惯性式压电振动送料器的设计与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁振动送料器在工业自动化生产线上已得到了广泛的应用,但其存在噪音大、结构复杂等缺点。日本提出了以压电双晶片作为驱动源的悬臂式压电振动送料器,具有结构简单,物料不会被磁化、节能等优点。
     本论文结合国家863项目“垂直驱动式压电振动送料器的开发研究”的研究工作,提出了利用质量块的惯性冲击力作为驱动源的压电振动送料器,并对惯性式压电振动送料器进行了结构设计,论述了其工作原理;建立了送料器和压电双晶片振子的动力学模型,并对其进行了理论分析;通过对自制样机的试验研究,获得了惯性式压电振动送料器的一些基本规律。
Vibration feeder is a type of important equipment widely utilized in the automatic machining and automatic assembly system. Traditional vibration feeders are mainly driven by electromagnet, which has the deficiency such as large volume, heavy mass, complex structure and loud noise. In the later 1970s, Japanese argued that, compared with traditional electromagnetic feeder, piezoelectric feeder driven by piezoelectric bimorph stands out due to its simple structure, no heat, no magnet effect, and energy-saving and other advantages. Based on the research on piezoelectric vibration feeder in existence, inertial piezoelectric vibration feeder is designed and developed through the use of piezoelectric bimorph and inertial mass as the feeder’s driven source. The feeder’s dynamic/kinetic and vibration model is established and comprehensive tests are carried out.
     The paper consists of five chapters as follows:
     Chapter 1 Introduction
     With the increasing industrial automatization, vibration feeder has been widely used in the automatized production line. Electromagnetic feeders, piezoelectric vibration feeder and ultrasonic feeding devices are three common feeding mechanisms. The significance of the research on piezoelectric vibration feeders is described in this chapter.. The feeder’s development both home and abroad is introduced and the problem to be solved is presented lastly.
     Chapter 2 Basic Theory about the Piezoelectric actuation technology Ppiezoelectric vibration feeder makes use of inverse piezoelectric effect . The piezoelectric ceramic is a key component of the piezoelectric feeder. The main parameters of piezoelectric ceramics’properties include electromechanically coupled coefficients K, mechanical quality factor Q m, dielectric constantε, elastic constant s and piezoelectric constant d. The piezoelectric ceramics’preparation method and the PZT piezoelectric ceramics’properties are presented. One of the four vibration modes of the piezoelectric vibrator, LE vibration mode, is adopted for the piezoelectric bimorph, with big displacements, high controllability and high access speed. The bimorph’s deformation principle and variety are elaborated. The effect of the change of parameter factors influencing bimorph’s properties is analyzed theoretically.
     Chapter 3 Structure Design and Theoretical Analysis of Inertial Piezoelectric Vibration Feeder
     The structure of piezoelectric vibration feeder is designed,its running principle is expounded. Every part of feeder is designed,including hopper,top plate, base plate,support leg,leaf spring and bimorph bob. The dynamic model of bimorph bob is established; the connections among empty-out time, parts movement and amplitude are analyzed. The vibration analysis is conducted on the feeder,the vibration model is simplied.
     Chapter 4 Experimental Research on Inertial Piezoelectric Vibration Feeder The inertial piezoelectric vibration feeder could be affected by various factors. Orthogonal experimental design is a convenient and feasible method to deal with the various factors. Basing on the orthogonal test’s basic theory, the feeder’s orthogonal experiment is designed to determine the optimal combination. The relations among voltage, frequency, amplitude and feeding rate are explored. The connections among piezoelectric bimorph, inertial masses, supporting spring strips, bottom feet and resonance frequency are fixed on by and large.
     Chapter 5 Conclusions and Expectation
     The main conclusions are arrived at, and the areas needing to be perfected in future and studied further are put forward in this chapter.
引文
[1] 上羽贞行,超声波马达的理论与运用. 杨志刚译. 上海科技出版社,1998.
    [2] 青木登等著,庄恩保译.压电式零部件送料器系统及其应用实例. 日刊:自动化技术,1988,No.2
    [3] 杜玉明,关志华,吴端. 压电式振动给料机的技术反求. 机械设计,1999 年 4 月
    [4] 詹启贤. 自动机械设计,中国轻工业出版社,1997,225-245
    [5] 汤瑞. 轻工机械设计. 同济大学出版社,1992,55-71
    [6] 尚久浩.自动机械设计.中国轻工业出版社,2002,231-258
    [7] Sprovieri John.piezoelectric feeder handle sensitive parts,Assemblly 46(4)(2003):10
    [8] S.B. Choi ;D.H. Lee ,Modal analysis and control of a bowl parts feeder activated by piezoelectric actuators ,Journal of Sound and Vibration 275 (2004) 452-458
    [9] Chang.S.H,Yang.T.W. Dynamics of a piezoelectrically actuated vibratory feeder. Design Engineering Technology Conference ASME2000
    [10] Ting Yung ;Shin Min-Sheng ;Chang Hong-Yuan . Analysis and design of four-bar linkage type vibratory parts feeder driven by piezoelectric actuator .Proceeding of the ASME Design Engineering Technical Conference 2 (2002) 43-50
    [11] 关志华. 压电式振动给料机的研究. 硕士论文,1999
    [12] 焦其伟,崔文会,孙宝元,何承宇.压电式振动给料器的研制.传感器技术,2001,20(4):23-26
    [13] 焦其伟,崔文会,孙宝元,小型压电式振动给料器的智能化驱动电源.计算机自动测量与控制,2001,9(3):52-57
    [14] 何承宇.压电双晶片执行器的研究及其在振动给料器中的应用. 硕士论文,1999
    [15] 崔文会. 小型压电式振动给料器的驱控电源及结构参数的优化研究.硕士论文,2001
    [16] Takeh iro Takano, Yo sh iro Tomikawa. Excitation of a progressive wave in lossy ultrasonic transmission line and an application to a powder feeding device. SmartStract, 1998, 7: 417~421
    [17] 孙慷,张福学.压电学.北京:国防工业出版社,1984
    [18] 张福学,王丽坤.现代压电学.北京:科学出版社,1994
    [19] 甘国友,严继康,孙加林等.压电复合材料的现状与展望.功能材料,2000,31(5):456~459
    [20] 张传忠。压电陶瓷的新应用及新工艺.压电与声光,2000,22(2):90~94
    [21] 李尚平,徐永利,苏建华等.驱动器用陶瓷材料发展与展望.压电与声光,1999,2(6):483~487
    [22] 闫迎利.压电效应及其应用.安阳师范学院学报,2001,2:44~45
    [23](美)B.贾菲,压电陶瓷.科学出版社,1979 年 6 月,1-6,250-266
    [24] 任桂先.引爆压电陶瓷元件制造.国防工业出版社,1985 年 3 月,1-168
    [25] 王永龄,功能陶瓷性能与应用,科学出版社,2003.2,98-100
    [26] 上羽贞行著,杨志刚译. 超声波马达的理论与运用.上海科技出版社,1998.
    [27] G.H.Lim,On the conveying velocity of a vibratory feeder,Computer and Structures,1997,62(1):197-203TECHNO,1996.11,45-48
    [28] 杨志刚. 双弯曲压电超声马达理论与试验研究. 吉林工业大学. 博士学位论文
    [29] 赵淳生. 超声马达的发展与应用.测控技术. 1996;15(1):8-10
    [30] 林声和, 叶至碧,王裕斌.压电陶瓷.北京:国防工业出版社,1979,29-38
    [31] 华南工学院, 天津大学.压电陶瓷.北京:国防工业出版社,1979,1-2
    [32] 电子陶瓷情报网.压电陶瓷应用.山东大学出版社,1985, 1-6
    [33] 田中哲郎等.压电陶瓷材料.科学出版社,1982 年 12 月,1-96
    [34] 尹奇异,肖定全等.无铅压电陶瓷及应用.金属功能材料,2004(12),11(6):40-46
    [35] 日本开发出纳米结构新型压电陶瓷.粉末冶金工业,2000,11(48)
    [36] 刘玉棠,江俊勤,压电陶瓷及应用.大学物理,1995.8,14(8):34-38
    [37] 万学华,压电陶瓷换能器和压电陶瓷材料的应用与发展.世界产品与技术ECN,2002(6):71-75
    [38] 刘一声. 压电双晶片致动元件的应用. 压电与声光, 1985(1):35-46
    [39] T . Higuchi , Precise Positioning Mechanism Utilizing Rapid Deformations of Piezoelectric Elements.Proceeding of IEEE Micro Electro Mechanical System Workshop, 1990, 203
    [40] 叶会英,浦昭邦.压电双晶片的能量传输特性分析.光学精密工程,2000.8,8(4):345-349
    [41] 曲兴田,杨志刚,吴博达.基于双压电晶片的喷嘴挡板伺服阀.压电与声光,2005.2,27(1):27-30
    [42] 程光明,李鹏,杨志刚等.压电驱动式双喷嘴挡板电液伺服阀.光学精密工程,2005.6,13(3):276-283
    [43] 张宏壮,曾平,华顺明等.压电双晶片型惯性冲击式旋转精密驱动器的研究.光学精密工程,2005.6,13(3):298-300
    [44] Yoshida, Ryuichi, Okamoto, Yasuhiro,Higuchi, Toshiro,etc. Development of smooth impact drive mechanism (SIDM) -proposal of driving mechanism and basic performance. Journal of the Japan Society for Precision Engineering .1999, 65 (1 ): 111-115
    [45] Binnig G, Rohrer H. Scanning tunneling microscope. Helv Phys Acta, 1982, 55: 726-730
    [46] Binnig G, Quate CF .Atomic force microscope[J]. Phys Rev Lett, 1986, 56: 930-936.
    [47] 曲祥普.压电振动料斗.发明专利申请公开说明书,1995
    [48] 加藤一路,藤井隆良等.压电驱动型送料器以及压电元件驱动型送料器.发明专利申请公开说明书,2002
    [49] 屋木晋.控制压电部件馈送器的方法与装置.发明专利申请公开说明书,2001
    [50] Jan G. Smits, Susan I, Dalke and Thomas IL Cooney. The constituent equations of piezoelectric bimorphs . Sensors and Acntators A, 1991, 28 : 41~61
    [51] Wang, Q.M. and Cross, L.E., “Performance Analysis of Piezoelectric Cantilever Bending Actuators,” Ferroelectrics, Vol.215, pp.187~213, 1998
    [52] Nebojsa I. Jaksic,Gary P. Maul,Development of a model for part reorientation in vibratory bowl feeders with active air jet tooling,Robotics and Computer Integrated Manufacturing 17(2001) 145-149
    [53] Jan G. Smits, Senior Member, Arthur Ballato. Dynamic admittance matrix of Piezoelectric cantilever bimorph. Journal of micro-electro-mechanical systems, 1994, 3(3):105-112
    [54] J. Goli, J.G..Smits, A.Ballato. Dynamic matrix of end-loaded piezoelectric bimorphs. IEEE Ultrasonics symposium, 1995: 1101-1105
    [55] Jan G. Smits, Susan I, Dalke and Thomas IL Cooney. The constituent equations ofpiezoelectric bimorphs . Sensors and Actators A, 1991, 28 : 41~61
    [56] 张义民. 机械振动力学.吉林科学技术出版社,2000,32-46
    [57] 周永红.电磁振动给料机的力学模型与计算机控制的研究.硕士论文,2004
    [58] 姜同川.正交试验设计. 山东科学技术出版社,1985.4
    [59] 夏伯忠.正交试验法. 吉林人民出版社,1985.11
    [60] 任露泉.试验优化技术.机械工业出版社,1986 年,5-20
    [61] 任露泉.试验优化设计与分析.机械工业出版社,2001 年,6-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700