流固两相流中固相参数测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流固两相流动在国民经济的各个领域有着广泛的应用,其相关参数的测量对于设备的设计和运行都起着至关重要的作用。目前,对于流场透明度低、高浓度、固相颗粒大小分布不均匀的混合流体的测量,收获甚少。本文在已有研究的基础上,自行设计一套用于测量流固两相流相关参数的系统——直管密度计测量系统,并对其进行优化设计。在此基础上,对四种具有代表性的混合溶液进行测量,获得了一些基础性的数据。进行的主要工作及取得的成果如下:
     1、对目前两相流的研究和处理方法及两相流参数检测的现状和发展进行了简要介绍,阐述了流固两相流的流动理论,对流固两相流相关参数指标进行了分析。
     2、以流固两相流体力学为基础,研究直管密度计测量段中混合流体的运动,从而推导出混合流体在管道中运动的数学模型方程。
     3、根据现行的测量流固两相流相关参数存在的问题,设计并加工、组装了直管密度计测量系统,对其进行了初步测试。
     4、利用直管密度计测量系统的三种方案对清水介质进行了测量,通过试验结果得出:直管测量段采用内外管形式,并配有压力补偿程序的方案测量效果最理想。测量的密度基本不随时间和变频器的频率的变化而变化,误差和波动范围都能控制在1%以下。
     5、利用优化后的实验方案,对盐水溶液、高岭土溶液、锰矿浆溶液和泥沙溶液进行了实际测量。测量结果显示,系统在短时间内对混合流体的测量均可达到很好的效果。长时间测量时,混合流体的温度会因为浆体泵的不断做功而升高,使橡胶柔性接头有所膨胀,内管受到的浮力增大,称重传感器感受到的压力减小,密度随之减小。当采用温度补偿之后,可以有效地避免温度的变化对测量带来的影响。
     6、将优化后的实验方案应用到疏浚行业实际进行测量,并与钴60密度计和取样测量的值进行对比,结果表明:实际取样测得的泥浆平均密度与直管密度计采集的泥浆平均密度值基本接近,相对误差很小;直管密度计采集到的数据曲线与钴60密度计采集到的数据曲线变化趋势基本一致。测试结果完全符合工业生产的精度和稳定度要求,具有很好的推广应用价值。
Liquid-solid two-phase flow has been widely applied to the field of national economics, and the relative parameters are playing a vital role in the design and operation of the equipment. At present, the measurement results on the mixed flow are limited for their low transparency, high concentration and non-uniform distribution of the solid-phase particle size. In this paper, based on the existing study, a straight pipe density meter measurement system was designed and optimized for measuring the relative parameters of liquid-solid two-phase flow. Acquiring some basic data, four representatie mixed fluids were measured. The main work and achievements are as follows:
     1、Made a brief introduction about the current research of two phase flow, as well as the research status and development of the parameters testing, expounding the fluid-solid two-phase flow theory and making an analysis about the related parameters index of fluid-solid two-phase flow.
     2、Based on the fluid mechanics, studied the movement of mixed liquid in measuring section of the straight density meter to deduce the mathematical model of the equation of the mixed fluid in the pipeline.
     3、According to the current problems in measuring the relative parameters of fluid-solid two-phase flow, designed, improved and assembled a straight density meter measure system to make a preliminary test.
     4、The water media in three schemes was tested by using straight pipe density meter measurement system. From the experiment result, it was concluded that the idealest measurement method is measuring section of pipe in inner-outer form, equipping with pressure compensation. The density is independent of time and frequency, and the error and fluctuating range can be controlled in less than 1 percent.
     5、Using the optimized measurement system to measure the Saline solution, gaolin solution, manganese ore pulp solution and the silt solution, it showed that the system of measuring the mixed flow could achieve good results in a short time. For a long time, the temperature of the mixed flow increased with the slurry pump constantly working that made the rubber flexible connection inflated and increased the buoyancy of tube and decreased the pressure which suffered by weighing transducer.
     6、The optimized experiment scheme was applied to measure the dredge industry. Comparing with the sample results measured by cobalt 60 density meter, the average density of mud is approximate to the result of straight pipe; the curve variation of the data collected by density meter is consistent with that of cobalt 60 density meter. Test results are fully satisfied with the requirement of accuracy and stability in industrial production, which is worth to apply.
引文
[1]林宗虎,王栋,王树众等.多相流的近期工程应用趋向[J],西安交通大学学报,2001,35(9):886-890
    [2]刘大有.两相流体动力学[M].北京:科学技术出版社,1994
    [3]李海青.两相流参数检测及应用[M].杭州:浙江大学,1991
    [4]姚恩涛,周克印.煤粉粒径分布在气固两相流场中的测试技术研究[J].南京航空航天大学学报,2005,37(3):341-344
    [5]谢颖奎.测尘仪原理与应用[J].中国仪器仪表,2005,7:44-48
    [6]李卫东,李铁军,刘华等.HG-HC智能烟尘粉尘测量仪[J].仪器仪表学报,2004,25(4)
    [7]尚丽平,张娜,马凤斌.烟尘浓度和粒度的消光法测量研究[J].传感技术学报,2004,2:289-291
    [8]赵延军,王式民,穆宁等.光散射平均值法在线监测颗粒排放物浓度的研究[J].中国电机工程学报,2004,11(24):217-221
    [9]马凤英,翟波,赵永林等.光电式粉尘传感器的模式修补反演算法[J].传感器与微系统,2006,25(6):69-74
    [10]蔡小舒,欧阳新等.电厂煤粉在线实测研究[J].工程热物理学报,2002,11(23):753-756
    [11]吴智群,巨林仓,师建斌等.电站锅炉输粉管道煤粉浓度动量法测量技术研究[J].热力发电,2004(11):28-31
    [12]范卫东,章明川,何磊等.管道内气固两相流颗粒浓度和风速测量方法的试验研究[J].仪器仪表学报,2003,24(1):13-18
    [13]刘琳智,徐通模,黎明照等.锅炉输粉管道煤粉浓度测量试验研究[D].研究论文热力发电,2004
    [14]杨兴森,王家新,郝卫东等.乏气送粉锅炉一次风煤粉浓度测量方法的试验研究[J].热力发电,2004(02):38-40
    [15]崔晓钢,陈鸿伟,李永华.煤粉浓度测量方法研究[J].仪器仪表学报,2003,24
    [16]尹静,杨兴森,王家新等.一次风煤粉浓度的测量方法[J].山东电力技术,2002,6
    [17]高志强.弯管流量计测量原理及应用[J]. Technology&Application.2005,7:23-26
    [18]李海青.两相流参数检测及应用[M].杭州:浙江大学,1991
    [19]张玉平,金锋,张岩等.两相流相浓度检测技术的研究[J].北京理工大学学报,2002,22(3):383-386
    [20]倪晋仁,王光谦.高浓度恒定固液两相流运动机理探析理论[J].水利学报,2000,5:22-26
    [21]J. W. Murdock, Two-phase flows measurement with orifices, Trans. Amer. Soc. Mech. Engrs, Ser. D. J. Basic Eng.,1962,84()
    [22]林宗虎.气液固多相流测量[M].北京:中国计量出版社,1988
    [23]Meng Jianbo. The new approach to the vortex flowmeter, Int. Symposium on Measuring Technique for Multiphase Flow,1995:348-355
    [24]吴新杰.气固两相流参数测量方法研究[D].[博士学位论文],东北大学,2000
    [25]彭黎辉,张宝芬,姚丹亚.基于模糊神经元网络的两相流流型辨识方法[J].模式识别与人工智能,1997,100
    [26]Ou Jing, Zhou Zequn, Li Haiqing, Application of artificial neural network to measurement of gas-solid two phase flowrate, Proc. Of 3rd Int. Symposium on Multiphase Flow and Heat Transfer, 1994.1364-1368
    [27]董峰.电阻层析成像技术在两相管流测量中的应用[D].[博士学位论文],天津:天津大学2002
    [28]马艺馨.电阻层析成像技术及其在气象两相泡状流检测中的应用[D],[博士学位论文],天津:天津大学,1999
    [29]王俊.电导式纵向多极阵列油/水两相流测量方法研究[D].[硕士论文],天津大学,2003
    [30]高晋占.参数估计法测量两相流流速[J].清华大学学报,1992,320
    [31]刘磊,周芳德.气液两相流流量的互相关测量[J].计量学报,1994,150
    [32]宿成基.梯度相关法测量两相流流量的精度与离散性研究[J].计量学报,1993,140
    [33]吴望一.流体力学[M].北京:北京大学出版社.1981
    [34]章梓雄,董曾南.粘性流体力学[M].清华大学出版社,第一版,1998
    [35]于利伟,朱汉华等.多相流试验台管道上弯管内流场分析[J].船海工程,2007,360:41-43
    [36]林建忠.流-固两相拟序涡流及稳定性[M].清华大学出版社,第一版,2003
    [37]Hewitt G F, Measurement of two-phase flow parameters, Academic Press, London,1978
    [38]吴新杰,气固两相流参数测量方法研究[D],[博士学位论文],东北大学,2000
    [39]高晋占(Gao Jinzhan).参数估计法测量两相流流速(Two-phase flow rate measurement using parameter estimation method)[J].清华大学学报(Journal of Tsinghua University),1992, 32(1):93-98
    [40]宿成基(Su Chengji)梯度相关法测量两相流流量的精度与离散性研究(Research on the accuracy and dispersion in flow rate measurement of biphase flow by correlation gradient method)[J].计量学报(Acta Metrologica Sinica),1993,14(2):135-139
    [41]王俊.电导式纵向多极阵列油/水两相流测量方法研究[D],[硕士论文],天津大学,2003
    [42]金锋,刘仁学等.差压-浓度法测量气/固两相流质量流量[J].东北大学学报(自然科学版),1999,200:461-463
    [43]吴志群,巨林仓等.电站锅炉煤粉管道煤粉浓度动量法测量技术研究[J].热力发电,2004(11):28-31
    [44]张锐,杨善让等.在两相流中利用动力学参数测量煤粉浓度的研究[J].长春理工大学学报,2004.270:41-43
    [45]倪晋仁,王光谦.高浓度恒定固液两相流运动机理探析:Ⅰ.理论[J].水利学报.2000.(5):22-25
    [46]高经武,赵凤华.激光在浊度测量中的应用[J].激光技术,1999,23(4):252
    [47]林宗虎.液固多相流测量[M].北京:中国计量出版社,1988
    [48]B. Mehrdadi, B. Kaghazchi and M. S. Beck, Non-contacting level measurement of irregular surfaces using coded ultrasound and cross correlation analysisi, J. Phys. E:Sci. Instrum.,1982,15: 367-372
    [49]H. Braun, M. Fug and G. Schneider, Theory and application of an alternative correlation flowmeter, Chem. Eng. Technol,1987,10:353-360
    [50]L. A. Xu, R. G Green and M. S. Beck, The pulsed ultrasonic cross-correlation flowmeter for two-phase flow measurement, J. Phy. E:Sci. Instrum.,1988,21:406-414
    [51]孔祥言.高等渗流力学[M].中国科学技术大学出版社,1999
    [52]马良军.动载作用下管内两相流流动特性实验研究[D],[硕士论文],南京航空航天大学,2007
    [53]张桂香.计算机控制技术[M].西南交通大学出版社,1999,():172-173
    [54]张立科.单片机典型模块设计实例导航[M].人民邮电出版社,2004,():139-144
    [55]杨绪东,刘一民.家用电器与工业控制实用电路精选[M].化学工业出版社,2003,():63-64
    [56]稻叶保.振荡电路的设计与应用[M].科学出版社,2004,():122
    [57]阎石,数字电路基础[M].高等教育出版社,2001,():258
    [58]砂泽学.图解放大电路[M].商福昆.科学出版社,20020:440-442
    [59]沙占友.智能传感器系统设计与应用[M].电子工业出版社,2004,():401-402
    [60]傅德薰,流体力学数值模拟[M].国防工业出版社.1993.1:35-267
    [61]王福军.计算流体动力学分析—CFD软件原理与应用[M].清华大学出版社.2004.09
    [62]李勇等.介绍计算流体力学通用软件—FLUENT[M].水动力学研究与进展,Ser. A, Vol.16, No,2, June,2001
    [63]左东启.模型实验量测技术[M].水利水电出版社,1984,():126-130
    [64]韩占忠,王敬等.FLUENT流体工程仿真计算与应用[M].北京理工大学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700