微机电陀螺误差建模及其在飞行器组合导航中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电陀螺与传统的机电类陀螺和光电类陀螺相比,具有成本低、尺寸小、重量轻、可靠性高等优点。对微机电陀螺的研究与开发已经成为近十几年内的研究热点,并将继续推动导航技术向前发展。基于目前的工艺水平,微机电陀螺只能用于低端导航系统,提高其可用精度的方法之一是对其进行误差特性分析、建模和补偿。
     本文主要研究了微机电陀螺的误差分析、建模和补偿,以及在飞行器导航中的应用。首先对微机电陀螺的性能指标进行了总结并分析了其理想动力学模型,随后详细论述并分析了振动结构、换能器和电子电路三个主要部分的工作原理、性能和误差特性。基于上述研究结论,建立了适用于微机电陀螺的误差模型,对误差补偿理论进行了研究。最后根据建立的微机电陀螺误差模型,开发了分布式组合导航仿真系统和低成本飞行器组合导航系统原理样机,并进行了仿真分析和跑车试验。
     本文的具体研究内容如下:
     1) 对微机电陀螺的性能指标进行了归纳和总结,将理想微机电陀螺等效为2自由度质量-弹簧-阻尼系统,在开环和闭环两种工作模式下对其动力学模型进行了分析,确定了用于描述微机电陀螺结构特征参数的典型取值范围。
     2) 研究了静电驱动和电容性检测技术,对微机电陀螺中常采用的平板电容器结构、横向梳结构和纵向梳结构进行了工作机理分析和性能比较,对静电驱动器和电容性敏感器中存在的正交误差和偏差进行了定性分析。
     3) 对驱动电路存在的误差进行了分析,其主要为因相位延迟导致的正交误差。对单位增益缓冲器、跨阻放大器和电荷积分放大器三种基本检测单元的工作原理和噪声特性进行了分析和比较,表明电荷积分放大器的性能最好。随后分析并比较了同步检测、开关电容检测、相关双采样和伪差分检测四种典型检测电路的性能,同步检测和相关双采样能够消除较多的误差,其误差主要为第1级放大器的热噪声,该热噪声与机械热噪声相比往往要高几个量级。
     4) 研究了两种典型的微机电陀螺结构:线振动结构陀螺和旋转振动结构陀螺。根据各自的动力学特征推导了完整的动力学模型,在模型中引入的主要结构不理想因素—质心偏移和振动质量偏斜—可以等效为结构的刚度矩阵和阻尼矩阵不对称,并表示成矩阵的非对角项。随后对上述模型进行了合理简化,采用轨迹图法和平均化方法进行了动力学特性分析,研究了模态控制问题。最后归类并分析了与结构相关的各种主次误差因素。
     5) 详细论述了微机电陀螺的确定性误差模型和随机误差模型,以及相应的模型建立方法,着重分析了随机误差建模方法中的时间序列分析和Allan方差技
Comparing with conventional electro-mechanical gyroscope and electro-optical gyroscope, MEMS gyroscope has the advantages of low cost, small size, low weight and high reliability. In the past decades MEMS gyroscope has become the major subject of widely research and development and will continue to boost the evolution of navigation technologies. At present, basing on the process level, MEMS gyroscope is restricted in the field of low level navigation. One of the methods for increasing its available accuracy is error analysis, modeling and compensation.Error analysis, modeling and compensation of MEMS gyroscope and its application in navigation of flight vehicle are researched in this paper. Firstly, performance indices of MEMS gyroscope are summarized and its ideal dynamic model is analyzed. Secondly, the operation principle, performance and error characteristics of three main parts, vibratory structure, transducer and electrocircuit, of MEMS gyroscope are discussed thoroughly. Thirdly, basing on the above conclusions, error model of MEMS gyroscope is built and its compensation theory is discussed. Finally, basing on the above error model of MEMS gyroscope, a distributed integrated navigation simulation system and a prototype of low cost integrated navigation system for flight vehicle are designed, simulation and car test are carried out and the conclusions are given.The detailed contents in this paper are as followed:1) Performance indices of MEMS gyroscope are summarized. Ideal MEMS gyroscope can be taken as an equivalent two freedom mass-spring-damping system and its dynamic model is analyzed under two operation modes of open-loop and closed-loop. The typical bounds of characteristic parameters for describing MEMS gyroscope's structure are determined.2) Electrostatic actuator and capacitive detect technologies are studied. The operation mechanism of the common capacitor structure, plate, transverse comb and lateral comb, are analyzed and compared. Finally, qualitative analysis is given according to the cross error and bias which exist in the electrostatic actuator and capacitive sensor.3) Errors that existed in driven circuit are studied, it is indicated that the dominating error factor is cross error caused by the delay of phase. Operation principle and noise characteristics of thee fundamental detect circuit elements, unit gain buffer, tran-resistant amplifier and charge integrated amplifier, are analyzed and compared. It is indicated that the performance of charge integrated amplifier is the best. Operation principle and performance of four typical detect circuit, synchronous detect, switched capacitive detect, correlated double sampling are
    analyzed and compared. It is indicated that the synchronous detect and correlated double sampling can eliminate the most parts of error sources, the dominating error sources of them is thermal noise of first stage of amplifier. The thermal noise is often several orders higher than the mechanical thermal noise.4) Two typical types of MEMS gyroscope, linear vibratory structure gyroscope and rotational vibratory gyroscope, are studied. The integrated dynamic models of them are deduced by the correlated dynamic characteristic. Structure imperfects, offset of center of mass and deflection of vibratory mass, are added into the above models by the form of non-diagonal items in asymmetry stiffness matrix and asymmetry damping matrix. Dynamic characteristics and operation mode control is analyzed basing on the simplified models with the methods of trajectory plot and parameter averaging. Finally, the primary and secondary error factors correlated with structure is classified and analyzed.5) Determinable error model, stochastic error model and modeling method are analyzed in detailed. Especially, stochastic error modeling methods are discussed, including time serial analysis and Allan variance method. The common error model equation is deduced by analysis of its primary and secondary error factors. Finally, to a specific type of MEMS gyroscope, error modeling and analysis are provided by the method of time serial analysis and Allan variance analysis respectively according to the static test data.6) Error compensation theories used for gyroscope are analyzed and compared. Especially, particle filtering theory which is the research focus at the present time is discussed in detail. The correlative filtering algorithm and the mixture filtering algorithm which can reduce computing consumption are deduced. Finally, a new cascade filtering structure is presented which not only can reduce computing consumption but also increase filtering robustness and the correlative filtering algorithm is also deduced.7) Basing on the above error model of MEMS gyroscope, a distributed integrated navigation simulation system and a prototype of low cost integrated navigation system for flight vehicle are designed, simulation and car test are carried out and the conclusions are given.
引文
1 A.D.King. Inertial Navigation-Forty Years of Evolution. GEC REVIEW. 1998, 13(3): 140: 149
    2 Neil Barbour, George Schmidt. Inertial Sensor Technology Trends. Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles, Cambridge, MA, 1998: 55-62
    3 Philip Wayne Loveday. Analysis and Compensation of Imperfection Effects in Piezoelectric Vibratory Gyroscopes. Virginia Polytechnic Institute and State University. PhD Thesis. 1999: 1-9, 69-71
    4 Jongwon Seok. Vibratory Angular Rate Gyroscope Using Polarized Piezoceramic Bimorphs. Rensselaer Polytechnic Institute. PhD Thesis. 2000: 3-7
    5 N Yazdi, Farrokh Ayazi, Khalil Najafi. Micromachined Inertial Sensors. Proceedings of IEEE. 1998, 86(8): 1640-1659
    6 Richard Michael Kuhns. Design and Fabrication of a Micromechanical Gyroscope, Air Force Institute of Technology, MS Thesis. 1995: 2-3-2-9
    7 M. Elwenspoek, R. Wiegerink. 硅微机械传感器.陶家渠,等.中国宇航出版社,2003:144-150
    8 Gregory T.A. Kovacs. 微传感器与微执行器.张文栋,等.科学出版社,2003:175-179
    9 Nadim Maluf. An Introduction to Microelectromechanical Systems Engineering. Artech House, 2000: 119-133
    10 M.W. Putty, A Micromachined Vibrating Ring Gyroscope. Univ of Michigan. PhD. Thesis, 1995: 1-20
    11 J.B.Burdess, D.Wood, A.J.Harris, etal. Vibrating Gyroscopes Vibrating Gyroscopes. Moving and Flexing Microstructures-their Design, Modelling and Production. London, UK. 1994: 1-3
    12 Leroy O.Thielman, Sid Bennett, Cleon H.Barker. Proposed IEEE Coriolis Vibratory Gyro Standard and Other Inertial Sensor Standards. Position Location and Navigation Symposium. Minneapolis, MN. 2002: 351-358
    13 IEEE STD 528-2001, IEEE Standard for Inertial Sensor Terminology, IEEE Aerospace and Electronic Systems Society, 2001: 1-20
    14 E. Thielicke, E. Obermeier. Microactuators and Their Technologies. Mechatronics. 2000, 10: 431-455
    15 Andrew S. Holmes. Microengineering-the Next Revolution? 12th International Federation of Heat Treatment and Surface Engineering Congress. Melbourne, Australia. 2000
    16 Sungsu Park, Roberto Horowitz, Adaptive Control for the Conventional Mode of Operation of MEMS Gyroscopes. Journal of Microelectromechanical Systems. 2003, 12(1): 101-108
    17 Robert P. Leland, Adaptive Mode Tuning for Vibrational Gyroscopes, IEEE Trans. on Control Systems Technology. 2003, 11(2): 242-247
    18 Hiroshi Kawai, Ken-Ichi Atsuchi, Masaya Tamura, etal, High-resolution Microgyroscope Using Vibratory Motion Adjustment Technology. Sensors and Actuators (A). 2001, 90: 153-159
    19 Sangwoo Lee, Sangjun Park, Jongpal Kim, etal. Surface/Bulk Micromachined Single-Crystalline-Silicon Micro-Gyroscope. Journal of Microelectromechanical System. 2000, 9(4): 557-567
    20 Seyed R. Zarabadi, Pedro E. Castillo Borelly, Jack D.Johnson. An Angular Rate Sensor Interface IC. IEEE 1996 Custom Integrated Circuits Conference. 1996
    21 K.Tanaka, Y.Mochida, M.Sugimoto, etal. A Micromachined Vibrating Gyroscope. Sensors and Actuators (A). 1995, 50: 111-115
    22 Ralf Voss, Karin Bauer, Wilhelm Ficker, etal. Silicon Angular Rate Sensor for Automotive Applications with Piezoelectric Drive and Piezoresistive Read-Out. 1997 International Conference on Solid-State Sensors and Actuators. Chicago. 1997: 16-19
    23 Toshiyuki Tsuchiya, Yasuyuki Kageyama, Hirofumi Funabashi, etal. Vibrating Gyroscope Consisting of Three Layers of Polysilicon Thin Films. Sensors and Actuators. 2000, 82: 114-119
    24 Andrew Gripton. The Application and Future Development of a MEMS SiVSG for Commercial and Military Inertial Products. Symposium Gyro Technology 2001: 28-35
    25 V.F.Zhuravlev, E.A.Izmailov. Analysis of Conditions Causing Hemispherical Resonator Gyro Drift. 8th Saint Petersburg International Conference on Integrated Navigation System. Russia. 2001
    26 Andrei M.Shkel, Roberto Horowitz, Ashwin A.Seshia, etal. Dynamics and Control of Micromachined Gyroscopes. Proceedings of the American Control Conference. San diego, California. 1999: 2119-2124
    27 Robert P.Leland. Lyapunov Based Adaptive Control of a MEMS Gyroscope. Proceedings of the American Control Conference. Anchorage AK. 2002: 3765-3770
    28 K.P. Schwarz, Naser El-Sheimy. Future Positioning and Navigation Technologies. University of Calgary. 1999: 1-101
    29 C Pearce. The Performance and Future Development of a MEMS SiVSG and its Application to the SiIMU. AIAA Guidance, Navigation and Control Conference and Exhibit. Montreal, Canada. 2001, 4410: 1-10
    30 IEEE STD 647-1995 (Revision of IEEE STD 647-1981). IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros, 1995: 46-76
    31 IEEE STD 952-1997. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. 1997: 43-77
    32 Anthony Lawrence. Modern Inertial Technology. Springer-Verlag New York, Inc. 1993
    33 Jan E. Vandemeer, Michael S. Kranz, Gary K. Fedder. Hierarchical Representation and Simulation of Micromachined Inertial Sensors. Modeling and Simulation of Micromsystems Conference. 1998
    34 J.V. Clark, N. Zhou, and K. S. J. Pister, Modified Nodal Analysis for MEMS with Multi-Energy Domains. International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators. San Diego, CA.2000: 31-34
    35 Robert P. Leland. Mechanical-Thermal Noise in Vibrational Gyroscopes. Proceedings of the American Control Conference. Arlington, VA. 2001: 3256-3261
    36 Heng Yang, Minhang Bao, Hao Yin, etal. A Nnovel Bulk Micromachined Gyroscope Based on a Rectangular Beam-Mass Structure. Sensors and Actuators (A). 2002, 96: 145-151
    37 Cenk Acar, andrei M.Shkel. A Class of Micromachined Gyroscopes with Increased Parametric Space. IEEE Sensors Conference. Orlando, FL. 2002: 854-859
    38 S.Kudo, M.Konno, S.Sugawara, etal. Consideration on Equivalent Mechanical Circuits for Vibratory Gyroscope. 1990 Ultrasonics Symposium. 1990: 397-400
    39 Lufeng Che, Bin Xiong, Yuelin Wang. System Modelling of a Vibratory Micromachined Gyroscope with Bar Structure. J. Micromech. Microeng. 2003, 13: 65-71
    40 Xinxin Li, Minhang Bao, Shaoqun Shen, etal. A Micromachined Piezoresistive Angular Rate Sensor with a Composite Beam Structure. Sensors and Actuators. 1990, 72: 217-223
    41 W.Geiger, B.Folkmer, U.Sobe, etal. New Designs of Micromachined Vibrating Rate Gyroscopes with Decoupled Oscillation Modes. Transducers'97. Chicago. 1997: 1129-1132
    42 Yoichi Mochida, Masaya Tamura, Kuniki Ohwada. A Micromechined Vibrating Rate Gyroscope with Independent Beams For the Drive and Detection Modes. Sensors and Actuators. 2000, 80: 170-178
    43 K.Maenaka, Y.Fujita, Y.Konishi, etal. Analysis of Highly Sensitive Silicon Gyroscope with Cantilever Beam as Vibrating Mass. Sensors and Actuators (A). 1996,54:568-573
    44 V.Annovazzi-Lodi, S.Merlo. Mechanical-Thermal Noise in Micromachined Gyros. Microelectronics Journal. 1999, 30:1227-1230
    45 S.Zarabadi, T.Vas, D.Sparks, etal. A Resonating Comb/Ring Angular Rate Sensor Vacuum Packaged Via Wafer Bonding. Sensors and Actuators., 1999, 1043:1 -5
    46 Long Que, Jae-Sung Park, Yogesh B, etal. Bent-beam Electrothermal Actuators-Part I: Single Beam and Cascaded Devices. Journal of Microelectromechanical System. 2001, 10(2):247-254
    47 Joan Pons-Nin, Angel Rodriguez, etal. Voltage and Pull-in Time in Current Driver of Electrostatic Actuators. J of Microelectromechanical System. 2002,111(3)
    48 Jyh-Cheng Yu, Chin-Bin Lan. System Modeling of Microaccelerometer Using Piezoelectric Thin Films. Sensors and Actuators (A). 2001, 88:178-186
    49 Miko Elwenspoek, Gijs Krijnen. Introduction to Mechanics and Transducer Science. University of Twente. 2001:109-154
    50 Gary Keith Fedder. Simulation of Microelectromechanical Systems. University of California, Berkeley. PhD Thesis. 1994
    51 Ofir Degani, Yeal Nemirovsky. Design Considerations of Rectangular Electrostatic. Torsion Actuators Based on New Analytical Pull-In Expressions. Journal of Microelectromechanical System. 2002, 11(1):20-26
    52 Zhenyu Xue, M.Taher A.Saif, Yonggang Huang. The Strain Gradient Effect in Microelectromechanical System(MEMSs). Journal of Microelectromechanical. 2002, ll(l):27-35
    53 Yongsoo Oh, Byeungleul Lee, Seogsoon Baek, etal. A Surface-Micromachined Tunable Vibratory Gyroscope. Proc. of the IEEE International Microelectromechanical Systems Workshop. Nagoya, Japan. 1997:272-277
    54 W.Geiger, B.Folkmer, J.Merz, etal. A New Silicon Rate Gyroscope. Proc. of the IEEE Workshop (MEMS'98) on the Micro Electromechanical System. Heidelberg, Germany. 1998:615-620
    55 L.Castaner, J.Pons, etal. Analysis of the Extended Operation Range of Electrostatic Actuators By Current-Pulse Drive. Sensors and Actuators (A). 2001, 90:181-190
    56 Wyatt Owen Davis. Mechanical Analysis and Design of Vibratory Micromachined Gyroscopes. Uuiversity of California, Berkeley. PhD Thesis. 2001
    57 Bernhard E.Boser Karen W.Markus. Design of Integrated MEMS. Emerging Technologies: Designing Low Power Digital Systems, R. Cavin, W. Liu, eds. 1996:207-232
    58 K.Y.Park, C.W.Lee, Etc, Laterally Oscillated and Force-Balanced Micro Vibratory Rate Gyroscope Supported By Fish Hook Shape Springs. Sensors and Actuators. 1998, 64: 69-76
    59 R.T. M'Closkey, B. Daneshrad, J.S. Gibson. Algorithm and Low Power Digital Implementation for MEMS Inertial Sensors. 99-083. http://www.ucop.edu/research/micro/99_00/ucla_99.html
    60 Mark.J, A.Brown. Laser Gyroscope Random Walk Determination Using a Fast Filtering Technique. DGON Symposium Gyro Technology. Stuttgart. 1984: 1-17
    61 高钟毓.微机械惯性仪表的精度极限.中国惯性技术学会第四届学术年会论文集.1999:128-133
    62 Gang Zhang. Design and Simulation of a CMOS-MEMS Accelerometer. Carnegie Mellon University. MS Thesis. 1998: 3-7
    63 Said Emre Alper, Tayfun Akin. A Symmetric Surface Micromachined Gyroscope with Decoupled Oscillation Modes. Sensors and Actuators (A). 2002, 97-98: 347-358
    64 Huikai Xie, Lars Erdmann, Xu Zhu, etal. Post-Cmos Processing for High-Aspect-Ratio Integrated Silicon Microstructures. Journal of Microelectromechanical System. 2002, 11(2): 93-101
    65 Dubravka Bili'C. Micromachined Resonators. University of California, Berkeley. PhD Thesis. 2001
    66 P. R. Gray, R. G. Meyer. Analysis and Design of Analog Integrated Circuits. John Wiley & Sons, Inc. New York. 3 Ed. 1993
    67 R.J. Van de Plassche, J. H. Huijsing, W. M. C. Sansen. Kluwer. RF Analog-to-Digital Converters; Sensor and Actuator Interfaces; Low-Noise Oscillators, PLLs and Synthesizers. Academic Publishers. 1997. (Bernhard E. BOSER. Chapter: Capacitive Interfaces For Monolithic Integrated Sensors): 1-20
    68 David Francois Guillon. Control of MEMS Electrostatic Parallel-Plate Actuators. Carnegie Mellon University. PhD Thesis. 2001
    69 Naiyavudhi Wongkomet. Position Sensing for Electrostatic Micropositioners. University of California, Berkeley. PhD Thesis. 1998
    70 Bernhard E.Boser. Electronics for Micromachined Inertial Sensors. 1997 International Conference on Solid State Sensors and Actuators. Chicago. 1997: 1169-1172
    71 Moorthi Palaniapan, Roger T.Howe, John Yasaitis. Integrated Surface-Micromachined Z-Axis Frame Microgyroscope. IEEE International Electron Devices Meeting, San Francisco, Calif. 2002
    72 Xuesong Jiang, Joseph I.Seeger, Michael Kraft, etal. A Monolithic Surface Micromachined Z-Axis Gyroscope With Digital Output, 2000 Symposium On VLSI Circuits. Honolulu, HI. 2000
    73 Trey A.Roessig, Roger T. Howe, Albert P.Pisano, etal. Surface-Micromechachined Resonant Accelerometer. 1997 International Conference on Solid State Sensors and Actuators. Chicago. 1997:859-862
    74 Hao Luo, Gang Zhang. A Post-CMOS Micromachined Lateral Accelerometer. Journal of Microelectromechanical System. 2002, 11 (3): 188-195
    75 Don L.Devoe, Albert D.Pisano. Surface Micromachined Piezoelectric Accelerometers (Pixls). J of Microelectromechanical System. 2001, 10(2): 180-186
    76 Chanchieh Huang, Christophoros Christophorou, Najafi K. etal. An Electrostatic Microactuator System for Application in High-Speed Jets. J of Microelectromechanical System. 2002,11(3):222-P235
    77 Bernard Friedland, Maurice F.Hutton. Theory and Error Analysis of Vibrating -Member Gyroscope. IEEE Trans, on Automatic Control. 1978, AC-23(4):545-556
    78 Damrongrit Piyabongkarn, Rajesh Rajamani. The Development of a MEMS Gyroscope For Absolute Angle Measurement. Proceedings of the American Control Conference, Anchorage,AK.2002:1960-1965
    79 A.Shkel, R.T.Howe, R.Horowitz. Modeling and Simulation of Micromachined Gyroscopes in the Presence of Imperfections. International Conference on Modeling and Simulation of Microsystems. Puerto Rico, USA. 1999:605-608
    80 Yoichi Mochida, Masaya Tamura, Kuniki Ohwada. A Micromechined Vibrating Rate Gyroscope with Independent Beams for the Drive and Detection Modes. Sensors and Actuators. 2000, 80:170-178
    81 Ofir Degani, Dan J. Seter, Eran Socher, etal. Optimal Design and Noise Consideration of Micromachined Vibrating Rate Gyroscope with Modulated Integrative Differential Optical Sensing. Journal of Microelectromechanical System. 1998, 7(3):329-338
    82 DD.Lynch. Coriolis Vibratory Gyros. Symposium Gyro Technology. Stuttgart Germany. 1998:1.1-1.14
    83 P.W.Loveday, C.A.Rogers. The Influence of Control System Design on the Performance of Vibratory Gyroscope. Journal of Sound and Vibration. 2002, 255(3):417-432
    84 W.Geiger, H.Sandmaier, W.Lang. A Mechanically Controlled Oscillator. Sensors and Actuators. 2000,82:74-78
    85 Timo Veijola, Marek Turowski. Compact Damping Models for Laterally Moving Microstructure with Gas-Rarefaction Effects. Journal of Microelectromechanical System. 2001,10(2):263-273
    86 N. Deb, S.V. Iyer, T. Mukherjee, etal. MEMS Resonator Synthesis for Defect Reduction. Journal of Modeling and Simulation of Microsystems. 2001, 2(91): 11-20
    87 Philip W.Loveday, Craig A.Rogers. Modification of Piezoelectric Vibratory Gyroscope Resonator Parameters by Feedbacl Control. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control. 1998, 45(5): 1211-1215
    88 William A. Clark, Roger T. Howe, Roberto Horowitz. Surface Micromachined Z-Axis Vibratory Rate Gyroscope. Solid State Sensor and Actuator Workshop. Hilton Head, SC. 1996
    89 Lilac Muller, Albert P. Pisano, RT Howe. Microgimbal Torsion Beam Design Using Open Thin-Walled Cross Sections. J. of Microelectromechanical Systems. 2001, 10: 550-560
    90 W.Geiger, W.U.Butt, Etc, Decoupled Microgyros and the Design Principle DAVED. Sensors and Actuators (A). 2002, 95: 239-249
    91 R.W.Bush, G.C.Newton. Reduction of Errors in Vibratory Gyroscopes by Double Modulation. IEEE Trans. On Automatic Control. 1964: 525-535
    92 Raymond L.Filler, the acceleration sensitivity of Quartz crystal Oscillators: A review, IEEE trans on ultrasonics, ferroelectrics and frequency control, vol.35, No.3, may 1988, 297-305
    93 S.R Beeby, N.M.White. Silcon Micromechanical Resonator with Thick-Film Printed Vibration Excitation and Detection Mechanisms. Sensors and Actuators (A). 2001, 88: 189-197
    94 Todd Remtema, Liwei Lin. Active Frequency Tunning for Micro Resonators by Localized Thermal Stressing Effects. Sensors and Actuators (A). 2001, 91: 326-332
    95 Jason W.Weigold, Khalil Najafi, Stella. W.Pang. Design and Fabrication of Submicrometer Single Crystal Si Accelerometer. Journal of Microelectromechanical System. 2001, 10(4): 518-524
    96 J Wellburn, D A Reid. Oscillating gyro Design, Manufacture and Performance. International Conference Mechanical Technology of Inertial Devices. 1987, C51/87
    97 Chris C. Painter, Andrei M. Shkel. Structural and Thermal Analysis of A MEMS Angular Gyroscope. SPIE's 8th Annual Symposium on Smart Structures and Materials. Newport Beach, CA. 2001
    98 Xinxin Li, Rongming Lin, Kok Wah Leow. Performance-Enhanced Micro-Machined Resonant Systems with Two-Degrees-of-Freedom Resonators, J. Micromech. Microeng. 2000, 10: 534-539
    99 Hyung-Taek Lim, Jin Woo Song, Jang-Gyu Lee, etal. A Few Deg/Hr Resolvable Low Noise Lateral Microgyroscope. The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems. 2002: 627-630
    100 IEEE STD 952-1997, IEEE Standard Specification Format Guide and Test Procedure For Single-Axis Interferometric Fiber Optic Gyros. 1997
    101 IEEE STD 647-1995(Revision of IEEE STD 647-1981)IEEE Standard Specification Format Guide and Test Procedure For Single-Axis Laser Gyros, 1995
    102 H.A.Cronje, J.Gouws. Inertial Measurement System for The Position Control of a Flexible Robot Arm. Mechanical Technology. 1998: 9-11
    103 American National Standards Institute. IEEE Specification Format for Single-Degree-of-Freedom Spring-Restrained Rate Gyros. IEEE STD 292-1969.1993
    104 American National Standards Institute, IEEE Specification Format Guide and Test Procedure for Two-Degree-of-Freedom Dynamically Tuned Gyros. ANSI/IEEE STD 813-1988. 1988
    105 American National Standards Institute, IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros. IEEE STD 647-1995.1995
    106 American National Standards Institute. IEEE Standard Specification Format Guide and Test Procedure for Single-Degree-of-Freedom Rate-Integrating Gyros, IEEE STD 517-1974
    107 American National Standards Institute. IEEE Test Procedure for Single-Degree-of-Freedom Spring-Restrained Rate Gyros. ANSI/IEEE STD 293-1969. 1986
    108 谢荣生,孙枫,郝燕玲,等.基于小波分析的船用捷联陀螺信号滤波方法.哈尔滨工程大学学报.2001,22(2):24-26
    109 Jiang Liong, Yang Weiqinm, Yang Youtang. State Space Modeling of Random Drift Rate in High-Precision Gyro. IEEE Trans. on Aerospace and Electronic Systems. 1996, 32(3): 1138-1143
    110 许江宁,顾颖玲,卞鸿巍,等.AR模型在陀螺仪性能故障诊断中的应用研究.海军工程大学学报.2001,13(4):67-70
    111 柳贵福,邢艳丽,张树侠.光纤陀螺零偏稳定性的数据建模方法研究.中国惯性技术学报.2001,19(3):49-53
    112 张树侠,闫威.激光陀螺漂移的数据建模和滤波.中国惯性技术学报.1999,7(4):70-72
    113 Xu Lina, Deng Zhenglong. Research on Neural Networks for Compensated Error of The Gyro Starting Drift Rate. Proc. of The 3th World Congress on Intelligent Control and Automation. Hefei, China. 2000: 1156-1158
    114 吴美平,胡小平.基于动态神经元网络的激光陀螺输出误差模型.中国惯性技术 学报.2000,8(4):84-88
    115 朱荣,张炎华,莫友声.用于光纤陀螺消噪的新型神经网络.上海交通大学学报.2000,34(5):646-649
    116 缪玲娟.小波分析在光纤陀螺信号滤波中的应用研究.宇航学报.2000,21(1):42-46
    117 徐丽娜,邓正隆陀.螺仪漂移特性的小波分析.中国惯性技术学报.2001,9(3):58-61
    118 伏玉笋,田作华,施颂椒.灰色系统理论、数据预处理及其应用.上海交通大学学报.2001,35(2):268-271
    119 翁海娜,李滋刚,万德钧.液浮陀螺漂移的试验建模研究.中国惯性技术学报.1999,7(2):30-34
    120 George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, 时间序列分析预测与控制,顾岚,等.第3版,中国统计出版社.1997
    121 Daniel J.Stilwell, Carl E.Wick, Bradley E.Bishop. Small Inertial Sensors for a Miniature Autonomous Underwater Vehicle. Proceedings of the 2001 IEEE International Conference on Control Applications. Mexico City, Mexico. 2001: 841-846
    122 Ashwin A.Seshia, Roger T.Howe, S. Montague. An Integrated Microelectromechanical Resonant Output Gyroscope. 15th IEEE Micro Electro Mechanical Systems Conference. Las Vegas, NV. 2002
    123 Demoz Gebre Egziabher, Roger C. Hayward, J.David Powell. A Low-Cost GPS/Inertial Attitude Heading Reference System(AHRS) for General Aviation Applications. IEEE PLANS'98. Rancho Mirage, CA. 1998: 518-525
    124 R.Hopkins, J.Borenstein, B.Antkowiak. The Silicon Oscillating Accelerometer: A MEMS Inertial Instrument for Strategic Missile Guidance. AIAA Missile Sciences Conference. Montency, CA. 2000: 3801
    125 Jason J.Ford, Michael E.Evans. On-Line Estimation of Allan Variance Parameters. DSTO. Australia. 1999: 439-444
    126 Christos Monovoukas, Andrew K.Swiecki, Fariborz Maseeh. Integrated Optical Gyroscopes offering Low Cost, Small Size and Vibration Immunity, Proceedings of SPIE: Integrated Optics Devices Ⅳ. 2000, 3936-47
    127 Jerold P.Gilmore, Howard Musoff. A Unique Self-Calibrating Redundant Inertial System. Position Location and Navigation Symposium. 1992: 46-51
    128 Don N.Pittman, Chris E.Roberts. Determining Inertial Errors from Navigation in Place Data. Position Location and Navigation Symposium. 1992: 60-67
    129 Zeev Berman,On Range and Attitude Estimation. Position Location and Navigation Symposium. 1994:344-347
    130 M.B.Ignagni. Separate Bias Kalman Estimator with Bias State Noise. IEEE Trans. On Automatic Control. 1990, 35(3):338-341
    131 Roya Rabbari, Barrie W.Leach, Jeremy Dillon, etal. Adaptive Tunning of a Kalman Filter Using the Fuzzy Integral for an Intelligent Navigation System. Proc. of 2002 IEEE International Symposium on Intelligent Control. Vancouver,Canada. 2002:252-257
    132 Dan Simon, Hossny EI Sherief. Real Time Navigation Using the Global Positioning System. IEEE AES Systems Magazine. 1995:31-37
    133 N.J. Gordon, DJ.Salmond, A.F.M.Smith. Novel Approach to Nonlinear/No-Gaussian Bayesian State Estimation. IEEE Proc. on Radar and Signal Processing. 1993, 140:107-113
    134 H.Carvalho, P.Del Moral, A.Monin, etal. Optimal Nonlinear Filtering in GPS/INS Integration. IEEE Trans on Aerospace and Electronic Systems. 1997, 33(3):835-850
    135 F.Gustafsson, F.Gunnarsson, N.Bergman, etal. A Framework for Particle Filtering in Positioning, Navigation and Tracking Problems. Proc. IEEE Signal Processing Workshop on Statistical Signal Processing, Singapore. 2001:34-37
    136 Per Johan Nordlund, Fredrik Gustafsson. Seauential Monte Carlo Filtering Techniques Applied to Integrated Navigation System. Proc. of the American Control Conference. Arlingtonmva. 2001:4378-4380
    137 O.A. Stepanov. Comparative Investigation of Two Nolinear Filters for Navigation Problems. Position Location and Navigation Systems (PLANS 2000). San Diego, USA. 2000:333-340
    138 James Heald. Noise Reduction:Multiple Solutions, IEE Colloquium on Signals Systems and Chaos. 1997:3-1-3-6
    139 Samer S.Saab, Kristjan T. Gunnarsson. Automatic Alignment and Calibration of an Inertial Navigation System. Position Location and Navigation Symposium. 1994:845-852
    140 Jang Gyu Lee, Chan Gook Park, Heung Won Park. Multiposition Aligment of Strapdown Inertial Navigation System. IEEE Trans. On Aerospace and Electronic Systems. 1993,29(4): 1323-1328
    141 Dohyoung Chung, Chan Cook Park, Jang Gyu Lee. Observability Analysis of Strapdown Inertial Navigation System Using Lyapunov Transformation. Proc. of the 35th Conference on Decision and Control. Kobe, Japan. 1996:23-28
    142 Jiang Chengfang, De Junwan. A Fast Initial Aligment Method for Strapdown Inertial
     Navigation System on Stationary Base. IEEE Trans. On Aerospace and Electronic System. 1996, 32(4): 1501-1505
    143 Wang Xinlong, Shen Gongxun, Tang Delin. A Fast Initial Aligment Method of Inertial Navigation System on Stationary Base, Proc. of The 4th World Congress on Intelligent Control and Automation. Shanghai, China. 2002: 1390-1394
    144 M.S.Grewal, R.S.Miyasako, J.M.Smith. Application of Fixed Point Smoothing to the Calibration, Alignment and Navigation Data of Inertial Navigation Systems. Second World Congress of Nonlinear Analysis. Athens, Greece. 1996
    145 Petter Frykman. Applied Particle Filters in Integrated Aircraft Navigation, LinkAopings Universitet, MS Thesis, 2003
    146 Vandi Verma, Sebastian Thrun, Reid Simmons. Variable Resolution Particle Filter. International Joint Conference on Artificial Intelligence. 2003
    147 Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, etal. Particle Filters for Positioning, Navigation and Tracking. IEEE Trans. On Signal Processing. 2002, 50(2)
    148 Per-Johan Nordlund. Recursive Estimation of Three-Dimensional Aircraft Position Using Terrain-Aided Positioning. Technical reports. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002. Proceedings. 2002: 1121-1124
    149 X.Yun, G.C.Hernandez, E.R.Bachmann, etal. An Integrated GPS/INS Navigation System for Small Auvs Using an Asynchronous Kalman Filter. Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles. Cambridge, MA. 1998: 43-49
    150 Simon Cooper, Hugn Durrant-Whyte. A Frequency Response Method for Multi-Sensor High-Speed Navigation Systems. Proc. of 1994 IEEE International Conference on Multisensor and Integration for Intelligent System. Las Vegas, NV. 1994
    151 Steven R.Swanson. A Fuzzy Navigational State Estimator for GPS/INS Integration. Position Location and Navigation Symposium. 1998: 541-548
    152 J.Seth Randle, Michael A.Horton. Low Cost Navigation Using Micro-Machined Technology. IEEE 1997 Intelligent Transportation Systems Conference. Boston, Messachusetts. 1997: 1064-1067
    153 Bruno M. Soherzinger, Cecelie M.Feit. The Design, Simulation and Implementation of An Accurate Positioning System for Automatic Flight Inspection. Proceedings of IEEE Position Location and Navigation Symposium, PLANS 1990. Las Vegas, NV. 1990: 444-451
    154 Curtisd. Evans, Robert Riggings. The Design and Analysis of Integrated Navigation Systems Using Real INS and GPS Data. Proceedings of the IEEE 1995 National Aerospace and Electronics Conference. 1995: 154-160
    155 Nebot Eduardo, Sukkarieh Salah, Durrant-Whyte Hugh. Inertial Navigation Aided With GPS Information. 4th Annual Conference on Mechatronics and Machine Vision in Practice (M2VIP'97). Toowoomba, Australia. 1997: 169-174
    156 FX Cao, D K Yang, A G Xu, etal. Low Cost Sins/GPS Integration for Land Vehicle Navigation. The IEEE 5th International Conference on Intelligent Transportation Systems. Singapore. 2002: 910-913
    157 N M Faulkner, S J Cooper, P A Jeary. Integrated MEMS/GPS Navigation Systems. Position Location and Navigation Symposium. 2002: 306-313
    158 方同,薛璞.振动理论及应用.西北工业大学出版社.2000:8-70
    159 王楚,李椿,徐安士.热学.北京大学出版社.2000:80-85
    160 Thomas B.Gabrielson. Mechanical Thermal Noise in Micromachined Acoustic and Vibration Sensors. IEEE Trans. on Electron Devices. 1993, 40(5): 903-909
    161 E.Majorana, Y.Ogawa. Mechanical Thermal Noise in Coupled Oscillators. Physics Letters A. 1997, 233: 162-168
    162 Naoko Ohishi, Shigemi Otsuka, Keita Kawabe, etal. Estimation of Thermal Noise by a Direct Measurement of the Mechanical Conductance. Physics Letters A. 2000, 266: 228-233
    163 Qi Lin, Harold P.E. Stern. Analysis of a Correlation Filter for Thermal Noise Reduction in a MEMS Gyroscope. Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory: Huntsville, Alabama: 2002: 197-203
    164 E.S. Ferre Pikal, J.R.Vig, J.C.Camparo, etal. Draft Revision of IEEE STD 1139-1988 Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology-Random Instabilities. 1997 IEEE International Frequency Control Symposium, 1997: 338-357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700