有机分子在金属及多孔铝膜表面的荧光增强效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面增强荧光是近年来迅速发展的一个新的研究领域。研究者们无论在理论还是实验方面,都做了大量工作,并取得了很多成果。现在,表面增强荧光由于灵敏度高等优点,在生物医学、生物传感和化学检测及材料科学等领域具有广泛的应用前景。对金属表面增强荧光现象的深入研究具有十分重要的意义,随着探究的深入,表面增强荧光技术可望成为表面科学研究、超灵敏生物检测研究的有力工具。
     在表面增强荧光的研究中,衬底的选择至关重要。与体材料相比,近年来迅速发展的纳米材料表现出了独特的物理、化学性质(如量子尺寸效应,表面效应等),引起了研究者的高度关注。本论文的研究中,我们用金属纳米材料作为衬底,研究了它们对有机分子光谱的影响,并进行了理论分析。主要研究了吸附在机械抛光金属衬底和多孔铝膜表面的有机分子罗丹明6G(Rh6G)和吖啶橙(AO)在激光激发下所表现出的荧光增强效应。论文主要分为两个部分:第一部分研究了机械抛光金属衬底表面对Rh6G的荧光增强效应:第二部分研究了多孔铝膜(AA0)表面对Rh6G和AO的荧光增强效应。
     第一部分机械抛光金属衬底表面对Rh6G的荧光增强效应
     利用激光光谱法对吸附在机械抛光金属表面的Rh6G分子的荧光增强和淬灭现象进行了研究探讨。发现金属银、铜和铝表面均对Rh6G的荧光辐射具有增强作用,而且银和铝表面的增强效果优于铜表面。当Rh6G荧光分子与金属衬底表面的距离增大到一定程度时,银表面仍会增强Rh6G的荧光辐射,而铜表面则表现出荧光淬灭效应。
     根据表面等离子体振荡导致局域电磁场增强和等离子体耦合辐射、表面形貌、消光性质、荧光分子与衬底表面之间的间距等因素,分析了纳米金属性质和构型对荧光增强效应的影响。
     第二部分多孔铝膜(AA0)对Rh6G和AO的荧光增强效应。
     对吸附在多孔铝膜表面的Rh6G和A0有机荧光分子的荧光增强现象进行了分析研究。结果表明多孔铝膜表面对Rh6G和A0的荧光辐射具有增强作用;并且增强效果与孔径大小有关,孔深为7μm,孔径40-50 nm的全透多孔铝膜增强效果最好。与同浓度的Rh6G和A0分子水溶液荧光谱相比,多孔铝膜上的有机分子的光致发光谱发生了蓝移,且表现出了更好的对称性。分析了多孔铝膜表面特殊的微孔结构所表现出的强的吸附能力。发现有机分子的荧光光谱线型的改变与有机染料分子周围环境的改变有关。
Surface-enhanced fluorescence is a new field developed rapidly in recent years. Many work have been done and lots of achievements have been obtained in the theoretical and experimental studies. It has been found that the surface-enhanced fluorescence has potential applications in the fields of biomedical, biological and chemical detection and sensing due to its high sensitivity and other advantages. It has great significance to study surface-enhanced fluorescence phenomenon. It is believed that the surface-enhanced fluorescence will become a powerful tool in the research of surface science, ultra-sensitive biological detection in the near future.
     In the study of surface enhanced fluorescence, the selection of the substrate is very important. The rapid development of nano-materials has showed many unique physical and chemical properties such as confinement effect and surface effect. In this thesis, the surfaced enhanced fluorescence effects of organic molecules have been investigated by using metal nano-materials as a substrate, and theoretical analysis has been made. The enhancement effect is studied when organic molecules of Rhodamine 6G (Rh6G) and acridine orange (AO) were absorbed onto the substrates of the mechanically polished metal and porous aluminum surface under the laser excitation. There are mainly two parts included in the thesis. The first part studied the fluorescence enhancement effect of mechanically polished metal substrate surface to Rh6G. The second part deals with the fluorescence enhancement effect of anodic aluminum oxide (AAO) surface to Rh6G and AO.
     The first part
     The fluorescence enhancement effect of mechanically polished metal substrate surface to Rh6G molecules
     We have studied the fluorescence enhancement and quenching phenomena of the mechanically polished metal surfaces to Rh6G molecule using laser spectroscopy. It was found that the surfaces of silver, copper and aluminum could enhance the fluorescent radiation of Rh6G, but silver and aluminum surfaces showed better enhancement effects than that of the copper. Increasing the distance between Rh6G and the metal substrate surface, the fluorescence of Rh6G still be enhanced by the silver surface, but the fluorescence quenching effect was observed at copper surface. Based on the theory of surface plasmon oscillation at nano-structured metal surface, enhanced local electromagnetic field, plasma coupling radiation, surface morphology, the nature of extinction, and space between the substrate surface and molecules, we have analyzed the influence of these factors on the fluorescence enhancement effect.
     The second part
     The fluorescence enhancement effects of anodic aluminum oxide (AAO) to Rh6G and AO.
     In this part, we have studied the fluorescence enhancement phenomenon when Rh6G and AO organic fluorescent molecules were absorbed on the anodic aluminum oxide surface. The results showed that the anodic aluminum oxide surface could enhance the fluorescence radiation of AO and Rh6G, and enhancement effect related to the size of the array. It was found that the enhancement effect is better for the array surface with 7μm holes in deep, 40-50nm diameter than that of 10μm holes in deep and 60-70nm diameter of anodic aluminum oxide. Comparing the fluorescence spectra of AO and Rh6G molecules in aqueous solution with same concentration, we found that the photoluminescence spectra of organic molecules on the anodic aluminum oxide occurred a blue-shift in spectra.
     Analyzing its particular micro-porous surface structure of the anodic aluminum oxide surface, we found it has big adsorption capacity. The results showed that the anodic aluminum oxide is a better substrate for the fluorescence enhancement.
引文
[1]张建成,王夺元.现代光化学.化学工业出版社,2006.
    [2]夏之宁等.光分析化学.重庆大学出版社[M],2004,112-113.
    [3]K.H.Drexhage.Influence of a dielectric interface on fluorescence decay time.Journal of Luminescence,1970,1:693-701.
    [4]Drexhage K.H.Progress in Optics.edited by North-holl,Amsterdan,E.wolf.1974,12:161-323.
    [5]Gersten,J.Nitzan,A.Spectroscopic Properties of Molecules Interacting with Small Dielectric Particles J.Chem.Phys.1981,75:1139-1152.
    [6]D.A Weitz,S.Garoff,et.al.Developed general model for surface-plasmon enhancement of Raman,resonance Raman,fluorescence and resonance fluorescence from molecules adsorbed at rough metal surfaces[J].Journal of Chemical Physics,1983,78:5324-5338.
    [7]D.A.Weitz,S.Garoff,et.al.Fluorescent Lifetimes of Molecules on Silver-Island Films.Gersten,Opt.Lett.7,89-91(1982).
    [8]Aussenegg,F.R.,Leitner,A.,Lippitsch,M.E.,Reinisch,H.,and Reigler,M.(1987).Novel aspects of fluorescence lifetime for molecules positioned close to metal surfaces,Surface Science 139:935-945.
    [9]A.Leitner,M.E.Lippitsch,et.al.Fluorescence properties of dyes adsorbed to silver islands,investigated by picosecond techniques[J].Applied Physics B,1985,36:105-109.
    [10]Lakowicz J R.Radiative decay engineering:Biophysical and Biomedical Applications[J].Journal of Analytical Biochemistry,2001,298:1-24.
    [11]J.R Lakowicz,Y.Shen,S.D Auria,et.al.Radiative Decay Engineering:2.Effects of Silver Island Films on Fluorescence Intensity,Lifetimes,and Resonance Energy Transfer.[J]Analytical Biochemistry,2002,301:261-277.
    [12]Lakowicz J R.Radiative decay engineering 5:metal-enhanced fluorescence and plasmon emission[J].Journal of Analytical Biochemistry.,2005,337:171-194.
    [13]Volle J N,Ch mbon G,Sayah A,et.al.Enhanced sensitivity detection of protein immobilization by fluorescent interference on oxidized silicon[J].Biosensors and Bioelectronics,2003,19:457-464.
    [14]Zhang J,Malicka J,Gryczynski I,et.al.Oligonucleotide-displaced organic monolayer-protected silver nanoparticles and enhanced luminescence of their salted aggregates[J].Journal of Analytical Biochemistry,2004,330(1):81.-86.
    [15]K.Aslanetal,et.al.Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence[J].Biochemical and Biophysical Research Communications,2006,348:612-617.
    [16]T.Yamaguchi,T.Kaya,H.Takei.Characterization of cap-shaped silver particles for surface-enhanced fluorescence effects[J].Journal of Analytical Biochemistry,2007,364:171-179.
    [17]K.L.Kelly,E.Coronado,L.L.Zhao,et.al.The optical properties of metal nanoparticles:The influence of size,shape,and dielectric environment[J].Journal of Physical Chemistry B,2003,107:668-677.
    [18]H.Raether.Surface plasmons[P].Berlin:Springer,1988.
    [19]吕凤婷,郑海荣,房喻.表面增强荧光研究进展[J].化学进展,2007,19(2/3):256-266.
    [20]Gryczynski I,Malicka J,Holder E,et.al.Effects of metallic silver particles on the emission properties of[Ru(bpy)_3]~(2+)[J].Chemical Physics Letters,2003,372:409-414.
    [21]Parfenov A,Gryczynski I,Malicka J,et al.Enhanced Fluorescence from Fluorophores on Fractal Silver Surfaces[J].Journal Physics Chemical(B).2003,107:8829-8833.
    [22]M.A.Noginov,M.Vondrova,S.M.Williams,et al.Optics A:Pure and Applied Optics(special issue on Metamaterials).2005,7:S219-S229.
    [23]Gersten J I.Theory of energy transfer near metallics[J].Chemical Physics Letters,1984,104(1):31-35.
    [24]I.Gryczynski,J.Malicka,Z.Gryczynski.Radiative decay engineering 4.Experimental studies of surface plasmon-coupled directional emission[J].Analytical Biochemistry,2004,324:170-182.
    [25]Jian Zhang,J R Lakowicz.Enhanced Luminescence of Phenyl-phenanthridine Dye on Aggregated Small Silver.Nanoparticles[J].Physical Chemistry B,2005,109:8701-8706.
    [26]J R Lakowicz,et al.Effects of Metallic Silver Particle on Resonance Energy Transfer Between Fluorophores Bound to DNA[J].Journal of Fluorescence,2003,13:69-79.
    [27]J.Zhang,J R Lakowicz.Model DNA detection by metal enhanced fluorescence from immobilized silver nanoparticles on solid substrate[J].Journal of Physical Chemistry B 2006 110,2387-2392.
    [28]J.Malicka,I.Gryczynski,J.R Lakowicz.DNA hybridization assays using metal-enhanced fluorescence[J].Biochemical and Biophysical Research Communications,2003,306:213-218.
    [29]Alexander P.Demchenko.The future of fluorescence sensor Arrays.Trends in Biotechnology,2005,23:456-460.
    [30]S.A Wade,S.F Collins,G.W.Baxter.Fluorescence intensity ratio technique for optical fiber point temperature sensing.JOURNAL OF APPLIED PHYSICS VOLUME 2003,94:4743-4756.
    [31]Brian D.MacCraith,Colette McDonagh.Enhanced Fluorescence Sensing Using Sol-Gel Materials.Journal of Fluorescence,2002,12:333-342.
    [32]董艳锋,李清山.多孔铝镶嵌82羟基喹啉铝荧光光谱研究.物理学报,2002,51:1645-1648.
    [33]童裳伦,项光宏,黄迪金等.表面活性剂敏化的铽离子荧光探针对氧氟沙星的测定.分析化学,2004,32:619-621.
    [34]张静,陈穗,陈敬华.荧光增强法测定美洛昔康新体系的研究.药物分析杂志,2006,26:219-221.
    [35]潘利华,马世盐等.稀土铕离子标记抗-乙型肝炎表面抗体.分析化学,2000,28:1439-1442.
    [36]朱贵云,司志坤,张斌等.稀土元素荧光增强效应的研究.光谱学与光谱分析,1005,15:109-114
    [1]许金钩,王尊本.荧光分析法(第三版).科学出版社,2006.
    [2]夏之宁等.光分析化学.重庆大学出版社[M],2004,112-113.
    [3]张建成,王夺元.现代光化学.化学工业出版社,2006.
    [4]Zhang Yongxia,Kadir Aslan,et.al.Metal-enhanced fluorescence from copper substrates.Applied Physics Letters,2007,90:173116(1-3).
    [5]T Yamaguchi,T Kaya,H Takei.Characterization of cap-shaped silver particles for surface-enhanced fluorescence effects[J].Journal of Analytical Biochemistry,2007,364:171-179.
    [6]Wu Xiaodong,H Mustafa,et al.Use of surface plasmon-coupled emission for enhancing light transmission through Top-Emitting Organic Light Emitting Diodes.Thin Solid Films,2008,516:1977-1983.
    [7]庄严,郑军伟,周全法.金纳米粒子对染料分子光学性质的影响.稀有金属材料与工程,2007,36:431-434.
    [8]彭爱华,谢二庆,贾昌文等.稀土掺杂多孔硅的蓝光发射.物理学报,2004,53(5):1562-1566.
    [9]潘利华,马世盐等.稀土铕离子标记抗-乙型肝炎表面抗体.分析化学,2000,28:1439-1442
    [10]Zhu Jian,Zhu Ke,et al.Using gold colloid nanoparticles to modulate the surface enhanced fluorescence of Rhodamine B.Physics Letters A,2008(1):17629(1-6).
    [11]H Mustafa,et al.Use of silver nanoparticles to enhance surface plasmon-coupled emission(SPCE).Chemical Physics Letters,2008,452:162-167.
    [12]Joanna Lukomska,et al.Fluorescence Enhancements on Silver Colloid Coated Surfaces.Journal of Fluorescence,2004,14:417-423.
    [13]Ignacy Gryczynski,Joanna Malicka,Zygmunt Gryczynski.Ultraviolet Surface Plasmon-Coupled Emission Using Thin Aluminum Films.Analytical Chemistry,2004,76:4076-4081.
    [14]Wang Ziyao,Chen Zhijian,et.al.Enhancement of Alq3 fluorescence by nanotextured silver films deposited on porous alumina substrates.Applied Physics Letters,2007,90,151119(1-3 ).
    [15]Z.X.Zheng,et al.The enhanced photoluminescence of zinc oxide and polyaniline coaxial nanowire arrays in anodic oxide aluminium membranes.PhysChemComm,2002,5(9),63-65.
    [16]董艳锋,李清山.多孔铝镶嵌8-羟基喹啉铝荧光光谱研究.物理学报,2002,51:1645-1648.
    [17]A.Parfenov,I.Gryczynski,J.Malicka,C.D.Geddes,et.al.Enhanced Fluorescence from Fluorophores on Fractal Silver Surfaces[J].Journal of Physical Chemistry B 2003,107(34):8829-8833.
    [18]K.Aslan,J.R.Lakowicz,and C.D.Geddes.Metal-enhanced fluorescence using anisotropic silver nanostructures:critical progress to date[J].Analytical and bioanalytical chemistry,2005,382:926-933.
    [19]C.D Geddes,A Parfenov,D Roll,et.al.Silver Fractal-Like Structures for Metal-Enhanced Fluorescence:Enhanced Fluorescence Intensities and Increased Probe Photostabilities[J].Journal of Fluorescence,2003,13:267-276.
    [20]张华利,肖桂娜.帽状铝纳米粒子的制备及表面等离子共振特性.无机化学学报,(2007)361-364.
    [21]王晓静,李清山,王佐臣.多孔硅的不同制备方法及其光致发光.发光学报,2003,24(2).
    [22]陈少强,朱建中,朱自强等.高阻硅掩膜选择性生长多孔硅阵列.功能材料与器件学报,2004,10.
    [23]黄瑞清,党建印,黄靖云.纳米多孔铝的制备技术及应用.纳米材料与结构,2002,5:25-27.
    [24]徐春祥,薛清华,巴龙.八羟基喹啉铝在多孔氧化铝纳米孔中的光致发光.科学通报,2001,46:984-987.
    [1]J.N Volle,G Chmbon,A Sayah,et.al.Enhanced sensitivity detection of protein immobilization by fluorescent interference on oxidized silicon[J].Biosensors and Bioelectronics,2003,19:457-464.
    [2]J.R Lakowicz.Radiative decay engineering:Biophysical and Biomedical Applications[J].Journal of Analytical Biochemistry,2001,298:1-24.
    [3]J Zhang,J Malicka,I Gryczynski,et.al.Oligonucleotide-displaced organic monolayer-protected silver nanoparticles and enhanced luminescence of their salted aggregates[J].Journal of Analytical Biochemistry,2004,330(1):81-86.
    [4]K.L Kelly,E Coronado,L.L Zhao,et.al.The Optical properties of Metal nanoparticles:The Influence of Size,Shape,and Dielectric Environment[J].Journal of Physics Chemistry B,2003,107(3):668-677.
    [5]A Parfenov,I Gryczynski,J Malicka,et.al.Enhanced Fluorescence from Fluorophores on Fractal Silver Surfaces[J].Journal of Physics Chemistry B,2003,107:8829-8833.
    [6]J.R Lakowicz.Radiative decay engineering 5:metal-enhanced fluorescenceand plasmon emission[J].Journal of Analytical Biochemistry,2005,337:171-194.
    [7]T Yamaguchi,T Kaya,H Takei.Characterization of cap-shaped silver particles for surface-enhanced fluorescence effects[J].Journal of Analytical Biochemistry,2007,364:171-179.
    [8]吕凤婷,郑海荣,房喻.表面增强荧光研究进展[J].化学进展,2007,19(2/3):256-266.
    [9]J Gersten,A.J Nitzan.Spectroscopic properties of molecules interacting with small dielectric spheres[J].Chemical Physics,1981,75:1139-1152.
    [10]K.D Schicke,M Dubiel,et.al.Comparative study of the Ag nanoparticle formation process in glass[EB/OL].Germany,Tex:Max-Planck-Institute of Microstructure Physics.http://crysta.physik.hu-berlin.de/as2005/pdf/2p_abstract_schicke.pdf.
    [11]P.B Johnson,R.W Christy.Optical Constants of the Noble[J].Metals Physical Review B,1972,6(6):4370-4379.
    [12]G Celep,E Cottancin,J Lerme,et.al.Optical properties of copper clusters embedded in alumina:An experimental and theoretical study of size dependence [J].Physical Review B 2004,70:165409(1-10).
    [13]Ray Krishanu,H.Mustafa,et.al.Aluminum Nanostructured Films as Substrates for Enhanced Fluorescence in the Ultraviolet-Blue Spectral Region[J].Analytical Chemistry,2007,79:6480-6487.
    [14]J.R Lakowicz.Plasmonics in Biology and Plasmon-Controlled[J].Fluorescence Plasmonic,2006,1:5-33.
    [15]Wei Hong,Hao Feng,Xu Hongxing.Polarization Dependence of Surface-Enhanced Raman Scatteringin Gold Nanoparticle-Nanowire Systems[J].Nano Letters,2008,8(8):2497-2502.
    [16]梁燕萍,史启祯,吴振森等.纳米金属微粒M-A1203介孔复合薄膜的光谱特性[J].化学学报,2004,62(16):1524-1528.
    [17]G.W Ford,W.H Weber.Electromagnetic interactions of molecules with metal surfaces[J].Physics Report,1984,113:195-287.
    [18]J.Yguerabide,E.Yguerabide.Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications[J].Analytical Biochemistry,1998,262:157-176.
    [19]J.Yguerabide,E.Y guerabide.Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications[J].Analytical Biochemistry,1998,262:137-156.
    [20]P.C Das,A.Puri.Energy flow and fluorescence near a small metal particle[J].Physical Review B,2002,65:155416(1-8).
    [1]S.Fan,N.R Franklin,et.al.Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emissi on Properties[J].Science,1999,283:512.
    [2]杨阳,李菡滢,陈慧兰等.嵌入硅基多孔氧化铝中的荧光染料的发光性质研究[J].高等学校化学学报,2002,23(5):768-771.
    [3]David Avniv,Dacid Levy,Renata Reisfeld.The nature of the silica cage as reflected by spectral change and enhanced photostability of trapped Rhodamine6G[J].Journal of Physics Chemcial,1984,88:5956-5959.
    [4]李宇.阳极氧化铝中高度有序纳米孔阵列结构.稀有金属快报,2007,26(2):44-45.
    [5]J.N Israelachvili.Intermolecular and Surface Forces[M].New York:Academic press,1985.
    [6]Kazuhito Hashimoto,Masahiro Hiramoto,Tadayoshi Sarata.Poto- induced electron transferred from absorbed rhodamine B to oxide semi-conductor substrates in uacuo:semiconductor dependence[J].Chemical Physics Letters,1988,148(2,3):215-220.
    [7]Li Peng,Li Qingshan,et.al.Photoluminescence and its decay of the dye/poroussilicon composite system[J].Journal of Applied Physics,1996,80(1):490-494.
    [8]何锡文,史长虹等.罗丹明6G的溶液状态和荧光特性的研究.分析化学,1993,21(9):1008-1012.
    [9]陈昌民,孙孟嘉,苏大春.染料激光器.第2版,科学出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700