压电振子在直线式振动送料器上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动送料器是自动加工和自动装配系统中的一种供料装置,由于其整列定向性能优良,供料效率高,通用性好,因而广泛应用于自动装配、自动加工、自动包装等各种工序上。传统的振动送料器采用电磁铁为振动源,且一般要求工作频率为50Hz或100Hz,造成了消耗电能多、工作噪声大、结构调整复杂等不足。随着先进制造业的飞速发展,产品愈来愈趋向于轻、薄、细、小、精,对新型振动送料器的需求变得越来越迫切。20世纪七十年代末期,日本首次提出了利用矩形压电双晶片作为激励源的压电式振动送料器,随后的几十年里,取得了一系列的成果,申请了近十项发明专利,在自动化生产线上也得到了广泛应用。我国在20世纪90年代初期开始对压电振动送料器进行研究,也取得了一定成果,但是所设计的送料器结构与日本的产品类似,并没有较大创新,无法大批量生产。本论文结合国家863项目“垂直驱动式压电振动送料器的开发研究(项目编号:2006AA04Z225)”的研究工作,提出了利用环形压电振子、矩形压电振子和郎之万振子驱动的新型振动送料装置,以这三类新型结构为研究对象,进行了理论分析、动力学分析、样机设计与制作及试验研究。主要研究内容如下:
     1、在查阅大量资料的基础上,深入分析了振动送料装置的国内外发展现状,总结了现有振动送料装置的驱动方式,指出了研究压电振子在振动送料装置上应用的意义。
     2、通过分析压电陶瓷的性能参数和相关特性,获得了送料器所用压电陶瓷的性能参数要求,确定了适于送料器工作的压电陶瓷振动模式、送料器所用压电振子的类型、支撑方式与振动放大形式,为送料器的结构设计、理论分析及试验研究提供了必要的理论基础。
     3、分析了压电驱动送料器能够对物料形成输送的基本原理和物料输送过程中存在的运动形式及输送形态,建立了物料的力学模型,确定了物料腾空和滑移的条件及料槽参数对运动状态的影响,推导了正向滑移状态的平均速度公式。
     4、设计了直线式环形压电振子驱动送料器结构,分析了其工作原理;建立了送料器动力学模型,推导了系统固有频率关系式;在对其进行了模态分析和输出力推导的基础上,对环形压电双晶片振子进行了设计;对送料器的支撑弹簧片、底座、隔振和顶板进行了详细设计。分别从频率特性、电压特性、振幅与速度关系、物料重量、摩擦系数、料槽升角、弹簧片安装角度、噪声与耗电等方面对所开发的直线式环形压电振子驱动送料器样机进行了测试,并分析了影响规律。
     5、设计了直线式矩形压电振子驱动送料器结构,分析了其工作原理;建立了送料器动力学模型,推导了振幅放大关系式;分析了矩形压电双晶片尺寸参数影响,利用有限软件分析了矩形压电双晶片振子的振动模态;对矩形压电双晶片振子进行了动力学分析,获得了影响驱动力的影响因素。对所开发的直线式矩形压电振子驱动送料器样机性能进行了性能测试。
     6、设计了直线式郎之万振子驱动送料器结构,分析了其工作原理;根据使用要求,对其核心元件—郎之万振子结构进行了设计,并完成其结构相关参数计算推导,由此确定了振子的主要结构尺寸;用精密阻抗分析仪测试了郎之万振子的阻抗和谐振频率,采用激光测距仪完成了振子前端面的纵向振幅测试。分别从物料重量、频率特性、电压特性及噪声等方面对研制的送料器样机进行了性能测试。
     本文结合压电学、机械学、力学、控制学等多学科知识,深入分析了所设计的新型压电驱动送料器的工作机理和动力学特性,系统测试了送料器的各项性能。本文研究所取得的成果丰富了压电式振动送料器驱动机理,为送料器性能改进提供了理论和试验支撑,为具有自主知识产权的压电式振动送料器的产品化奠定了基础。
Vibratory feeder is one kind of feeding construction for automatic production andassembly system. Due to good patterning performance and generality, high feedingefficiency, the feeder is widely used in automatic machining, assembly and packaging.However, the vibration source of the traditional vibratory feeder is electromagnet, whichnormally requires50Hz or100Hz in working frequency, therefore, there are disadvantageslike high power consumption and working noise, complicated structure to do adjustment,etc. With the rapid development in advanced manufacturing, the products are tending to belighter, thinner, smaller and more precise, which makes the development of novel vibratoryfeeder more and more urgent. In the end of70s in20thCentury, rectangular piezoelectricbimorph was brought up in the first time as excitation source in piezoelectric vibratoryfeeder by Japanese. In the following decades, there were series achievements coming out,and nearly10invention patents were applied in piezoelectric feeding area. And there waswide application in automation production line. Chinese researches on piezoelectricvibratory feeder started from beginning of90s last century, and there are someachievements, but no innovation compared with Japanese products, and can’t be used formass production. The paper is one task from National Project863(Project number:2006AA04Z225)“Research&Development on Vertical Driven Piezoelectric VibratoryFeeder”. Novel vibratory feeding structures on rectangular piezoelectric vibrator, roundpiezoelectric vibrator and piezoelectric transducer were brought forward. Based on thethree novel structures as the research objects, theoretical analysis, dynamic analysis,prototype design and production, experiment study were carried out. The contents in thispaper includes:
     1. Referring to plenty of research materials, the development status of the piezoelectricvibratory feeder home and abroad was deeply investigated. The vibratory feedingconstruction was summarized, and the piezoelectric vibrator sense and method in vibratoryfeeding construction application was pointed out.
     2. Through discoursing upon piezoelectric ceramics related characteristic andperformance parameter, the performance parameter demand was obtained. Thepiezoelectric ceramics vibraiton mode fit for the feeder were defined, and also for the thepiezoelectric vibrator type, support mode, vibratory amplify form. The work here providedthe theory foudation for the feeder structure design, theoretical analysis and experimentstudy.
     3. The basic mechanism on material feeding from the piezoelectric vibratory feederwas explained, and the feeding affecting rules from elliptic parameter were analyzed; themovement and feeding forms during material feeding were explained, and the mechanicsmode was established, material empty out and slippage conditions and material tray affecton the movement conditons were defined, besides, the average speed formula on forwardslip condition was deduced.
     4. Straight-line annular piezoelectric vibrator driven feeder structure was designed, andthe working concept was analyzed; the feeder dynamics mode model was established, andthe systematic natural frequency relationship formula was deduced; based on the modeanalysis and output force deduction, the annular piezoelectric bimorph vibrator wasdesigned; the feeder supporting spring, base plate and vibratory isolation, top plate weredesigned in detail. From characteristics of frequency, voltage, amplitude and speedrelationship, single material weight, friction factor, feeding chute rise angle, springinstallation angle, noise and power consumption, and so on separately, the prototypeperformances on feeding parameters were tested on the developed straight-line annularpiezoelectric vibratory feeder, and affected rules were analyzed.
     5. Straight-line rectangular piezoelectric vibrator driven feeder structure was designed,and the working concept was analyzed; the feeder dynamics mode was established, andthe amplitude amplified relationship formula was deduced; dimension parameter affect ofthe rectangular piezoelectric bimorph were analyzed, rectangular piezoelectric bimorphvibration mode was analyzd with FEM software; the dynamic analysis was carried out onrectangular piezoelectric bimorph vibrator, and the affecting factors on the driving forcewas achieved. The performance was bested on the developed straight-line rectangularpiezoelectric vibratory feeder prototype.
     6. Straight-line langevin vibrator driven feeder structure was designed, and the workingconcept was analyzed; based on the operation requirement, the core part—langevin vibratorstructure was designed, and the structure related parameter calculation decution was done,from which the main structual dimensions of the transducer were defiend. With precisionimpedance analyzer, the impedance and resonance frequency of the piezoelectric sandwich transducer was tested; meanwhile, with laser rangefinder, the portrait amplitude in the frontside of the piezoelectric sandwich transducer was tested. From different sides like materialtype selectivity, frequency characteristic, voltage characteristic and noise and so on, thedesigned feeder prototype was tested.
     Combined know-how on piezoelectricity, mechanics, control science and other area inthis paper, the working mechanism and dynamics characteristics of the novel designedpiezoelectric vibratory feeder were investigated deeply, and the performance of the feederwere tested systematically. Driven mechanism of the piezoelectric vibratory feeder wasenriched by the research from this paper, which provided the theory and experimentfoundation for the feeder performance improvement and the productivity of theindependent intellectual property on piezoelectric vibratory feeder.
引文
[1]李绍炎.自动机与自动线[M].北京:清华大学出版社,2007:70-93.
    [2]戚长政.自动机与生产线[M].北京:清华大学出版社,2001:67-79.
    [3]青木登.压电式零部件送料器系统及其应用实例[J].自动化技术,1988(2).
    [4]丹原秀铭,浅妻辰男.压电驱动部品供给装置[J].自动化技术,1994,26(4):34-36.
    [5] Vilan, J A V, Robleda, A S, P. Nieto J G, et al.. Placer.Approximation to the dynamicsof transported parts in a vibratory bowl feeder, Mechanism and MachineTheory,2009,44(12):2217–2235.
    [6] Han L, Gao J X. A Study on the Modelling and Simulation of Part Motion in VibratoryFeeding [J]. Applied Mechanics and Materials,2010,34-35(10):2006-2010.
    [7] Mucchi E, GregorioR D,Dalpiaz G. Elastodynamic analysis of vibratory bowl feeders:Modeling and experimental validation[J]. Ultrasonics,2013,60(2),60-72.
    [8] Barnes R.N. Novel design of a vibratory feeder incorporating an integral cut off valve [J].Powder Handling&Processing,1993,5(4):349-351.
    [9] Rademacher F.J.C. On the application of vibratory disk feeders for silos[J]. Bulk SolidsHandling.1996,16(1):75-80.
    [10]詹启贤.自动机械设计[M].北京:中国轻工业出版社,1997:225-245.
    [11]汤瑞.轻工机械设计[M].北京:同济大学出版社,1992:55-71.
    [12]尚久浩.自动机械设计[M].北京:中国轻工业出版社,2002:231-258.
    [13] Quaid A E. Miniature mobile parts feeder: operating principles and simulation results
    [C]. Proceedings-IEEE International Conference on Robotics and Automation,1999,3:2221-2226.
    [14] Maltsev V A,Yudin A V. Influence of parameters of the vibrating feeder-screen onspeed of the vibrating transportation of rock under non-steady conditions of theoperating tool movement[J]. Izvestiya Vysshikh Uchebnykh Zavedenii,2003,5:71-76.
    [15] Koizumi K,Sasaki M,Iwaki T, et al. Self-contained vibration reducing function byinterference method on vibratory machine. Drive by direct exciting force[J].Journal ofthe Japan Society of Precision Engineering,1992,58(5):871-876.
    [16] Pramanik S. Selection of Spring Stiffness of a Tuned-vibratory Feeder[J]. Journal of theInstitution of Engineers: Mechanical Engineering Division,1999,80(1):37--40.
    [17] Soto-yarritu G R,Martinez A. Computer simulation of granular materialtransport:Vibrating feeders [J]. Powder Handling and Processing,2001,13(2):181--184.
    [18] Jaksic Nebojsa I.,Maul Gary P. Flexible air-jet tooling for vibratory bowl feedersystems[J]. International Journal of Flexible Manufacturing Systems,2002,14(3):227-248.
    [19] Ngoi B K,Lim L E,Ee J T. Analysis of natural resting aspects of parts in a vibratorybowl feeder validation of drop test[J].International Journal of AdvancedManufacturing Technology,1997,13(4):300-310.
    [20]特殊陶业株式会社.压电振动搬送装置:日本,52-61087[P].1977-5-4.
    [21]利昂株式会社.压电驱动式搬送装置:日本,57-46517[P].1982-3-15.
    [22]东芝株式会社.压电驱动型搬送装置:日本,62-4118[P].1987-1-10.
    [23]セラテツク株式会社.压电驱动型搬送装置:日本,2762211[P].1998-3-27.
    [24] YKK株式会社.控制压电振动部件馈送的方法和装置:日本,13338668A[P].2002-3-6.
    [25]神钢电机株式会社.压电驱动式振动送料器以及压电元件驱动型送料器:日本,1380234A[P].2002-11-20.
    [26]神钢电机株式会社.压电驱动式搬送装置:日本,WO2004/067413A1[P].2004-8-21.
    [27]苏江.振动送料器的现状及发展趋势[J].机械设计与制造,2010,(7):244-246.
    [28] Choi S B, Lee D H. Modal analysis and control of a bowl parts feeder activated bypiezoelectric actuators[J].Journal of Sound and Vibration,2004,275(3):452-458.
    [29] Yung T,Jar H C,Lin C Y,et al.A new type of parts feeder driven by bimorph piezoactuator[J].Ultrasonic,2005,43:566-573.
    [30] Yung T,Shin M S,Chang H Y. Analysis and design of four-bar linkage type vibratoryparts feeder driven by piezoelectric actuator[C].Proceeding of the ASME DesignEngineering Technical Conference:200243-50.
    [31] Chao P P, Shen C Y. Dynamic modeling and experimental verification of apiezoelectric part feeder in a structure with parallel bimorph beams[J]. Ultrasonics,2007,46,205-218.
    [32]曲祥普.压电振动料斗.中国:95230256.X[P],1995.
    [33]关志华.压电式振动给料机的研究[D].天津:天津大学硕士论文,1999.
    [34]杜玉明,关志华,吴端.压电式振动给料机的技术反求[J].机械设计,1999,(4):18-20.
    [35]何承宇.压电双晶片执行器的研究及其在振动给料器中的应用[D].大连:大连理工大学硕士论文.1999.
    [36]焦其伟,崔文会,孙宝元,何承宇.压电式振动给料器的研制[J].传感器技术,2001,20(4):23-26.
    [37]焦其伟,崔文会,孙宝元.小型压电式振动给料器的智能化驱动电源[J].计算机自动测量与控制,2001,9(3):52-57.
    [38]崔文会.小型压电式振动给料器的驱控电源及结构参数的优化研究[D].大连:大连理工大学硕士论文,2001.
    [39]田静忠,吴文福,韩峰.浮动式压电振动送料装置的实验研究[J].压电与声光,2006,2(5):557-559.
    [40] Wang Y,Wu W F,Shi S P. Research on the mechanism of multi-source piezoelectricvibratory feeder[J]. Applied Mechanics and Materials,2013,241(12):1427-1430.
    [41]田忠静,吴文福.压电振动送料装置的研究现状及其应用[J].机械设计与制造,2011,(11):54-56.
    [44]赵立冬.压电双晶片水平布置式送料器的设计与实验研究[D].长春:吉林大学硕士论文,2006.
    [45]范尊强.新型压电送料器的研究[D].长春:吉林大学博士论文,2008.
    [46]曲绍鹏.压电振动给料器的结构优化设计[D].大连:大连交通大学硕士论文,2010.
    [47]张坤.垂直驱动压电振动给料装置及其驱动技术研究[D].大连:大连交通大学硕士论文,2010.
    [48]谭晓东,张坤,李东明,曲绍鹏.斜拉式压电振动给料器的数值分析与实验研究[J].机械科学与技术,2012,31(7):1170-1173.
    [49] TAN X D,ZHAO Y S, LIU C B, et al. The Analysis and Experiment Study on a NewDriving Structure of Piezoelectric Vibration Feeder[J]. Advances in MechanicalDesign,2011,199(2):1107-1112.
    [50] WALLASCHEK J.Contact Mechanics of Piezoelectric Ultrasonic motors[J].SmartMaterials and Structures,1998,7(3):369—381.
    [51] SEEMANN W.A linear ultrasonic traveling wave motor of the ring type[J].SmartMater Struct,1996,5(3):361-368.
    [52] Hagood N.W,McFarl A.J. Modeling of a Piezoelectric Rotary Ultrasonic Motor[J].IEEE, Trans. UFFC,1995;42(2):210~224.
    [53] Manaba A, Steve P. B, Neil M. White. A novel multi-degree-of-freedom thick-filmultrasonic motor [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and FrequencyControl,2002,49(2):151-158.
    [54] Nakamura K, Margairazn J, et al. Ultrasonic Stepping Motor Using Spatially ShiftedStanding Vibrations[J]. IEEE, Trans. UFFC,1997;44(4):823~827.
    [55] Lamberti N, Iula A,Pappalardo M. A Piezoelectric Motor Using Flexural Vibration of aThin Piezoelectric Membrane[J]. IEEE, Trans. UFFC,1998;45(1):23~29.
    [56] Petit L, Briot L, et al. A Piezomotor Using Longitudinal Actuators[J]. IEEE, Trans.UFFC,1998;45(2):277~283。
    [57]上羽贞行著,杨志刚译.超声波马达的理论与运用[M].上海:上海科技出版社,1998:156-171.
    [58]杨志刚.双弯曲压电超声马达理论与试验研究[D].长春:吉林工业大学博士学位论文,1998.
    [59] Takehiro T, Yoshiro T. Characteristics of a Powder Supplying Device Using FlexuralProgressive Waves in a Lossy Ultrsonic Transmission line[J]. World Congress onUtrasonics,1997(8):24-27.
    [60] TakehiroT, YoshiroT. Excitation ofa progressivewave in a lossy ultrasonic transmissionline and an application to a powder-feeding device[J].Smart Mater. Struct.,1998,7(3):417~421.
    [61] Mracek M, Wallaschek J. A system for powder transport based on pizo-electricallyexcited ultrasonic progressive waves[J]. Materials Chemistry and Physics,2005(90):378-380.
    [62]张贵林,郭浩,赵淳生.超声波粉体输送装置及其应用[J].振动、测试与诊断,2001,21(3):186-189.
    [63]张贵林,郭浩,赵淳生.超声波粉体输送装置输送能力的实验研究[J],压电与声光,2002,24(6):489-491.
    [64]张贵林,郭浩,赵淳生.行波型超声粉体输送装置输送机理的研究[J],振动、测试与诊断,2003,23(1):30-33.
    [65]王宏祥.驻波型超声振动精密给料装置:中国,200410020464[P].2006-11-15.
    [66]陈维山,吕晓宇.超声波液体传送装置的设计[J].机械工程师,2006(9):82-84.
    [67]吕晓宇.超声波微量物料传送装置的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2006.
    [68]何勍,王宏祥,于威.一种新型高频低幅振动给料装置的研究[J].机械科学与技术,2006.26(6):758-760.
    [69]金峰.面向自动装配的超声供给与定向装置研究[J].锦州:辽宁工学院硕士学位论文,2011.
    [70]何勍,吴爱中.超声振动输送的物料纵向振动过程测试与分析[J].机械科学与技术,2009,28(9):1130-1134.
    [71]宋道仁.压电效应与应用[M].北京:科学普及出版社,1987.
    [72]张福学,王丽坤.现代压电学(上册)[M].北京:科学出版社,2001:84-99.
    [73]张福学,王丽坤.现代压电学(中册)[M].北京:科学出版社,2001:128-149.
    [74] Hendrik D. Piezo-driven Stages for Nanopositioning with Extreme Stability:Theoret--ical Aspects and Practical Design Considerations[M]. Holland: Delft University Press,1997.
    [75]杨大智.智能材料和智能系统[M].天津:天津大学出版社,2000.
    [76]杜善义,冷劲松,王殿富.智能材料系统与结构[M].北京:科学出版社,2001.
    [77]金志浩,高积强,乔冠军.工程陶瓷材料[M].西安:西安交通大学出版社,2000.
    [78] J.范兰德拉特, R.E.赛德林顿.彭浩波,马乐山等译.压电陶瓷[M].北京:科学出版社,1981.
    [79]吴博达,鄂世举,程光明等,压电驱动与控制技术的应用,机械工程学报,2003.10,39(10):79-86.
    [80] Richard L. Goldberg, Michael J. Jurgens, David M. Mills, Craig S. Henriquez, DavidVaughan and Stephen W. Smith. Modeling of Piezoelectric Multilayer Ceramics UsingFinite Element Analysis[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, andFrequency Control,1997,44(6):1204-1214.
    [81] Sheikh N Ahmad, C S Upadhyay and C Venkatesan. Electro-thermo-elastic formulationfor the analysis of smart structures[J]. SMART MATERIALS AND STRUCTURES,2006,15:401-416.
    [82]刘一声.压电双晶片致动元件的应用[J].压电与声光,1985(1):35-46.
    [83]郭瑞松,蔡舒,季惠明,吴厚政.工程结构陶瓷[M].天津:天津大学出版社,2002.
    [84]张云电.夹心式压电换能器及其应用[M].北京:科学出版社,2006.
    [85] Banno H, Masamura Y, Naruse N. Acoustic load dependency of electro-acousticefficiency in the electro-strictive ultrasonic transducer and acoustical matching [J].Ultrasonics,1979,3:63-66.
    [86] Edward E. Design of sonic amplitude transformers for high magnification [J]. J. Acoust.Soc. Am,1963,35(9):1367-1377.
    [87]陈桂生,朱革非,张宏彬.大振幅超声换能器设计[J].声学技术,1983,2(1):21-31.
    [88]尚志远.压电超声换能器的性能分析及应用领域[J].压电与声光,1994,16(1):29-33.
    [89]林书玉.夹心式压电陶瓷功率超声换能器的优化设计[J].压电与声学,2003,25(3):199-202.
    [90] Reist P C,Taylor L. Development and operation of an improved turntable dust feeder[J].Powder Technology,2000,107(1-2):36-42.
    [91] Du W Y. Motion tracking of a part on a vibratory feeder[J]. IEEE/ASME InternationalConference on Advanced Intelligent Mechatronics,2001,1:75-80.
    [92] Tishkov A Y,Shevchuk E.G. Influence of parameters of the vibrating feeder ondischarging the loose material[J]. Fiziko-Tekhnicheskie Problemy RazrabotkiPoleznykh Iskopaemykh,2002,5:84-88.
    [93]张西良,路欣.电磁振动给料器工作特性分析及应用[J].农业机械学报,2003,,34(5):56-60
    [94]伍利群.电磁振动供料器工件的受力和运动分析[J].研究·设计·制,2003,4(1):43-46.
    [95]曲庆璋,章权,季求知等.弹性板理论[M].人民交通出版社,2000.
    [96]吴家龙.弹性力学(新版)[M].上海:同济大学出版社,1993.
    [97]徐芝纶.弹性力学(上册)[M].北京:人民教育出版社,1979.
    [98]徐芝纶.弹性力学(下)[M].北京:高等教育出版社,1982.
    [99] S. Li and S. Chen. Analytical analysis of a circular PZT actuator for valveless micropumps:[J].2003,104(2). Sensors and Actuators A: Physical,2003,104(2):151-161.
    [100]刘鸿文.板壳理论[M].杭州:浙江大学出版社,1987.
    [101]史习敏,黎永明.精密机械设计[M].上海:上海科学技术出版社,1985:168-176.
    [102] Jan G, Smits. Dynamic admittance matrix of piezoelectric cantileverbimorphs[J].Journal of Microelectromechanical System,1994,3(3):105-112.
    [103] Jan G,Smits, Susan I, et al. The constituent equations of piezoelectric bimorphs[J].Sensors and Acntators A,1991,28:41~61.
    [104] Wang, Q.M. and Cross, L.E. Performance analysis of piezoelectric cantilever bendingactuators[J]. Ferroelectrics,1998(215):187-213.
    [105] Goli J, Smits J G.,Ballato A.. Dynamic matrix of end-loaded piezoelectric bimorphs[C].IEEE Ultrasonics symposium,1995:1101-1105.
    [106] Dobrucki, A.B., P. Pruchnicki. Theory of piezoelectric axisymmetric bimorph[J].Sensors and Actuators A: Physical.1997,58(3):203-212.
    [107]闻邦椿,李以农,张义民等.振动利用工程[M].北京:科学出版社,2005.
    [108]张义民.机械振动力学[M].吉林科学技术出版社,2000:32-46.
    [109]苏江,杨志刚,田丰君,沈燕虎.惯性式压电振动送料器[J].农业机械学报,2013,44(8):281-285.
    [110]王琪山.螺栓紧固型纵振换能器设计考虑[J].应用声学,1998,17(4):27-32.
    [111]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵[M].北京:北京大学出版社,2005.
    [112]曹白杨,董平,韩文中等.功率超声换能器应用与设计[J].华北航天工业学院学报,2000,10(2):24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700