propulsion shafting is one of the most important components of a ship’s powerdevice, and the noise and vibration prediction and control of the shafting and its coupledstructure with cylindrical shell is a very important research project in ship engineering. Forthe gyroscopic moment because of the rotation cantilever propeller and the effectivesupported stiffness and location of the stern bearing, developing the precise dynamic models,and studying the influence to the shafting and the coupled structure will be of great theoreticalsignificance and applied value. Surrounding the gyroscopic effect of the propulsion shafting,the dynamic characteristics of the stern bearing, and the influence of the cantilever propellerto the shafting, the coupled vibration problem of the shafting and cylindrical shell, thedetailed research work has been carried out in this thesis as follows:
     The dynamic analysis model of the shafting’s gyroscopic vibration is established usingthe Fourier Series Expanded Method based on the Euler-Bernoulli beam theory. Thecorrectness of the application of the method is validated by comparing with the resultsobtained by published papers and FEA model. Through the introduction of Dirac deltafunction, considering the propeller as a lumped mass and analyzing its gyroscopic moment,the governing differential equation of the shafting with lumped mass and gyroscopic effect isobtained and a standard matrix eigenvalue problem for gyroscopic vibration can be developedusing the orthogonal of trigonometric functions. The gyroscopic dynamic response in timedomain under harmonic or arbitrary load is obtained using the Newmark numericalstep-by-step integration method. The accurate and efficient of the method is validated bycomparing with the results obtained by published papers, National Standard and FEA model.The method which is based on theory of continuous system can solve natural characteristicsand forced responses of gyroscopic vibration of shafting with elastic-surpport boundaryconditions, various section areas and multi-span.
     Based on the Reynolds equation, the calculating approach of eight dynamic parametersabout stiffness and damp of infinite long and short bearing is deduced through the impedancerelationship using the oil film thickness of misaligned journal bearing. Combining theimpedance relationships of the infinite long and short bearing, the calculating formulas ofstiffness and damp of finite long bearing are derived using an experiential impedancerelationship for the finite long bearing. And the effective supported stiffness and location areobtained. The correctness of the method is validated by comparing with the results ofmaximal oil film pressure obtained by published papers with difference misalignments. Andthe influences of the misalignment to the lubricating characteristics, the effective supported stiffness and location of the journal bearing and to the gyroscopic vibration of shafting areanalyzed.
     The in-plane free vibration model of multi-span curved beam system with elasticllysupported and connected boundary condition is established using the two-dimentional FourierSeries Expanded Method. According to the enegy principle, the in-plane vibrationdisplacements along radial and tangent directions are both expressed as the superposition of adouble Fourier cosine series and four supplementary functions in the form of the product of apolynomial fuction. The use of these supplementary functions is to overcome thediscontinuity problems of the elastic boundary conditions. And a standard matrix eigenvalueproblem about the unknow displacement amplitude coefficients is derived through solving theHamilton’s equation using the Rayleigh-Ritz Method and the natural frequencies and modeshapes of multi-span curved beams can be solved. At the same time, the contribution of otherdistributed and lumped parameters to the whole mass and stiffness matrix is considered. Theresults of two-span curved beams with free, simple supported, clamped and elasticllysupported boundary conditions are obtained and compared with the results got from the FEMmodel to validate the correctness of the present method. And the effect of curvature andconnecting stiffnesses between two-span curved beams on the vibration frequencies isdescribed.
     The vibration of cylindrical shell with elasticlly supported boundary conditions is solvedthrough introducing the wave propagation method. The method is applied to the cylindricalshell with traditional boundary conditions. And the wave number along the axial direction issolved using the governing equation directly rather than solved from beam structures havingthe same boundary conditions with the shell used by the most papers. Applying to the elasticboundary conditions, the accurate of the method is validated by comparing with the resultsobtained by published papers and FEA model through considering the classical homogeneousboundary conditions as the special cases when the stiffness for each set of springs is equal toeither infinity or zero. The influence of the elasticlly supported along various directions to thevibration of the cylindrical shell is studied.
     The vibration characteristic of coupled structure of the beam and its supportedcylindrical shell is worked out using the Mechanical Impedance Synthesis Method. The basicconcept the mechanical impedance are introduced firstly, and the methods used formulti-coordinate, coupled substructures under harmonic load are analyzed. The impedanceexpressions in frequency domain of the multi-span beam system with elastic boundaryconditions and the cylindrical shell with shear diaphragm-shear diaphragm (SD-SD) boundary conditions under harmonic load are obtained, and the results of the harmonic responses arevalidated accurate compared with the results calculated from FEA models. The approach isfirst used to determine the modal properties of a double-deck beam system consisting of twobeams coupled in parallel, which serves to both validate the substructure synthesis techniqueand demonstrate the versatility of the beam substructure in contrasting to its seeminglylimited face value. The vibrational responses of a coupled beam-cylindrical shell system arethen used to validate the current solution technique and to study the effects of modifying somemodel parameters.
     Finally, an experimental system is designed to quantitative analyze the influence ofelastic deformation to gyroscopic vibration of the shafting. Through mass ratio of thepropeller to the whole shafting design, inertia ratio of the equivalent radius of propeller to themaster radius of shafting design and length-radius ratio of length to master radius of shaftingdesign, and the dynamic design setting the location of the bearing, the system could make ananalogy to the shafting. Various experimental measurement works are performed throughresizing the vertical location of the stern bearing in order to describe the influence of elasticdeformation to gyroscopic vibration of the shafting.
引文
[1]陈之炎.船舶推进轴系振动.上海交通大学出版社,1987:172-233页
    [2]周春良.船舶轴系振动研究.哈尔滨工程大学博士学位论文.2006:24-32页
    [3]陈之炎,赵玫,骆振黄.船舶推进轴系的回旋振动.上海交通大学学报.1984(2):91-99页
    [4]蔡大文.考虑陀螺力矩时轴的临界转速计算.西安工业学院学报.1995,15(2):120-125页
    [5]吴晓.多跨连续长索的横振固有频率.振动与冲击.2005,24(4):127-129页
    [6]李军强,方同.轴向力作用下弹性支撑连续梁的固有横振.西安石油学院学报.1997,14(4):70-74页
    [7]隋永枫,吕和祥.陀螺效应对转子横向振动的影响分析.计算力学学报.2003,20(6):711-714页
    [8]陈锡恩,高景.船舶轴系回旋振动计算及其参数研究.船海工程.2001(5):8-11页
    [9]陈之炎,骆振黄.船舶推进轴系回旋振动计算的Riccati-Myklestad-Prohl(RMP)法.船舶工程.1987(6):38-43页
    [10]张建军,许运秀.162客位气垫船垫升轴系回旋振动特性分析.噪声与振动控制.1994(2):7-12页
    [11]刘刚,吴炜,饶春晓.基于传递矩阵法的船舶轴系回旋振动计算研究.中国舰船研究.2010,5(1):60-63页
    [12]刘志刚,王传溥,张志华等.利用实验数据修正船舶推进轴系横向振动的有限元模型.船舶工程.1991(5):30-37页
    [13]荣吉利,王世忠,黄文虎等.水轮发电机组轴系横向自振特性的有限元分析.振动与冲击.1997,16(2):17-22页
    [14]王小立.船舶推进轴系动态性能分析与研究.武汉理工大学硕士学位论文.2008:53-71页
    [15]王磊,谢俊超,周瑞平.大型船舶推进轴系回旋振动特性分析研究.江苏船舶.2010,27(1):14-17页
    [16]何灵聪,黄次浩,朱从乔等.轴系回旋振动的计算机测试系统研究.海军工程学院学报.1997(3):104-110页
    [17]谭祖胜,陈川艾,郭贤明.高速船推进轴系回旋振动影响因素及特点探析.船舶工程.1999(3):32-34页
    [18]周瑞平.基于VB的船舶轴系回旋振动计算软件.造船技术.1999(3):30-33页
    [19]梁向东.轴系的回旋运动对船舶噪声的影响.噪声与振动控制.2007(2):69-70页
    [20]王传溥,张天元,徐伯清等.船舶轴系横向振动的模拟实验与分析.哈尔滨船舶工程学院学报.1987,8(2):1-11页
    [21]王传溥,刘志刚,张洪田等.船舶轴系横向振动共振转速的实验.船舶工程.1995(4):23-25页
    [22]王传溥.几种船舶轴系横向振动电算方法的比较.哈尔滨船舶工程学院学报.1984(2):37-48页
    [23]王传溥.用有限单元法计算船舶轴系的横向振动.哈尔滨船舶工程学院学报.1983(2):35-46页
    [24]刘志刚,张天元,王芝秋等.船舶推进轴系横向振动模态试验研究.船舶工程.1992(5):26-30页
    [25]祁亮,周瑞平,崔金环.中间轴承对船舶轴系回旋振动特性的影响.造船技术.2001,35-39(4)页
    [26]朱汉华,严新平,刘正林.冲击载荷下船舶轴系转速与回旋振动间影响研究.武汉理工大学学报.2008,32(6):983-985页
    [27] CB*/Z336-84.船舶推进轴系回旋振动计算方法.北京:中国标准出版社,1984.
    [28] Mourelatos Z P. A crankshaft sustem model for structural dynamic analysis of internalcombustion engines. Computers and Structures.2001(79):2009-2027P
    [29] Shi L, Xue D, Song X. Research on shafting alignment considering ship hulldeformations. Marine Structures.2010,23:103-114P
    [30] Zou C, Hua H, Chen D. Modal synthesis method of lateral vibration analysis forrotor-bearing system. Computers and Structures.2002,80:2537-2549P
    [31] Posiadala B. Free vibrations of uniform Timoshenko beams with attachments. Journal ofSound and Vibration.1997,204(2):359-369P
    [32] Gurgoze M. On the alternative formulations of the frequency equation of aBernoulli-Euler beam to which several spring-mass systems are attached in-span.1998,217(3):585-595P
    [33] Lin H, Tsai Y. Free vibration analysis of a uniform multi-span beam carrying multiplespring–mass systems. Journal of Sound and Vibration.2007,302:442-456P
    [34] Lin H. Dynamic analysis of a multi-span uniform beam carrying a number of variousconcentrated elements. Journal of Sound and Vibration.2008,309:262-275P
    [35] Lin H. On the natural frequencies and mode shapes of amultispan Timoshenko beamcarrying a number of various concentrated elements. Journal ofSoundandVibration.2009,319:593-605P
    [36] Dubigeon S, Michon J C. Gyroscopic behaviour of stressed rotating shafts. Journal OfSound And Vibration.1975,42(3):281-293P
    [37] Haddara M R. On the transverse vibration of a propeller-tail shaft system. OceanEngineering.1988,15(2):119-126P
    [38] Warikoo R, Haddara M R. Analysis of propeller shaft transverse vibration. MarineStructures.1992,5(4):255-279P
    [39] Sheu G J, Yang S M. Dynamic analysis of a spinning Rayleigh beam. InternationalJournal of Mechanical Sciences.2005,47:157-169P
    [40] Pan J, Pan J. Structural intensity of torsional vibration in solid and hollow cylindricalbars. Jounal of Acoustical Society of America.1998,103(3):1475-1482P
    [41] Pan J Q, Pan J, Ming R S, et al. Three-dimensional response and intensity of torsionalvibration in a stepped shaft. Journal of Sound and Vibration.2000,236(1):115-128P
    [42] Peng S Z, Pan J. Acoustical wave propagator technique for time-domain reflection andtransmission of flexural wave packets in one-dimensional stepped beams. Journal ofSound and Vibration.2006,297:1025-1047P
    [43] Lin T R, Pan J, Shea P J O, et al. A study of vibration and vibration control of shipstructures. Marine Structures.2009,22:730-743P
    [44] Lee H P. Dynamic response of a rotating Timoshenko shaft subject to axial forces andmoving loads. Journal of Sound and Vibration.1995,181(1):169-177P
    [45] Matsunaga H. Free vibration and stability of thin elastic beams subjected to axial forces.Journal of Sound and Vibration.1996,191(5):917-933P
    [46] Kaya M O, Ozgumus O O. Flexural–torsional-coupled vibration analysis of axiallyloaded closed-section composite Timoshenko beam by using DTM. Journal of Sound andVibration.2007,306:495-506P
    [47] Ouyang H, Wang M. A dynamic model for a rotating beam subjected to axially movingforces. Journal of Sound and Vibration.2007,308:674-682P
    [48] Kim W, Argento A, Scott R A. Free vibration of a rotating tapered compositeTimoshenko shaft. Journal of Sound and Vibration.1999,226(1):125-147P
    [49] Katz R. The dynamic response of a rotating shaft subject to an axially moving androtating load. Journal of Sound and Vibration.2001,246(5):757-775P
    [50] Naguleswaran S. Transverse vibration of an uniform Euler–Bernoulli beam underlinearly varying axial force. Journal of Sound and Vibration.2004,275:47-57P
    [51] Zhang Y Q, Lu Y, Wang S L, et al. Vibration and buckling of a double-beam systemunder compressive axial loading. Journal of Sound and Vibration.2008,318:341-352P
    [52] Lee H P. Transverse Vibration of a Timoshenko Beam Acted on by an AcceleratingMass. Applied Acoustics.1996,47(4):319-330P
    [53] Zheng D Y, Cheung Y K, Au F T K. Vibration of multi-span non-uniform beams undermoving loads by using Modified Beam Vibrasion Functions. Journal of Sound andVibration.1998,212(3):455-467P
    [54]吴国荣.一种求解梁动力响应的新方法.振动与冲击.2006,25(4):146-148页
    [55] Zhou D. Free vibration of multi-span Timoshenko beams using static Timoshenko BeamFunctions. Journal of Sound and Vibration.2001,241(4):725-734P
    [56] Jaworski J W, Dowell E H. Free vibration of a cantilevered beam with multiple steps:Comparison of several theoretical methods with experiment. Journal of Sound andVibration.2008,312:713-725P
    [57] Grossi R O, Quintana M V. The transition conditions in the dynamics of elasticallyrestrained beams. Journal of Sound and Vibration.2008,316:274-297P
    [58] Naguleswaran S. Vibration of an Euler–Bernoulli beam on elastic end supports and withupto three stepchanges in cross-section. International Journal of Mechanical Sciences.2002(44):2541-2555P
    [59] Naguleswaran S. Transverse vibration of an Euler–Bernoulli uniform beam on up to fiveresilient supports including ends. Journal of Sound and Vibration.2003(261):372-384P
    [60] Naguleswaran S. Transverse vibration and stability of an Euler–Bernoulli beam with stepchange in cross-section and in axial force. Journal of Sound and Vibration.2004(270):1045-1055P
    [61] Tsukazan T. The use of a dynamical basis for computing the modes of a beam systemwith a discontinuous cross-section. Journal of Sound and Vibration.2005(281):1175-1185P
    [62] Hong S W, Kim J W. Modal analysis of multi-span Timoshenko beams connected orsupported by resilient joints with damping. Journal of Sound and Vibration.1999,227(4):787-806P
    [63] Wang J, Qiao P. Vibration of beams with arbitrary discontinuities and boundaryconditions. Journal of Sound and Vibration.2007,308:12-27P
    [64] Zheng D Y, Kessissoglou N J. Free vibration analysis of a cracked beam by finiteelement method. Journal of Sound and Vibration.2004,273:457-475P
    [65]许峰炜.简支板梁桥车桥振动的横向分布特性研究.浙江大学硕士学位论文.2006:8-34页
    [66]姜雪洁,耿厚才.船舶推进轴系的动态模型.振动与冲击.2005,24(2):21-25页
    [67]杨金福,刘占生,于达仁等.滑动轴承非线性油膜力研究.哈尔滨工业大学学报.2005,35(3):257-260页
    [68]肖忠会,沈光琰,郑铁生等.用瑞利-李兹法求解瞬时非稳态滑动轴承油膜力的新算法.计算力学学报.2005,22(6):685-689页
    [69]朱小平.舰船主推进系统的建模理论、控制策略及优化设计.同济大学博士学位论文.2007:40-60页
    [70]朱小平,冯奇.考虑油膜力作用的船舶主推进系统冲击研究.力学季刊.2007,28(4):652-660页
    [71]朱小平,冯奇.油膜轴承支撑的主推进系统建模及其参数影响.同济大学学报.2008,36(8):1124-1128页
    [72]朱汉华.船舶螺旋桨轴振动与润滑耦合理论和试验研究.武汉理工大学博士学位论文.2005:21-38页
    [73]朱汉华,刘正林,温诗铸等.船舶轴系尾轴承动态润滑计算.武汉理工大学学报.2005,29(1):5-7页
    [74]朱汉华,严新平,刘正林等.油膜力耦合下质量偏心对船舶轴系振动的影响.船舶工程.2008,30(2):20-23页
    [75]朱汉华,刘焰明,刘正林等.船舶尾轴承变形对其承载能力影响的理论及试验研究.润滑与密封.2007,32(6):12-15页
    [76]朱汉华,严新平,刘正林.转速对油膜刚度与螺旋桨轴振动影响研究.船海工程.2007,36(4):83-85页
    [77] G P, Nikolakopoulos, Papadopoulos C A. A study of friction in worn misaligned journalbearings under severe hydrodynamic lubrication. Tribology International.2008,41:461-472P
    [78] Bouaziz S, Hili M A, Mataar M. Dynamic behaviour of hydrodynamic journal bearingsin presence of rotor spatial angular misalignment. Mechanism and Machine Theory.2009,44:1548-1559P
    [79] Bouaziz S, Messaoud N B, Mataar M. A theoretical model for analyzing the dynamicbehavior of a misaligned rotor with active magnetic bearings. Mechatronics.2011,21:899-907P
    [80] Pennacchin P, Andreavania, Stevenchatterton. Nonlinear effects caused by couplingmisalignment in rotors equipped with journal bearings. Mechanical Systems and SignalProcessing.2012,30:306-322P
    [81]孙军,桂长林,李震等.计及轴颈倾斜的径向滑动轴承流体动力润滑分析.中国机械工程.2004,15(17):1565-1569页
    [82]何芝仙,桂长林.计入轴瓦变形的曲轴轴承系统动力学摩擦学耦合分析.振动与冲击.2008,27(10):139-144页
    [83]孙军,桂长林,李志远.轴变形产生的轴颈倾斜对滑动轴承润滑影响的试验研究.机械工程学报.2006,42(7):159-163页
    [84]孙军,桂长林,李志远.轴受载变形产生的轴颈倾斜对滑动轴承润滑影响的研究.润滑与密封.2006(11):4-8页
    [85] Sun J, Changlin Gui. Hydrodynamic lubrication analysis of journal bearing consideringmisalignment causedby shaft deformation. Tribology International.2004,37:841-848P
    [86] Guha S K. Analysis of steady-state characteristics of misaligned hydrodynamic journalbearings with isotropic roughness effect. Tribology International.2000,33:1-12P
    [87] El-Butch A M, Ashour N M. Transient analysis of misalignedelastic tilting-padjournalbearing. Tribology International.2005,38:41-43P
    [88] Wang Y, Wang Q J, Linb C. A mixed-EHL analysis of effects of misalignments andelastic deformations on the performance of a coupled journal-thrust bearing system.Tribology International.2006,39:281-289P
    [89] Shenoy S B, Pai R. Theoretical investigations on the performance of anexternallyadjustable fluid-film bearing including misalignment and turbulence effects. TribologyInternational.2009,42:1088-1100P
    [90] Shenoy B S, Pai R. Effect of turbulence on the static performance of a misalignedexternally adjustable fluid film bearing lubricated with couple stress fluids. TribologyInternational.2011,1774-1781(44)P
    [91] Hu W, Miah H, Feng N S, et al. A rig for testing lateral misalignment effects in a flexiblerotor supported on three or more hydrodynamic journal bearings. Tribology International.2000,33:197-204P
    [92] Arumugam P, Swarnamani S, Prabhu B S. Effects of journal misalignment on theperformance characteristics of three-lobe bearings. Wear.1997,206:122-129P
    [93]沈永凤,方成跃,张红岩.挠曲轴系横向振动计算及分析.噪声与振动控制.2010(6):129-132页
    [94] Chidamparam P, Leissa A W. Vibrations of planar curved beams, rings, and arches.American Society of Mechanical Engineers.1993,46(9):467-483P
    [95] Ibrahimbegovic A. On finite element implementation of geometrically nonlinearReissner’s beam theory: three-dimensional curved beam elements. Computer Methods inApplied Mechanics and Engineering.1995,122:11-26P
    [96] Leung A Y T, Zhu B. Fourier p-elements for curved beam vibrations. Thin-WalledStructures.2004,42:39-57P
    [97] Yoon K, Kang Y, Choi Y. Free vibration analysis of horizontally curved steel I-girderbridges. Thin-Walled Structures.2005,43:679-699P
    [98] Yang F, Sedaghati R, Esmailzadeh E. Free in-plane vibration of general curved beamsusing finite element method. Journal of Sound and Vibration.2008,318:850-867P
    [99] Zhu Z H, Meguid S A. Vibration analysis of a new curved beam element. Journal ofSound and Vibration.2008,309:86-95P
    [100]袁驷,叶康生,王珂.平面曲梁面内自由振动分析的自适应有限元法.工程力学.2009,26:126-132页
    [101] Kim N, Seo K, Kim M. Free vibration and spatial stability of non-symmetricthin-walled curved beams with variable curvatures. International Journal of Solids andStructures.2003,40:3107-3128P
    [102] Nam-Il K, Moon-Young K. Exact dynamic stiffness matrix of non-symmetricthin-walled curved beams subjected to initial axial force. Journal of Sound and Vibration.2005,284:851-878P
    [103] Piovan M T, Cortinez V H. Mechanics of thin-walled curved beams made ofcomposite materials, allowing for shear deformability. Thin-Walled Structures.2007,45:759-789P
    [104] Tseng Y P, Huang C S, Kao M S. In-plane vibration of laminated curved beams withvariable curvature by dynamic stiffiness analysis. Composite Structures.2000,50:103-114P
    [105] Huang C S, Tseng Y P, Chang S H. Out-of-plane dynamic analysis of beams witharbitrarily varying curvature and cross-section by dynamic stiffi?ness matrix method.International Journal of Solids and Structures.2000,37:495-513P
    [106] Liu G R, Wu T Y. In-plane vibration analyses of circular arches by the generalizeddifferential quadrature rule. International Journal of Mechanical Sciences.2001,43:2597-2611P
    [107]武兰河,刘淑红,周敏娟.圆弧曲梁面内自由振动的微分容积解法.振动与冲击.2004,23(1):118-122页
    [108] Jeng D, Lu J. Vibration Analysis of a Circular Tunnel With Jointed Liners Embeddedin an Elastic Medium Subjected to Seismic Waves. Journal of Vibration and Acoustics.2009,131:210005-1-8P
    [109]李天匀,张小铭.周期简支曲梁的振动波和功率流.华中理工大学学报.1995,23(9):112-115页
    [110] Kang B, Riedel C H, Tan C A. Free vibration analysis of planar curved beams bywave propagation. Journal of Sound and Vibration.2003,260:19-44P
    [111] Lee S K, Mace B R, Brennan M J. Wave propagation, reflection and transmission incurved beams. Journal of Sound and Vibration.2007,306:636-656P
    [112] Loy C T, Lam K Y, Shu C. Analysis of cylindrical shells using generalized deferentialquadrature. Shock and Vibrations.1997,4:193-198P
    [113] Mofakhamia M R, Toudeshkya H H, Hashemib S H. Finite cylinder vibrations withdifferent end boundary conditions. Journal of Sound and Vibration.2006,297:293-314P
    [114] Cao Z, Wang H. Free vibration of FGM cylindrical shells with holes under variousboundary conditions. Journal of Sound and Vibration.2007,306:227-237P
    [115] Ming R S, Pan J, Norton M P. The mobility functions and their application incalculating power flow in coupled cylindrical shells. Journal of Acoustical Society ofAmerica.1999,105(3):1702-1713P
    [116] Ming R, Pan J, Norton M P. The measurement of structural mobilities of a circularcylindrical shell. Journal of Acoustical Society of America.2000,107(3):1374-1382P
    [117] Loy C T, Lam K Y. Vibration of thick cylindrical shells on the basis ofthree-dimensional theory of elasticity. Journal of Sound and Vibration.1999,226(4):719-737P
    [118] Loy C T, Lam K Y, Reddy J N. Vibration of functionally graded cylindrical shells.International Journal of Mechanical Sciences.1999,41:309-324P
    [119] Pradhan S C, Loy C T, Lam K Y. Vibration characteristics of functionally gradedcylindrical shells under various boundary conditions. Applied Acoustics.2000,61:111-129P
    [120] Haumesser L, Decultot D, Leon F. Experimental identification of finite cylindricalshell vibration modes. Journal of Acoustical Society of America.2002,111(5):2034-2039P
    [121] Pellicano F. Vibrations of circular cylindrical shells: Theory and experiments. Journalof Sound and Vibration.2007,303:154-170P
    [122] Kaplunov J D, Wilde M V. Free interfacial vibrations in cylindrical shells. Journal ofAcoustical Society of America.2002,111(6):2692-2704P
    [123] Trotsenko Y V. Frequencies and modes of vibration of a cylindrical shell withattached rigid body. Journal of Sound and Vibration.2006,292:535-551P
    [124] Mcdaniel J G. Power flow to a cylindrical shell with an attached structure. Journal ofAcoustical Society of America.1998,103(6):3386-3392P
    [125] El-Mously M. Fundamental natural frequencies of thin cylindrical shells: acomparative study. Journal of Sound and Vibration.2003,264:1167-1186P
    [126] Xu M B, Zhang X M. Vibration power flow in a fluid-filled cylindrical shell. Journalof Sound and Vibration.1998,218(4):587-598P
    [127] Hassan S E, Stepanishen P R. Response of force excited elastic solids with internalfluid loading. Journal of Acoustical Society of America.2004,116(2):891-899P
    [128] Liu B, Hodkiewicz M, Panb J. A study of vibroacoustic coupling between a pumpand attached water-filled pipes. Journal of Acoustical Society of America.2007,121(2):897-912P
    [129] Amabili M. Theory and experiments for large-amplitude vibrations of empty andfluid-filled circular cylindrical shells with imperfections. Journal of Sound and Vibration.2003,262:921-975P
    [130] Yan J, Li T Y, Liu T G. Characteristics of the vibrational power flow propagation in asubmerged periodic ring-stiffened cylindrical shell. Applied Acoustics.2006,67:550-569P
    [131] Forsberg K. Influence of boundary conditions on the modal characteristics of thincylindrical shells. AIAA Journal.1964,2(12):2150-2157P
    [132]陈正翔,张维衡.圆柱壳中较高阶结构振动波的传播特性.华中理工大学学报.1997,25(11):93-95页
    [133]陈正翔,江松,张维衡.圆柱壳中结构振动波的传播特性.振动工程学报.1998,11(4):450-457页
    [134]陈正翔,金咸定,张维衡.充液圆柱管壳中振动波的频散特性.船舶力学.2000,4(5):60-67页
    [135]高传宝,张维衡,戴起生.用波传播方法分析复合材料层合圆柱壳的振动.噪声与振动控制.2003(6):1-5页
    [136] Yan J, Li F C, Li T Y. Vibrational power flow analysis of a submerged viscoelasticcylindrical shell with wave propagation approach. Journal of Sound and Vibration.2007,303:264-276P
    [137] Liu J X, Li T Y, Liu T G, et al. Vibration characteristic analysis of buried pipes usingthe wave propagation approach. Applied Acoustics.2005,66:353-364P
    [138] Xuebin L. Study on free vibration analysis of circular cylindrical shells using wavepropagation. Journal of Sound and Vibration.2008,311:667-682P
    [139]李学斌.圆柱壳振动分析的波动方法.舰船科学技术.2009,31(5):21-26页
    [140]李学斌.正交各向异性圆柱壳静动态特性分析及比较研究.华中科技大学博士学位论文.2004:17-52页
    [141] Xuebin Li. A new approach for free vibration analysis of thin circular cylindricalshell. Journal of Sound and Vibration.2006,296:91-98P
    [142] Gan L, Xuebinli, Zhengzhang. Free vibration analysis of ring-stiffened cylindricalshells using wave propagation approach. Journal of Sound and Vibration.2009,326:633-646P
    [143]马旭,杜敬涛,杨铁军.基于波传播方法的边界条件对圆柱壳振动特性的影响分析.2009,22(6):608-613页
    [144] Wang C, Lai J C S. Prediction of natural frequencies of?nite length circularcylindrical shells. Applied Acoustics.2000,59:385-400P
    [145] Caresta M, Kessissoglou N J. Purely axial vibration of thin cylindrical shells withshear-diaphragm boundary conditions. Applied Acoustics.2009,70:1081-1086P
    [146] Karczub D G. Expressions for direct evaluation of wave number in cylindrical shellvibration studies using the Flügge equations of motion. Journal of Acoustical Society ofAmerica.2006,119(6):3553-3557P
    [147] Zhang X M, Liu G R, Lam K Y. Vibration analysis of thin cylindrical shells usingWave Propagation Approach. Journal of Sound and Vibration.2001,239(3):397-403P
    [148] Xu M B, Song G. Adaptive control of vibration wave propagation in cylindrical shellsusing SMA wall joint. Journal of Sound and Vibration.2004,278:307-326P
    [149] Howard C Q, Hansen C H, Pan J. Power transmission from a vibrating body to acircular cylindrical shell through passive and active isolators. Journal of AcousticalSociety of America.1997,101(3):1479-1491P
    [150] Huang Y M, Fuller C R. The effects of dynamic absorbers on the forced vibration ofa cylindrical shell and ite coupled interior sound field. Journal of Sound and Vibration.1997,200(4):401-418P
    [151] Li W L, Daniels M, Zhou W. Vibrational power transmission from a machine to itssupporting cylindrical shell. Journal of Sound and Vibration.2002,257(2):283-299P
    [152] Missaoui J, Cheng L, Richard M J. Free and forced vibration of a cylindrical shellwith a floor partition. Journal of Sound and Vibration.1996,190(1):21-40P
    [153] Guo Y P. Acoustic radiation from cylindrical shells due to internal forcing. Journal ofAcoustical Society of America.1996,99(3):1495-1505P
    [154] Lee Y, Choi M, Kim J. Free vibrations of laminated composite cylindrical shells withan interior rectangular plate. Journal of Sound and Vibration.2003,265:795-817P
    [155] Wang Z H, Xing J T, Price W G. A study of power flow in a coupled plate–cylindricalshell system. Journal of Sound and Vibration.2004,271:863-882P
    [156] Dylejko P G, Kessissoglou N J, Tso Y, et al. Optimisation of a resonance changer tominimise the vibration transmission in marine vessels. Journal of Sound and Vibration.2007,300:101-116P
    [157] Merz S, Kinns R, Kessissoglou N. Structural and acoustic responses of a submarinehull due to propeller forces. Journal of Sound and Vibration.2009,325:266-286P
    [158] Merz S, Kessissoglou N, Kinns R, et al. Minimisation of the sound power radiated bya submarine through optimisation of its resonance changer. Journal of Sound andVibration.2010,329:980-993P
    [159]李栋梁,谌勇,张志谊.推力轴承油膜刚度对轴系-艇体结构耦合振动的影响研究.噪声与振动控制.2011(6):81-85页
    [160]张志谊,堪勇,李攀硕.轴系-壳体耦合振动控制的试验研究.现代振动与噪声技术.2011,9:65-70页
    [161] Efraim E, Eisenberger M. Exact vibration frequencies of segmented axisymmetricshells. Thin-Walled Structures.2006,44:281-289P
    [162] Caresta M, Kessissoglou N J. Structural and acoustic responses of a fluid-loadedcylindrical hull with structural discontinuities. Applied Acoustics.2009,70:954-963P
    [163] Caresta M, Kessissoglou N J. Free vibrational characteristics of isotropic coupledcylindrical–conical shells. Journal ofSoundandVibration.2010,329:733-751P
    [164] Caresta M, Kessissoglou N J. Acoustic signature of a submarine hull under harmonicexcitation. Applied Acoustics.2010,71:17-31P
    [165] Caresta M. Active control of sound radiated by a submarine in bending vibration.Journal of Sound and Vibration.2011,330:615-624P
    [166] H.Chung. Free vibration analysis of circularcylindrical shells. Journal of Sound andVibration.1981,71:31-350P
    [167] S.C.Chuang, J.T.S.Wang. Vibration of axially loaded damped beams on viscoelasticfoundation. Journal of Sound and Vibration.1991,148:423-435P
    [168] Wang J T S, Lin C C. Dynamic analysis of generally supported beams using FourierSeries. Journal of Sound and Vibration.1996,196(3):285-293P
    [169] Li W L. Free vibrations of beams with general boundary conditions. Journal ofSound and Vibration.2000,237(4):709-725P
    [170] Li W L. Comparison of Fourier sine and cosine Series expansions for beams witharbitrary boundary conditions. Journal of Sound and Vibration.2002,255(1):185-194P
    [171] Xu H, Li W L. Dynamic behavior of multi-span bridges under moving loads withfocusing on the effect of the coupling conditions between spans. Journal of Sound andVibration.2008(312):736-753P
    [172] Li W L, Bonilha M W, Xiao J. Vibrations and Power Flows in a Coupled BeamSystem. Journal of Vibration and Acoustics.2007,129:612-616P
    [173] Li W L, Xu H. An Exact Fourier Series Method for the Vibration Analysis ofMultispan Beam Systems. Journal of Computational and Nonlinear Dynamics.2009(4):21001-21009P
    [174] Li W L, Daniels M. A Fourier Series Method for the vibrations of elasticallyrestrained plates arbitrarily loaded with springs and masses. Journal of Sound andVibration.2002,252(4):768-781P
    [175] Li W L, X.F. Zhang, J.T. Du, et al. An exact series solution for the transversevibration of rectangular plates with general elastic boundary supports. Journal of Soundand Vibration.2009(321):254-269P
    [176] Wang D. EHD analysis of a connecting rod bearing in a high-speed engine. Thesis ofDoctor's Degree of The University of Toledo.2003:68-86P
    [177] Ene N M, Dimofte F, Jr T G K. A stability analysis for a hydrodynamic three-wavejournal bearing. Tribology International.2008,41:434-442P
    [178]吴广明,余永丰,沈荣瀛.模态机械阻抗综合法及其在隔振系统中的应用.噪声与振动控制.2003(2):13-16页
    [179] Wu G, Shen R, Hua H. Mode mechanical impedance synthesis method and itsapplication in flexible isolation system. Journal of Ship Mechanics.2004,8(6):135-142P
    [180]左鹤声.机械阻抗方法与应用.机械工业出版社,1987:416-456页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700