数值分析法在飞机液压系统噪声分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型飞机要突破的10项关键技术中,民用大型飞机总体设计技术、民用大型飞机的噪声预测和减噪措施是两项重要内容。其中,液压系统的噪声控制是一项重要内容。飞机主供压系统、应急供压系统、起落架收放系统、襟翼收放系统、前轮转弯系统、主轮刹车系统、风挡雨刷刮水系统等都用到液压系统,其中的液压元件会产生中高频噪声。
     本文围绕液压系统产生的噪声对机舱的影响,讨论噪声的基本特性及详细的表征参数。介绍了噪声的数值仿真分析方法有限元(FE)分析法、边界元分析法(BEM)、统计能量法(SEA)。其中,三种方法中有限元方法是确定性的求解方法,用于低频振动环境的预示,可以得到结构的整体模态参数。与边界元方法结合可以预示结构的振动以及内外声场的噪声辐射强度。有限元方法求解高频问题时,由于波长很小且模态密集,要准确求解需要网格精细程度足够高,因此模型的规模会变得非常大,求解的时间变得非常的长,反而没有了数值仿真高效的特点。再次,由于结构的高阶模态参数对许多不确定的原始参数以及许多结构细节非常的敏感,但是结构细节又不太好确定,使得有限元方法求解的精度大打折扣。另外,结构声振分析既存在振动引起的噪声辐射问题,又存在噪声引起的结构振动问题,传统的有限元方法在解决二者的耦合时比较困难。因此有限元方法通常只是用于求解低频振动噪声环境的预示。统计能量分析(SEA)从统计的角度分析统计密集模态平均的振动能量传递水平,因而模态愈是密集,统计精度就愈高,振动响应分析的精度也就愈高,其适用的分析频带较有限单元法宽得多。
     通过数值仿真,集成上述三种分析方法对噪声进行分析,并通过实验验证了周期性SEA方法在蒙皮桁条结构中应用的精确性,利用混合边界层法对侧墙+底板结构进行建模,验证了机身侧墙上部到底板的传递路径的正确性。针对液压系统的噪声分析,在液压控制系统设计过程中对合理使用液压元件,设计液压控制电路有着很高的指导作用。
In the 10 key technologies to break in the designing technology of large-scale civil aircraft, noise prediction and noise reduction measures are two important elements. Noise control of hydraulic systems is one of the most important. Main oil supply pressure systems, emergency oil supply pressure systems, undercarriage control systems, flap control systems, front-wheel steer systems, main-wheel braking systems and windshield wiper systems of the airo are based on hydraulic systems, the hydraulic component in the systems cause high-frequency noise.
     This paper describes the basic characteristics of the noise and the parameters of characterization around the hydraulic systems' impact of noise on the cabin. Introduce three numerical simulation methods about noise analysis, which including finite element (FE) analysis, boundary element method (BEM), statistical Energy Analysis (SEA). Finite element method is a deterministic method for low frequency vibration noise's prediction; get the overall modal parameters of the structure. Combined with the boundary element method(BEM),it can indicate the structure of the vibration and radiation of the noise inside and outside the sound field. For solving high frequency problems, because of the small-wavelength and the mode-intensive, it is necessary to accurately solve the needs of the grid high enough precision, and the size of the model will become very large, need a very long time, high-performance characteristics of Numerical simulation could not work. Secondly, because parameters of the higher-order modal are very sensitive to many uncertain original parameters and many details of the structure, but it is not good to determine the structure of the details, so it is not easy to get great accuracy by using finite element method. In addition, the problems of acoustic vibration of the structure include both the acoustic radiation and vibration caused by noise; the coupling of the traditional finite element method is more difficult. Therefore the finite element method is usually used to solve the problems of low-frequency vibration and noise. Statistical Energy Analysis(SEA) from the statistical point predict the statistics-intensive mode of vibration of the average level of energy transfer, which mode is more intensive, higher statistical accuracy, the accuracy of vibration analysis is the higher ,frequency band of its application is much wider than finite element method.
     Through numerical simulation, integrate the three analytical methods for analysis of noise. Through experimental method show a confidence of application on the stressed-skin construction by using the periodic SEA method. Model structure of sidewall and the bottom by using the method of hybrid FE-SEA, verify the correctness of the transmission path from the upper plate of the fuselage to the bottom.
引文
[1]秦浩明,焦志强等.民用飞机声学设计与评定标准浅析.航空标准化与质量[J].2008,5,1
    [2]CCAR 36航空器型号和适航合格审定噪声规定[S].2007年.
    [3]扈西枝,王毅刚.民用飞机舱内吸声材料性能研究[J].结构强度研究,2001(3).
    [4]李江红,黎中伟.运七飞机舱内噪声主动控制实验研究[J].航空学报,1998(5).
    [5]姚德源,王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社,1995.
    [6]潘凯.基于VA One的飞机舱内噪声预计方法研究[J].测控技术,2008,(03).
    [7]Clarkson,B.L.Review of Sonic Fatigue Teclmology,N94-29407
    [8]Rimas Vaicaitis,John.S.Mixsou.Review of research on structured borne noise,AIAA-PARER-85-07611
    [9]J.W.Miles.On Structure fatigue under random loading [J].J.Aeor.Sc,1954,21 753-762
    [10]冯涛,王晶.统计能量法的原理及其在声学工程上的应用.北京工商大学学报(自然科学版)[J].2002年12月(20)4,1
    [11]Lyon R H.Statistical energy analysis of dynamical system:theory and applications[M].M.I.T Press,1975.
    [12]Fathy F.J.Statistical energy analysis:a Critical overview.Phil.Trans.Soc.Lond.A(1994),PP431-447.
    [13]Fathy F.J.Sound and Structure Vibration:Radiation,Transmission and Response[M],Academic Press,London,1985
    [14]曹传钧译.航空声学[M].北京航空航天大学出版社,1993
    [15]燃气A轮发动机结构设计准则的研究—最终报告[R],1985
    [16]曹茂国.噪声载荷作用下薄壁柱壳结构随机振动响应的研究[D]:博士学位论文北京:北京航空
    [17]M.P.Norton.,Fundamentals of noise and vibration analysis for engineers[M].Cambridge University Press,1989
    [18]伍先俊,朱石坚,黄映云,何琳,程广利.统计能量优化设计法研究P[J].海军工程大学学报,第16卷第6期2004年12
    [19]高春宏,郭海洋,刘厚林..基于统计能量分析法的地铁车辆噪声预估.电力机车与城轨车辆..第31卷第1期2008年1月20日.
    [20]潘凯,秦浩明.飞机壁板结构统计能量分析参数的测量[A].中国航空结构动力学专业组第十六届学术交流会论文集[C],2008.
    [21]L in J S A.Airplane interior noise modeling using statistical energy analysis approach[R].AIAA-1999-1903.
    [22]王彦琴,盛美萍,孙进才.统计能量分析预测飞机壁板隔声量及舱室内声场分布[J].声学技术,2003,22(4).
    [23]高飞,黄超广,沈祖辉.小鹰-500飞机舱内振动和噪声分析技术[J].振动工程学报,2006,19(S0).
    [24]程广利,朱石坚,伍先俊.统计能量分析法及其损耗因子确定方法综述[J].船舶工程,2004,26(4).
    [25]黎胜.水下结构声辐射和声传输的数值分析及主动控制模拟研究[D].大连大连理工大学,2001.
    [26]邹元杰水中阻尼复合壳体结构声振特性的数值分析[D].大连:大连理工大学,2004
    [27]Schenck H A,Improved integral formulation for acoustic radiation problems.J.Acoustic Soc.Am.,1968,Vol.44,No.1:41-58.
    [28]Wu T W.Boundary Element acoustic:Fundamental and Computer Codes.Southampton:W I T press,2000.
    [29]赵健,汪鸿振,朱物华.边界元法计算已知振速封闭面的声辐射.声学学报,1989,14(4):250-257.
    [30]威跃龙,程玉民.边界元法进展及通用程序.上海:同济大学出版社,1997
    [31]赵翔,谢壮宁,黄幼玲.自由结构体声辐射研究.声学学报,1989,14(4):250-257.
    [32]Benthien W,Schenck A.Nonexistence and nonuniqueness problems associated with integral equation methods in acoustics.Computers &Structures,1997,Vol.65,No.3:295-305.
    [33]杨德全,赵忠生.边界元理论及应用.北京:北京理工大学出版社,2002
    [34]Brebbia C Telles J C F,Wrobel L C.Boundary Element Techniques,Spring eVer lag,BerlinandNewYork,1984.
    [35]Partridge P W,Brebbia C A,Wrobel L C.The dual reciprocity boundary element method.South amptom:Computational Mechanics Publications,1992
    [36]王文清,稚醒.弹性薄板小挠度弯曲内力的DRM边界元解法.重庆建筑大学学报,2000,22(6):63-66.
    [37]Ciskowski R D,Brebbia C A.Boundary Element Method in Acoustics.Southampton:Computational Mechanics Publications,1991.
    [38]廖海涛.噪声载荷下薄壁课题的随机振动响应[D].2007年:3.
    [39]F.FAHY,Sound and Structure Viberation:Radiation,Transmission and Response,Academic Press 1997.
    [40]R.S.LANGLEY."On the modal density and energy flow characteristics of periodic structures." Journal of Sound and Vibration172,491-511 1994.
    [41]B.R.MACE AND P.J.SHORTER.Journal of Sound and vibration(2000) 233(3),369}389."ENERGY FLOW MODELS FROM FINITE ELEMENT ANALYSIS"Phil Shorter,Francois-Rodolphe de Boussiers."Finite Element characterization of complex automotive panels for Statistical Energy Analysis(SEA)" NOISE-CON 2005 October 17-19.
    [42]周士昌.液压系统设计图集.北京:机械工业出版社,2003年:225-232.
    [43]熊诗波.液压测试技术.北京:机械工业出版社,1982年:165.
    [44]吴良宝,倪善生.液压测试技术.上海:上海交通大学出版社,1995年:100.
    [45]杨逢瑜.液压控制系统设计.兰州:兰州大学出版社,2004年:104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700