基于压电臂梁的振动能量收集器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线传感网络技术和可携带器件的发展,电池供电成为其发展的瓶颈之一。为了获得无线生命周期的自主供电系统,利用周围环境的振动能转换为电能为电子器件供电成为亟待解决的问题。其中利用压电材料把振动能转换为电能越来越受到关注,成为微能量领域的研究热点。然而,目前存在的问题是,等效电路模型理论有待进一步完善;器件产生的输出电压较小,器件结构有待改进;收集电路及收集器件需进一步优化等。
     针对上述问题,本文首先研究了目前国内外压电振动能量收集的发展状况,就压电材料的类型、器件的结构、振动模式以及收集电路和器件进行了分析,比较了器件结构和收集电路各部分的优缺点,提出了压电振动能量收集器的研究内容。根据哈密顿变分原理,本文推导了压电单晶悬臂梁的振动方程,研究了其电特性,并在此基础上,对压电单晶悬臂梁产生的电能及负载功率作了定量研究。
     在上述理论基础上,通过ANSYS有限元分析软件对压电单晶悬臂梁进行了静力学和动力学分析。静力学方面主要研究了压电陶瓷和基板材料的尺寸对输出电压的影响,为器件结构的优化设计奠定了理论基础;动力学方面主要研究了压电悬臂梁的自然频率、振型以及谐响应,为后续的测试分析提供了有效指导。根据上述理论研究,本文建立了能量收集测试系统,就压电单晶片悬臂梁的尺寸结构对输出电压的影响进行了测试和仿真对比,结果取得了较一致的结论。由尺寸为50 mm×20 mm×0.5mm的基板和尺寸为10 mm×10 mm×0.4mm压电陶瓷片构成的压电能量产生器,在激振频率为34Hz ,加速度为1g (1g = 9.81m / s2),负载电阻为470KΩ时,能够产生峰峰值为11V的电压,收集34uW的能量。接着就电解电容器、超级电容器和可充电电池的存储特性进行了分析比较,然后对器件结构进行了改进,分别设计了压电双晶片和多片叠层结构,并进行了实验研究,由尺寸为50 mm×20 mm×0.5mm的基板和尺寸为10 mm×10 mm×0.4mm的压电双晶片并联连接构成的能量产生器,在激振频率为33Hz,加速度为1g ,负载电阻为470KΩ时,能够产生峰峰值为16.97V的电压,收集76.5uW的能量。这表明,双晶片比单晶片能较大地提高输出电压和功率。另外,实验表明,多片叠层结构则能较大的提高输出电流和能量,这为无线传感网点和可佩戴器件供电提供了应用的前景。
     最后,对全文工作进行了总结,并对下一步研究计划进行了展望,提出了新的研究思路。
With the development of wireless sensor network technology and portable devices, the power supply via the battery becomes one of the bottlenecks. In order to achieve finite lifetime of self-powered systems, the desiderating thing is to provide electric energy for such devices and networks by utilizing the vibration energy from the ambient environment. Converting vibration energy into electric energy by piezoelectric materials attracts more and more attention and becomes the hot point in micropower field. However, the problems are that the modeling theory needs to be further investgated, the structures of the piezoelectric energy harvester are ought to be improved because of the small output voltage and optimizing the harvesting circuits and storage devices are much in demand.
     According to the above problems, this dissertation first investgated the development trend of the piezoelectric vibration energy harvesting at home and abroad, and then anylized the types of the piezoelectric materials, the structures of the devices, the vibration mode and harvesting circuits and strorage devices and compared the merits and shortcoming of the different parts of structures and harvesting circuits, finally, proposed the research content of piezoelectric vibration energy harvester.
     Based on Hamilton’s principle, this dissertation studied the vibration equations and electric traits of the piezoelectric unimorph cantilever, and then made a quantitative analysis on the output energy and load power of the piezoelectric unimorph cantilever.
     According the above study results, the static and dynamic analysis of the piezoelectric unimorph cantilever through ANSYS finite element software are presented. In static analysis, the geometric parameters of piezoelectric ceramic and substrate influcing the output voltage are investigated in detail which establishes a solid theory foundation for optimizing the devices, while in dynamic analysis the resonant frequencies and eigemodes of the piezoelectric unimorph cantilever and its harmonic analysis are also presented, which provides an efficient instruction for the after testing and analysis.
     This dissertation built a testing system for piezoelectric energy harvesting based on the above research, and tested and compared through simulation the size structure of piezoelectric unimorph catilever influcing the output voltage and achieved indentical results,the energy generator with a beam dimension about 50 mm×20 mm×0.5mm and the piezoelectric unimorph dimension about 10 mm×10 mm×0.4mm produced 11V pp, 34uW with the optimal resistive load of 470KΩfrom 1g (1g = 9.81m / s2) at its resonant frequency of 34Hz , and then made a comparison on conventional capacitor, supercapacitor and rechargeable battery. In addition, the structures of the devices were improved and the piezoelectric bimorph cantilever and muiltlayer structures were desighed, respectively. The energy generator with a beam dimension about 50 mm×20 mm×0.5mm and the piezoelectric bimorph in parallel dimension about 10 mm×10 mm×0.4mm produced 16.97V pp, 76.5uW with the optimal resistive load of 470KΩfrom 1g at its resonant frequency of 33Hz , this result showed that, compared with the piezoelectric unimorph cantilever, the piezoelectric bimorph cantilever could improve the output voltage and power, while the muiltilayer structures could increase the output current and energy. This provides an application prospect of power supply for wireless sensor networks and portable devices.
     In the end, the works of this dissertation are sunnarized briefly, and the next work is figured out, including the novel reseach ideas.
引文
[1] Gilbert J M, Balouchi F. Comparison of energy harvesting systems for wireless sensor networks. International Journal of Automation and Computing. 2008, 5(4):334-347.
    [2] Guan M J. Characteristics of piezoelectric energy harvesting circuits and storage devices. [PHD dissertation]. The Chinese University of Hong Kong, 2006.
    [3] Sodano H A, Inman D J, Park G. A review of power harvesting from vibration using piezoelectric materials. The Shock and Vibration Digest. 2004, 36(3):197-205.
    [4] Shu Y C, Lien I C. Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures. 2006, 15(6):1499-1512.
    [5] Mateu L, Moll F. Review of energy harvesting techniques and applications for microelectronics. Proceedings of SPIE Microtechnologies for the new Millennium. 2005, 5837:359-373.
    [6] Chalasani Sravanthi, Conrad J M. A survey of energy harvesting sources for embedded systems. IEEE. 2008, 442-445.
    [7] Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials (2003-2006). Smart Materials and Structures. 2007, 16(3):R1-R21.
    [8] Shu Y C, Lien I C. Efficiency of energy conversion for a piezoelectric power harvesting system. Jounal of Micromechanics and Microengieering. 2006, 16(11):2429-2438.
    [9] Glynne-Jones P, Tudor M J, Beeby S P, et al. An electromagnetic, vibration-powered generator for intelligent sensor systems. Sensors and Actuators A. 2004, 110(1-3):344-349.
    [10] Cao X, Chiang W J, King Y C, et al. Electromagnetic energy harvesting circuit with feedforward and feedback DC-DC PWM boost converter for vibration power generator system. IEEE transactions on power electronics. 2007, 22(2):679-685.
    [11] Roundy S, Wright P K, Pister K S, Micro-electrostatic vibration-to-electricity converters, in: Proceedings of the 2002 ASME International Mechanical Engineering Congress and Exposition, New Orleans, LA, USA, 2002.
    [12] Priya S. Modeling of electric energy harvesting using piezoelectric windmill. Applied Physics Letters. 2005, 87(18):184101-1-184101-3.
    [13] Schultz O, Preu R, Glunz S W, et al. Silicon solar cells with screen-printed front sidemetalization exceeding 19% efficiency. 22nd European Photovoltaic Solar Energy Conference and Exhibition. September 2007, 980-983.
    [14] Sudou M, Takao H, Sawada K, et al. A novel RF induced DC power supply system for integrated ubiquitous micro sensor devices. International Solid-State Sensors, Actuators and Microsystems Conference. 2007, 907-910.
    [15] Sebald G, Pruvost S, Guyomar D. Energy harvesting based on ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Materials and Structures. 2008, 17(1): 1-6.
    [16] Dereux S H A. Power harvesting using thermal gradients for recharging batteries. Proceedings of 15th International Conference on Adaptive Structures and Technologies. Bar Harbor. Me. 2004.
    [17] Shrotriya V, Wu E H E, Li G, et al. Efficient light harvesting in multiple-device stacked structure foe polymer solar cells. Applied Physics Letters. 2006, 88(6): 064104-064104-3.
    [18] Beeby S P, Torah R N, Tudor M J. A micro electromagnetic generator for vibration energy harvesting. Jounal of Micromechanics and Microengieering. 2007, 17(7):1257-1265.
    [19] Priya S. Advances in energy harvesting using low profile piezoelectric transducers. Journal of Electroceramics. 2007, 19(1):167-184.
    [20] Starner T, Paradiso J A. Human generated power for mobile electronics. Low Power Electronics Design, CRC Press, Fall. 2004.
    [21] Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology. 2006, 17(12): R175-R195.
    [22] Cook-Chennault K A, Thambi N A, Sastry M. Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Materials and Structures. 2008, 17 (4):1-33.
    [23] Uchino K. Piezoelectric actuators 2006. Journal of Electroceramics. 2008, 20(3-4):301-311.
    [24] Sun C, Qin L, Li F, Wang Q. Piezoelectric energy harvesting using single crystal Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) device. Journal of Intelligent Material Systems and Structures. 2009, 20(5):559-568.
    [25] Erturk A, Bilgen O, Inman D J. Power generation and shunt damping performanceof a single crystal lead magnesium niobate-lead zirconate titanate unimorph: analysis and experiment. Applied Physics Letters. 2008, 93(22):224102-1-224102-3.
    [26] Wen H K. Piezoelectric energy converter for electronic implants: US. 1969-07-15.
    [27] Kymissis J, Kendall C, Paradiso G N, et al. Parasitic power harvesting in shoes. Proceedings of the Second IEEE International Conference on Wearable Computing, IEEE Computer Society Press. October 1998, 132-139.
    [28] Kim S. Low power energy harvesting with piezoelectric generater: [PHD dissertation]. The University of Pittsburgh, 2002.
    [29] Wang W. Electrode shape optimization of piezoelectric transducers: [PHD dissertation]. University of Florida, 2003.
    [30] Kim H. Impedance adaptation methods of the piezoelectric energy harvesting: [PHD dissertation]. The Pennsylvania State University. 2006.
    [31] Guan M, Liao W H. On the energy storage devices in piezoelectric energy harvesting. Proceedings of SPIE. 2006, 6169(61690C):1-9.
    [32] Ajitsaria J K. Modeling and analysis of PZT micropower generator: [PHD dissertation]. Auburn University. 2008.
    [33] Sodano H A, Park G, Inman D J. Estimation of electric charge output for piezoelectric energy harvesting. Strain, 2004, 40(2):49-58.
    [34] Sodano H A, Inman D J. Comparison of piezoelectric energy harvesting devices for recharging batteries. Journal of Intelligent Material Systems and Structures. 2005, 16(10):799-807.
    [35] Liao Y, Sodano H A. Model of a single mode energy harvester and properties for optimal power generation. Smart Materials and Structures. 2008, 17(6):1-14.
    [36] Zhu M, Worthington E, Njuguna J. Analysis of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2009, 56(7):1309-1318.
    [37] Zhu M, Worthington E, Tiwari A. Desigh study of piezoelectric energy harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2010, 57(2):427-437
    [38] Song H C, Kim H C, Kang C Y, et al. Multilayer piezoelectric energy scavenger for large current generation. Jounal of Electroceramics. 2009, 23(2-4):301-304.
    [39] Kuna M. Fracture mechanics of piezoelectric materials-where are we right now.Engineering Fracture Mechanics. 2010, 77(2):309-326.
    [40] http://www.ndt-ed.org/EducationResources/CommunityCollege/Materials/Mechanic al/Fatigue.htm.
    [41] Swallow L M, Luo J K, Siores E, et al. A piezoelectric fiber composite based energy harvesting device for potential wearable applications. Smart Materials and Structures. 2008, 17(025017):1-7
    [42] Wilkie W K, Bryant R G, High J W, et al. Low-cost piezocomposite actuator for structural control applications. Proceedings of SPIE 7th Annual International Symposium on Smart Structures Materials, Newport Beach, USA. 2000, 3991:323-334.
    [43] Deraemaeker A, Nasser H, Benjeddou A, et al. Mixing rules for the piezoelectric properties of macro fiber composites. Journal of Intelligent Material Systems and Structures. 2009, 00:1-8.
    [44] Song H J, Choi Y T, Wereley N M, et al. Energy harvesting devices using macro-fiber composite materials. Journal of Intelligent Material Systems and Structures. 2010, 21(6):647-658.
    [45] Kharat D K, Mitra S, Akhtar S, et al. Polymeric piezoelectric transducers for hydrophone applications. Defence Science Journal. 2007, 57(1):7-22.
    [46] Sohn J W, Choi S B, Lee D Y. An investigation on piezoelectric energy harvesting for MEMS power sources. Proceedings of IMechE Part C: Journal of Mechanical Engineering Science. 2005, 219(4):429-436.
    [47] Granstrom J, Feenstra J, Sodano H A, et al. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Materials and Structures. 2007, 16(5):1810-1820.
    [48] Collins M, Behrens S, McGarry S. Evaluation of flexible transducers for motion energy harvesting. Active and Passive Smart Structures and Integrated Systems, Proceedings of SPIE. 2009, 7288(72880X):1-11.
    [49]李伟平.铁电共聚物P(VDF-TrFE)的性能和换能器的模拟研究: [博士学位论文].武汉大学, 2004.
    [50] Park J M, Kong J W, Kim D S, et al. Nondestructive damage detection and interfacial evaluation of single-fibers/epoxy composites using PZT, PVDF and P(VDF-TrFE) copolymer sensors. Composites Science and Technology. 2005, 65(2):241-256.
    [51] Kok S L, White N M, Harris N R. Free-standing thick-film piezoelectric multimorph cantilevers for energy harvesting. Ultrasonics Symposium (IUS), 2009 IEEE International. 2008, 1977-1980.
    [52] Ottman G K, Hofmann H F, Bhatt A C, et al. Adaptive piezoelectric energy harvesting cirtuit for wireless remote power supply. IEEE transactions on power electronics. 2002, 17(5):669-676.
    [53] Ammar Y, Buhrig A, Marzencki M, et al. Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator. Proceedings of 2005 Joint Conference on smart objects and ambient intelligence: Innovative context avare services: usages and technologies (Grenoble). 2005, 287-292.
    [54] Hu Y, Xue H, Hu T, et al. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2008, 55(1):148-160.
    [55] Tabesh A, Frechette L G. A low_power stand_alone adaptive circuit for harvesting enrgy from a piezoelectric micropower generator. IEEE transactions on inducstrial electronics. 2010, 57(3):840-849.
    [56] D'hulst R, Sterken T, Puers R, et al. Power processing circuits for vibration based energy harvester. IEEE. 2008, 2556-2562.
    [57]贾杰.压电发电装置的能量转换及存储特性研究: [硕士学位论文].吉林大学, 2008.
    [58] Sadano H A, Inman D J, Park G. Generation and storage of electricity from power harvesting devices. Journal of Intelligent Material Systems and Structures. 2005, 16(1):67-75.
    [59] Toit N E d. Modeling and design of a MEMS piezoelectric vibration energy harvester: [Master dissertation]. Massachusetts Institute of Technology. 2005.
    [60] Lefeuvre E, Sebald G, Guyomar D, et al. Materials, structures and power interfaces for efficient piezoelectric energy harvesting. Journal of Electroceramics. 2009, 22:171-179.
    [61] Cook-Chennault K A, Thambi N, Bitetto M A, et al. Piezoelectric energy harvesting: A green and clean alternative for sustained power production. Bulletin of Science Technology Society. 2008, 28(6):496-509.
    [62]刘梅冬,许毓春.压电铁电材料与器件.华中理工大学出版社. 1990: 9-10.
    [63] Gao X, Shih W H, Shih W Y. Induced voltage of piezoelectric unimorph cantilevers of different nonpiezoelectric/piezoelectric length ratios. Smart Materials and Structures. 2009, 18(125018):1-8.
    [64]辛雪花.压电振子发电的基本特性及试验研究: [硕士学位论文].吉林大学, 2006.
    [65] Han J. Novel power conditioning circuits for piezoelectric micro power generators: [PHD dissertation]. Oregon State University, 2003.
    [66] Park C H. Dynamics modelling of beams with shunted piezoelectric elements. Jounal of Sound and Vibration. 2003, 268(1):115-129.
    [67]林书玉.超声换能器的原理及设计.科学出版社. 2004:18-19.
    [68] Hwang W S, Park H C. Finite element modeling of piezoelectric. Sensors and Actuators A. AIAA. 1993, 131(5):930-937.
    [69] Kim J, Varadan V V, Varadan V K, et al. Finite-element modeling of a smart cantilever plate and comparison with experiments. Smart Materials and Structures. 1996, 5(2):165-170.
    [70] Piefort V. Finite element modelling of piezoelectric active structures: [PHD.dissertation]. Universit′e Libre de Bruxelles, 2001.
    [71] Karagülle H, Malgaca L, ?ktem H F. Analysis of active vibration control in smart structures by ANSYS. Smart Materials and Structures. 2004, 13(4):661-667.
    [72] Xu S X, Koko T S. Finite element analysis and design of actively controlled piezoelectric smart structures. Finite Elements in Analysis and Design. 2004, 40(3):241-262.
    [73] Elvin N G, Elvin A A. A coupled finite element circuit simulation model for analyzing piezoelectric energy generators. Journal of Intelligent Material Systems and Structures. 2009, 20(5):587-595.
    [74] Bendary I M, Elshafei M A, Riad A M. Finite element model of smart beams with distributed piezoelectric actuators. Journal of Intelligent Material Systems and Structures. 2010, 0(3):1-12.
    [75] Yang Y, Tang L. Equivalent circuit modeling of piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures. 2009, 0(10):1-13.
    [76]方华斌,徐静宜,刘景全等. PZT厚膜压电悬臂梁结构的有限元分析.中国机械工程. 2005, 16(z1):257-260.
    [77]杜小振.环境振动驱动微型压电发电装置的关键技术研究: [博士学位论文].大连理工大学, 2008.
    [78]李雯.基本压电悬臂梁的环境振动能量获取方法的初步研究: [硕士学位论文].天津大学, 2008.
    [79] Lim Y H, Varadan V V, Varadan V K. Closed loop finite element modeling of active structural damping in the time domain. Smart Materials and Structures. 1999, 8(3):390-400.
    [80] Kan J W, Qiu J H, Tang K H, et al. Modeling and simulation of piezoelectric composite diaphragms for energy harvesting International. Journal of Applied Electromagnetics and Mechanics. 2009, 30(1-2):95-106.
    [81] González J L, Rubio A, Moll F. A prospect on the use of piezoelectric effect to supply power to wearable electronic devices. ICMR 2001, Akita, Japan. October 2001, 1: 202-207.
    [82]王建江,胡仁喜,刘英林等. ANSYS 11.0结构与热力学有限元分析实例指导教程.机械工业出版社. 2008年
    [83] Wang Q, Du X, Xu B, et al. Theoretical analysis of the sensor effect of cantilever piezoeletric benders. Jounal of Applied Physics. 1999, 85(3):1-3.
    [84] Kim H, Priya S, Stephanou H, et al. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2007, 54(9):1851-1859.
    [85] Liao Y, Sodano H A. Modeling and comparison of bimorph power harvesters with piezoelectric elements connected in parallel and series. Journal of Intelligent Material Systems and Structures. 2009, 21(2):149-159.
    [86] Liang J, Liao W H. Impedance matching for improving piezoelectric energy harvesting systems. Proceedings of SPIE. 2010, 7643(7643K):1-12.
    [87] Diet J M, Garcia E. Beam shape optimization for power harvesting. Journal of Intelligent Material Systems and Structures. 2010, 21(6):633-646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700