聚烯烃弹性体自由基历程改性的化学流变学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在聚合物反应加工过程中,聚合物材料及其它组成物的各尺度内部结构经历着复杂的物理与化学变化,构成了强烈的非线性问题。除了化学反应本质因素外,外加流场的作用影响在聚合物加工过程中也是十分重要的,这使得聚合物熔体反应时的化学流变学是需解决的核心科学问题之一。流场对于聚烯烃反应加工的影响显而易见,但对于流场作用下的自由基反应机理与动力学理论体系以前并没有建立,这是聚合物反应加工当前的一个研究工作热点与前沿课题,具有重要的理论意义和重要的工程应用背景。本文以聚烯烃弹性体(Polyolefin elastomer, POE)熔体的均相自由基反应过程为研究对象(POE/DCP),通过化学流变学方法,对该过程中流场对反应机理、反应速率、反应物大分子链拓扑结构的影响开展了研究,发现了静态条件下POE自由基反应的一些新的机理与动力学历程,提出了简单剪切流场中POE自由基反应机理,揭示了流场作用下大分子链运动对化学反应的影响,创立了一种表征长支链聚烯烃分子结构的流变学方法,初步实现了通过反应加工流场控制POE产物拓扑结构。本论文主要研究内容及结果如下:
     1.静态下通过顺磁共振方法有效识别了POE/过氧化物反应体系中各种自由基信号的超精细结构与强度的变化,首次发现了对应于叔碳自由基的7线EPR信号,得出了反应过程中伯碳自由基的出现及其持续的时间强烈依赖于聚烯烃中共聚单体含量的结论;但是除偶合与歧化双基终止反应外,并没有观测到降解反应的存在。结合EPR数据和在线流变测量对整个反应过程进行了动力学过程分析,运用大分子反应动力学理论,分析得出了偶合与歧化反应速率系数随体系粘度增大而减小的动力学方程。研究结果表明,反应受大分子链扩散过程控制,高浓反应体系的偶和速率系数与粘度之间的标度关系与低于理论预测值,系为很高的体系粘度降低反应链扩散系数所致。
     2.通过化学流变学方法以及GPC,NMR等表征手段提出了简单剪切流场(瞬态剪切和振荡剪切)中POE/过氧化物的反应机理,并在相关大分子反应动力学理论的基础上半定量地揭示了简单剪切的作用机制:存在临界剪切流场强度阀值,低于此值只发生偶合反应,高于此值体系除偶合反应外还会发生降解反应;降解反应发生与否由两断裂产物之间的相对距离决定,即受对流与扩散控制;降解反应首先在长支化的偶合产物上发生,随着剪切流场的强度增强,线形链发生断裂降解的几率增高,而长支链的有效断裂点越来越接近于长支化点;当大分子链的两叔碳原子中间仅相隔一个CH2单元的叔碳自由基生成时,容易发生降解反应,这种断裂降解源结构的浓度直接影响降解反应的临界剪切流场强度阀值。
     3.复杂加工流场对POE/DCP长支链产物拓扑结构的调控:在密炼机中对POE进行过氧化物改性,逼近反应加工实际过程,在温度补偿下考察加工流场对产物拓扑结构的影响。根据降解反应首先发生在长支链(Long Chain Branching, LCB)上的结论,可由流场强度来控制LCB产物的支链长度和含量;当长支链断裂后其长度不再足以发生缠结时,即表示该长支链退化为线形链,可以通过调控流场改变LCB支链长度以及LCB含量。虽然转速这一参量不能很好的描述具体的加工流场,但对于聚合物链的裁剪还是具有指导性意义。另外加工流场对LCB性质仅具有一个可调控的窗口,加工过程中不同流场的实施形式能够更加细化产物中的LCB水平,升高温度并不会促进降解反应。
     4.通过非线性流变实验和傅立叶变换流变学对含长支链的反应产物做出了表征分析,在连续性cDCR-CS理论模型的基础上定义了一种全新的与聚合物链的分子量及分子量分布无关的量化长支链LCB结构因子。与涉及到稀溶液性质所定义的LCB结构因子相比,具有操作性更为便捷简单的优势。
     5.通过目前能较为成功预测聚合物线性粘弹性的“Branch on branch”(BOB)理论模型,考察了对称星形、不对称星形、“H”形、梳形、以及Cayley tree形聚合物的vGP图特征,以及分子链参数对其的影响,并将各种拓扑结构的聚合物的特征转变与此前报道的实验值分别进行比较,结果吻合得很好。在勾勒出长支链聚合物的vGP拓扑图的基础上,提出了判断长支链聚合物拓扑结构的具体步骤,初步建立了由线性粘弹性来表征长支链聚合物的流变学方法。但是对于梳形聚合物与不对称星形聚合物来说,在一定范围内单凭线性粘弹性是难以进行区分的,这表明线性流变学在表征长支链聚合物时是存在局限的。
All structures on different scales inside polymer materials experience various complicated physical and chemical alterations during the reacting processing, which is ready to form a heavily nonlinear problem in substance. Besides the chemical reaction, the effect of applied flow field is more important, which makes chemorheology, one important hotspot of the present researches about reacting processing of polymer, to be the core issue to resolve. So it is very essential for us to reveal how the chemical raction of polymer proceeds under the flow; however the mechanism and the kinetics of polymer reaction in the flow field are unclear so far. In this thesis, the reaction behavior of polyolefin elastomer (POE) via the free radical mechanism is focused, and the purpose is to investigate the role that the flow field plays in the reaction mechanism, the reaction rate and the topological structure of the products of the macromolecular reactions. This doesn’t only has the engineering background but also the theoretical significance. Firstly, some new reaction mechanisms of POE initiated by peroxides (POE/DCP) in static state were discovered and the rheokinetic analysis was carried out which was different from what the researchers had already acquired; Secondly, the mechanism under simple shear flow was proposed and the effect of polymer chains’movements on the chemical reaction was revealed; Finally, the feasibility of preliminary tailoring of LCB through complex flow field was evaluated in the torque rheometer with the compensation of temperature. And a new long chains branched (LCB) index (DLCB) was defined from nonlinear oscillatory shear was founded, which could be a map to quantify LCB level by Fourier Transform Rheology (FTR); The main content and the results are as followed:
     1. Peroxide-initiated reaction of POE was studied at elevated temperatures using an on-line electron paramagnetic resonance (EPR) spectrometer. It is clear that the reaction process experienced the free radical mechanisms. Notable changes in signal hyperfine structures, the intensities and the lifetimes of the radicals were recognized. A kind of 7-line EPR signal corresponding to the ternary carbon radical was discovered for the first time. Whether the primary carbon radical appears and the lifetime are both dependent on the co-monomer content of POE. A rheokinetic analysis was made by correlating the EPR data and the rheogical responses recorded by the rotational rheometer. The kinetic coefficients of coupling and disproportionating reactions are not fixed, but the functions of the reacting time or the system viscosity, which indicates the reaction is diffusion controlled. The scaling between termination coefficient and viscosity is lower than what de Gennes predicted on the base of theory, which should be induced by the low diffusion coefficient for such system with plenty of reactive sites.
     2. The mechanism of reaction of POE initiated by peroxides under the simple shear, including transient shear flow and oscillatory shear flow, was paid attention to, which’s the important instruction for the actual reacting processing. There’s an intensity threshold of shear flow, above which degrading behavior throughβ-scission of the ternary carbon macroradicals could be observed besides the coupling reaction. Degradation depentent on the distance between the two parts created byβ-scission is controlled by diffusion and the shear flow field imposed upon the reaction system. Moreover, degradation starts on the products of long chain branching (LCB) and the probability of degradation on linear chains increases with the intensity of shear flow. Taking into consideration that the key factor favoring tertiary carbons as sites for scission was the distance between branches, the chain scission is possible when there were two tertiary carbons in a chain separated by only one carbon atom, which has been confirmed by 13C-NMR spectroscopy. The concentration of such structures affect the intensity threshold of shear flow for degradation.
     3. The feasibility of preliminary tailoring of LCB through complex flow field was evaluated in the torque rheometer, for the reaction of melt POE with peroxides at elevated temperatures. With the compensation of temperature, the strength of complex shear flow could be the only factor affecting the reaction kinetics and mechanism. According to the fact that degradation starts on LCB firstly, the length and the concentration of long chain branching can be controlled by the intensity of flow field. What’s more, a certain amount of LCB degraded to be linear chains again due to the scission approaching the branching point in intense mixing condition. Although the rotational speed can not represent the complex flow field exactly, all the characterizations can give the significant instruction to tailor the polymer architecture more or less. In addition, there’s only one adjustable window of the topological structure and content of LCB here through altering the processing flow field. High temperature can not promote the degradation.
     4. One new LCB index (DLCB) was defined from nonlinear oscillatory shear followed by Fourier Transform Rheology (FTR) on the base of cDCR-CS model, through which a map to quantify LCB level could be founded. This index is independent on the molecular weight and the distribution of polymer chains, and is more convenient compared with the one defined from the characters of polymer melt rheology and diluted solution.
     5. The characteristics of vGP plot of various long chains branching, including symmetric star, asymmetric star, H-shaped, comb and Caylay tree polymers, have been evaluated by BOB model, which could predict the linear viscoelasticity of polymer very successfully so far. The characteristic transitions of various LCB in vGP polt were compared with the ones acquired from the experimental data in publishments and good agreement has been obtained. The protocol for characterization of the topological structure of LCB was raised according to the vGP map of topology. However, it is difficult to distinguish the asymmetric star and comb polymers only by the linear viscoelasticity.
引文
[1] Andrews R D, Toboslsky A V, Hauson E E, "The theory of permanent set at elevated temperatures in natural and synthetic rubber vulcanizates ", J. Appl. Phys. 1946, 17(5): 352-361
    [2] Osthoff R C, Bueche A M, Grubb W T, "Chemical Stress-Relaxation of Polydimethylsiloxane Elastomers", J. Am. Chem. Soc. 1954, 76(18): 4659-4663
    [3] Beevers R B, "Stress relaxation in crosslinked poly(ethylene tetrasulfide)", J. Colloid Sci. 1964, 19(1): 40-49
    [4] Murakami K, Ono K, Chemorheology of Polymers, Amsterdam: Elsevier Scientific Pub. Co. , 1979
    [5] Cioffi M, Hoffmann A C, Janssen L P B, "Rheokinetics and the influence of shear rate on the trommsdorff (Gel) effect during free radical polymerization", Polym. Eng. Sci. 2001, 41(3): 595-602
    [6] Cherkinskii Y S, "Possibility of rheokinetic study of polymerization and of depolymerization reactions", Polym. Sci., USSR 1977, 19(3): 524-532
    [7] Malkin A Y, Kulichikhin S G, Rheokinetics, Heidelberg: Huthig & Wepf., 1996
    [8] Mours M, Winter H H, "Time-resolved rheometry", Rheol. Acta 1994, 33(5): 385-397
    [9] Murakami K, Takasugi S, "Chemorheological studies on polymer degradation ", J. Appl. Polym. Sci. 1977, 21(1): 55-63
    [10] Clayton A, Chemorheology of Thermosetting Polymers, Washington, D. C.: American Chemical Society, 1983
    [11] Dubois C, Ait-Kadi A, Tanguy P A, "Chemorheology of polyurethane systems as predicted from Monte Carlo simulations of their evolutive molecular weight distribution", J. Rheol. 1998, 42(3): 435-452
    [12] O'Brien D J, Mather P T, White S R, "Viscoelastic Properties of an Epoxy Resin during Cure ", J. Compos. Mater. 2001, 35(10): 883-904
    [13] Peng W, Riedl B, "The chemorheology of phenol-formaldehyde thermoset resin and mixtures of the resin with lignin fillers", Polymer 1994, 35(6): 1280-1286
    [14] Serrano E, Tercjak A, Ocando C, et al., "Curing behavior and final properties of nanostructured thermosetting systems modified with epoxidized styrene-butadiene linear diblock copolymers", Macromol. Chem. Phys. 2007, 208(21): 2281-2292
    [15] Sekkar V, Venkatachalam S, Ninan K N, "Rheokinetic studies on the formation of urethane networks based on hydroxyl terminated polybutadiene", Eur. Polym. J. 2002, 38(1): 169-178
    [16] Sekkar V, Krishnamurthy V N, "Kinetics of copolyurethane network formation", J. Appl. Polym. Sci. 1997, 66(9): 1795-1801
    [17] Mounif E, Bellenger V, Tcharkhtchi A, "Time-Temperature-Transformation(TTT) diagram of the isothermal crosslinking of an epoxy/amine system: Curing kinetics and chemorheology", J. Appl. Polym. Sci. 2008, 108(5): 2908-2916
    [18] Roberts M C, Mahalingam A, Hanson M C, et al., "Chemorheology of phenylboronate-salicylhydroxamate cross-Linked hydrogel networks with a sulfonated polymer backbone", Macromolecules 2008, 41(22): 8832-8840
    [19] Dhavalikar R, Xanthos M, "Monitoring the evolution of PET branching through chemorheology ", Polym. Eng. Sci. 2004, 44(3): 474-486
    [20] Ivankovic M, Incarnato L, Kenny J M, et al., "Curing kinetics and chemorheology of epoxy/anhydride system ", J. Appl. Polym. Sci. 2003, 90(11): 3012-3019
    [21] O'Brien D J, White S R, "Cure kinetics, gelation, and glass transition of a bisphenol F epoxide ", Polym. Eng. Sci. 2003, 43(4): 863-874
    [22] Karkanas P I, Partridge I K, "Cure modeling and monitoring of epoxy/amine resin systems. II. Network formation and chemoviscosity modeling ", J. Appl. Polym. Sci. 2000, 77(10): 2178-2188
    [23] Rochery M, Lam T M, "Chemorheology of polyurethane. I. Vitrification and gelation studies ", J. Polym. Sci. Part B: Polym. Phys. 2000, 38(4): 544-551
    [24] Pichaud S, Duteurtre X, Fit A, et al., "Chemorheological and dielectric study of epoxy-amine for processing control", Polym. Int. 1999, 48(12): 1205-1218
    [25] Sun X D, Toth J, Lee L J, "Chemorheology of poly(urethane/isocyanurate) formation ", Polym. Eng. Sci. 1997, 37(1): 143-152
    [26] Hesekamp D, Pahl M H, "Curing effects on viscosity of reactive epoxy resin adhesives ", Rheol. Acta 1996, 35(4): 321-328
    [27] Winter H H, Morganelli P, Chambon F, "Stoichiometry effects on rheology of model polyurethanes at the gel point", Macromolecules 1988, 21(2): 532-535
    [28] Lelli G, Terenzi A, Kenny J M, et al., "Modelling of the chemo-rheological behavior of thermosetting polymer nanocomposites", Polym. Compos 2009, 30(1): 1-12
    [29] Zhamu A, Jana S, Salehi-Khojin A, et al., "Chemorheology of reactive graphitic nanofiber-reinforced epoxy as a composite matrix ", Compos. Interfaces 2007, 14(3): 177-198
    [30] Kim J T, Martin D, Halley P, et al., "Chemorheological studies on a thermoset PU/clay nanocomposite system ", Compos. Interfaces 2007, 14(5-6): 449-465
    [31] Dean D, Walker R, Theodore M, et al., "Chemorheology and properties of epoxy/layered silicate nanocomposites", Polymer 2005, 46(9): 3014-3021
    [32] Altmann N, Halley P J, "The effects of fillers on the chemorheology of highly filled epoxy resins: I. Effects on cure transitions and kinetics ", Polym. Int. 2003, 52(1): 113-119
    [33] Cai J J, Salovey R, "Chemorheology of model filled rubber compounds during curing ", Polym. Eng. Sci. 2001, 41(11): 1853-1858
    [34] Joshi P G, Leonov A I, "Modeling of steady and time-dependent responses in filled, uncured, and crosslinked rubbers ", Rheol. Acta 2001, 40(4): 350-365
    [35] Chiou B S, Raghavan S R, Khan S K, "Effect of colloidal fillers on thecross-linking of a UV-curable polymer: Gel point rheology and the Winter-Chambon criterion", Macromolecules 2001, 34(13): 4526-4533
    [36] Dispenza C, Carter J T, McGrail P T, et al., "Cure behaviour of epoxy resin matrices for carbon fibre composites ", Polym. Int. 1999, 48(12): 1229-1236
    [37] Cioffi M, Ganzeveld K J, Hoffmann A C, et al., "Rheokinetics of linear polymerization. A literature review", Polym. Eng. Sci. 2001, 42(12): 2383-2392
    [38] Cioffi M, Ganzeveld K J, Hoffmann A C, et al., "A rheokinetic study of bulk free radical polymerization performed with a helical barrel rheometer", Polym. Eng. Sci. 2004, 44(1): 179-185
    [39] Cioffi M, Hoffmann A C, Janssen L P B, "Instabilities in free radical polymerization", Nonlinear Anal. 2001, 47(2): 897-906
    [40] Malkin A Y, Kulichikhin S G, Kerber M L, et al., "Rheokinetics of curing of epoxy resins near the glass transition ", Polym. Eng. Sci. 1997, 37(8): 1322-1330
    [41] Navarchian A H, Picchioni F, Janssen L P B, "Rheokinetics and effect of shear rate on the kinetics of linear polyurethane formation", Polym. Eng. Sci. 2005, 45(3): 279-287
    [42] Malkin A Y, "Rheology in polymerization processes", Polym. Eng. Sci. 1980, 20(15): 1035-1044
    [43] Malkin A Y, Kulichikhin S G, Emel'yanov D N, et al., "Rheokinetics of free-radical polymerization", Polymer 1984, 25(6): 778-784
    [44] Bulai A K, Klyuchnikov V N, Urman Y G, et al., "Kinetics of polysulphone synthesis: nuclear magnetic resonance spectroscopy and rheological investigation", Polymer 1987, 28(8): 1349-1357
    [45] White P R J, "Time-temperature superpositioning of viscosity-time profiles of three high temperature epoxy resins", Polym. Eng. Sci. 1974, 14(1): 50-57
    [46] Castro J M, Macosko C W, Perry S J, "Viscosity changes during urethane polymerization with phase seperation", Polym. Commun. 1984, 25(3): 82-87
    [47] Liu M G, Zhou C X, Yu W, "Rheokinetics of the Cross-linking of Melt Polyethylene Initiated by Peroxide", Polym. Eng. Sci. 2005, 45(4): 560-567
    [48] Liu M G, Yu W, Zhou C X, et al., "Conversion measurement in polyethylene/peroxide coupling system under steady shear flow ", Polymer 2005, 46(18): 7605-7611
    [49] Martin J S, Laza J M, Morras M L, et al., "Study of the curing process of a vinyl ester resin by means of TSR and DMTA", Polymer 2000, 41(11): 4203-4211
    [50] Liu M G, Yu W, Zhou C X, "Kinetic model for diffusion-controlled intermolecular reaction of homogenous polymer under steady shear ", Chinese J. Polym. Sci. 2006, 24(2): 135-138
    [51] Yamazaki T, Seguchi T, "ESR study on chemical crosslinking reaction mechanisms of polyethylene using a chemical agent", J. Polym. Sci. Part A: Polym. Chem. 1997, 35(2): 270-284
    [52] Yamazaki T, Seguchi T, "Electron spin resonance study on chemicalcrosslinking reaction mechanisms of polyethylene using a chemical agent. V. Comparison with polypropylene and ethylene-propylene copolymer ", J. Polym. Sci. Part A: Polym. Chem. 2000, 38(18): 3383-3389
    [53] Yamazaki T, Seguchi T, "Electron spin resonance study on chemical-crosslinking reaction mechanisms of polyethylene using a chemical agent. VI. Effect of alpha-methyl styrene dimer ", J. Polym. Sci. Part A: Polym. Chem. 2001, 39(13): 21512156
    [54] Zhou W X, Zhu S P, "ESR Study of Peroxide-Induced Cross-Linking of High Density Polyethylene", Macromolecules 1998, 31(13): 4335-4341
    [55] Zhou W X, Zhu S P, "ESR study on peroxide modification of polypropylene ", Ind. Eng. Chem. Res. 1997, 36(4): 1130-1135
    [56] Camara S, Gilbert B C, Meier R J, et al., "EPR and modelling studies of hydrogen-abstraction reactions relevant to polyolefin cross-linking and grafting chemistry ", Org. Biomol. Chem. 2003, 1(7): 1181-1190
    [57] Camara S, Gilbert B C, Meier R J, et al., "EPR studies of peroxide decomposition, radical formation and reactions relevant to cross-linking and grafting in polyolefins ", Polymer 2006, 47(13): 4683-4693
    [58] Yu Q, Zhu S P, "Peroxide crosslinking of isotactic and syndiotactic polypropylene", Polymer 1999, 40(11): 2961-2968
    [59] Masaki K, Ohkawara S, Hirano T, et al., "Kinetic study of the crosslinking reaction of 1,2-polybutadiene with dicumyl peroxide in the absence and presence of vinyl acetate", J. Polym. Sci. Part A: Polym. Chem. 2004, 42(17): 4437-4447
    [60] Sajkiewicz P, J. P P, "Peroxide crosslinking of linear low-density polyethylenes with homogeneous distribution of short chain branching", J. Polym. Sci. Part A: Polym. Chem. 1995, 33(5): 853-862
    [61] Sajkiewicz P, J. P P, "Change in sol fraction during peroxide crosslinking of linear low-density polyethylene with homogeneous distribution of short chain branching", J. Polym. Sci. Part A: Polym. Chem. 1995, 33(5): 949-955
    [62] Andersson L H U, Gustafsson B, Hjertberg T, "Crosslinking of bimodal polyethylene", Polymer 2004, 45(8): 2577-2585
    [63] Romani F, Corrieri R, Braga V, et al., "Monitoring the chemical crosslinking of propylene polymers through rheology", Polymer 2002, 43(4): 1115-1131
    [64] Liao H T, Wu C S, "Study on crosslinking of polyethylene-octene elastomer with dicumyl peroxide", Polym. Plast. Tech. Eng. 2003, 42(1): 1-16
    [65] Pedernera M N, Sarmoria C, Valles E M, et al., "An improved kinetic model for the peroxide initiated modification of polyethylene", Polym. Eng. Sci. 1999, 39(10): 2085-2095
    [66] Kubo J, Otsuhata K, Ikeda S, et al., "Electron-induced crosslinking of polypropylene with the addition of hydrogen-donating hydrocarbons", J. Appl. Polym. Sci. 1997, 64(2): 311-319
    [67] Gloor P E, Tang J, Kostanska A E, et al., "Chemical modification of polyolefins by free radical mechanisms: a modelling and experimental study of simultaneous random scission, branching and crosslinking", Polymer 1994,35(5): 1012-1030
    [68] Braun D, Richter S, Hellmann G P, et al., "Peroxy-initiated chain degradation, crosslinking, and grafting in PP-PE blends", J. Appl. Polym. Sci. 1998, 68(12): 2019-2028
    [69] Li J Q, Peng J, Qiao J L, et al., "Effect of gamma irradiation on ethylene-octene copolymer", Radiat. Phys. Chem. 2002, 63(3-6): 501-504
    [70] Perez C J, Cassano G A, Valles E M, et al., "Rheological study of linear high density polyethylenes modified with organic peroxide", Polymer 2002, 43(9): 2711-2720
    [71] Johnston R T, "Monte Carlo simulation of the peroxide curing of ethylene elastomers", Rubber Chem Technol. 2003, 76(1): 174-200
    [72] Tian J H, Yu W, Zhou C X, "The preparation and rheology characterization of long chain branching polypropylene", POLYMER 2006, 47(23): 7962-7969
    [73] Ghosh P, Dev D, Chakrabarti A, "Reactive melt processing of polyethylene- effect of peroxide action on polymer structure, melt rheology and relaxation behaviour", Polymer 1997, 38(25): 6175-6180
    [74] Passaglia E, Coiai S, Giordani G, et al., "Modulated crosslinking of polyolefins through radical processes in the melt", Macromol. Mater. Eng. 2004, 289(9): 809-817
    [75] Dean S, Hu G H, Li R K Y, "Concept of nano-reactor for the control of the selectivity of the free radical grafting of maleic anhydride onto polypropylene in the melt ", Chem. Eng. Sci. 2006, 61(11): 3780-3784
    [76] Perraud S, Vallat M F, Kuczynski J, "Radiation crosslinking of poly(ethylene-co-octene) with electron beam radiation", Macromol. Mater. Eng. 2003, 288(2): 117-123
    [77] Liu M G, Yu W, Zhou C X, "Selectivity of shear rate on chains in polymer combination reaction", J. Appl. Polym. Sci. 2006, 100(1): 839
    [78] Klimke K, Parkinson M, Piel C, et al., "Optimisation and application of polyolefin branch quantification by melt-state 13C NMR spectroscopy ", Macromol. Chem. Phys. 2006, 207(4): 382-395
    [79] Liu W X, Ray D G, Rinaldi P L, "Resolution of signals from long-chain branching in polyethylene by 13C NMR at 188.6 MHz", Macromolecules 1999, 32(11): 3817-3819
    [80] Cotts P M, Guan Z B, McCord E, et al., "Novel branching topology in polyethylenes as revealed by light scattering and 13C NMR", Macromolecules 2000, 33(19): 6945-6952
    [81] Hedhli L, Mekhilef N, Moyses S, et al., "Characterization of randomly branched poly(vinylidene fluoride)", Macromolecules 2008, 41(6): 2011-2021
    [82] Wang W J, Kharchenko S, Migler K, et al., "Triple-detector GPC characterization and processing behavior of long-chain-branched polyethylene prepared by solution polymerization with constrained geometry catalyst ", Polymer 2004, 45(19): 6495-6505
    [83] Auhl D, Kaschta J, Münstedt H, et al., "Molecular characterization of semi-fluorinated copolymers with a controlled amount of long-chainbranching ", Macromolecules 2006, 39(6): 2316-2324
    [84] Sugimoto M, Suzuki Y, Hyun K, et al., "Melt rheology of long-chain-branched polypropylenes", Rheol. Acta 2006, 46(1): 33-44
    [85] Münstedt H, Kurzbeck S, Egersdoerfer L, "Influence of molecular structure on rheological properties of polyethylenes Part II. Elongational behavior", Rheol. Acta 1998, 37(1): 21-29
    [86] Tsenoglou C J, Gotsis A D, "Rheological characterization of long chain branching in a melt of evolving molecular architecture", Macromolecules 2001, 34(14): 4685-4687
    [87] Gotsis A D, Zeevenhoven B L F, Tsenoglou C, "Effect of long branches on the rheology of polypropylene", J. Rheol. 2004, 48(4): 895-914
    [88] Crosby B J, Mangnus M, de Groot W, et al., "Characterization of long chain branching: Dilution rheology of industrial polyethylenes", J. Rheol. 2002, 46(2): 401-426
    [89] Vega J, Aguilar M, Peon J, et al., "Effect of long chain branching on linear-viscoelastic melt properties of polyolefins", E-polymers 2002, -(-): No. 046
    [90] Vega J F, Fernandez M, Santamaria A, et al., "Rheological criteria to characterize metallocene catalyzed polyethylenes", Macromol. Chem. Phys. 1999, 200(10): 2257-2286
    [91] Doerpinghaus P J, Baird D G, "Separating the effects of sparse long-chain branching on rheology from those due to molecular weight in polyethylenes", J. Rheol. 2003, 47(3): 717-736
    [92] Garcia-Franco C A, Srinivas S, Lohse D J, et al., "Similarities between gelation and long chain branching viscoelastic behavior", Macromolecules 2001, 34(10): 3115-3117
    [93] Trinkle S, Walter P, Friedrich C, "Van Gurp-Palmen Plot II - Classification of long chain branched polymers by their topology ", Rheol. Acta 2002, 41(1-2): 103-113
    [94] Schulze D, Roths T, Friedrich C, "Classification of model topologies using the delta versus G* plot ", Rheol. Acta 2005, 44(5): 485-494
    [95] van Ruymbekea E, Stéphenne V, Daoust D, et al., "A sensitive method to detect very low levels of long chain branching from the molar mass distribution and linear viscoelastic response", J. Rheol. 2005, 49(6): 1503-1520
    [96] Wang W J, Ye Z B, Fan H, et al., "Dynamic mechanical and rheological properties of metallocene-catalyzed long-chain-branched ethylene/propylene copolymers", Polymer 2004, 45(16): 5497-5504
    [97] Vega J F, Santamaria A, Munoz-Escalona A, et al., "Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes ", Macromolecules 1998, 31(11): 3639-3647
    [98] Wood-Adams P M, "The effect of long chain branches on the shear flow behavior of polyethylene", J. Rheol. 2001, 45(1): 203-210
    [99] Wood-Adams P, Costeux S, "Thermorheological behavior of polyethylene: Effects of microstructure and long chain branching ", Macromolecules 2001, 34(18): 6281-6290
    [100] Yan D, Wang W J, Zhu S, "Effect of long chain branching on rheological properties of metallocene polyethylene", Polymer 1999, 40(7): 1737-1744
    [101] Stange J, Uhl C, Munstedt H, "Rheological behavior of blends from a linear and a long-chain branched polypropylene", J. Rheol. 2005, 49(5): 1059-1079
    [102] Stadler F J, Piel C, Kaschta J, et al., "Dependence of the zero shear-rate viscosity and the viscosity function of linear high-density polyethylenes on the mass-average molar mass and polydispersity", Rheol. Acta 2006, 45(5): 755-764
    [103] Stadler F J, Auhl D, Münstedt H, "Influence of the molecular structure of polyolefins on the damping function in shear", Macromolecules 2008, 41(10): 3720-3726
    [104] Malmberg A, Gabriel C, Steffl T, et al., "Long-chain branching in metallocene-catalyzed polyethylenes investigated by low oscillatory shear and uniaxial extensional rheometry ", Macromolecules 2002, 35(3): 1038-1048
    [105] Majeste J C, Carrot C, Stanescu P, "From linear viscoelasticity to the architecture of highly branched polyethylene", Rheol. Acta 2003, 42(5): 432-442
    [106] Lohse D J, Milner S T, Fetters L J, et al., "Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior", Macromolecules 2002, 35(8): 3066-3075
    [107] Hepperle J, Münstedt H, Haug P K, et al., "Rheological properties of branched polystyrenes: linear viscoelastic behavior", Rheol. Acta 2005, 45(2): 151-163
    [108] Hepperle J, Münstedt H, "Rheological properties of branched polystyrenes: nonlinear shear and extensional behavior ", Rheol. Acta 2006, 45(5): 717-727
    [109] Fleury G, Schlatter G, Muller R, "Non linear rheology for long chain branching characterization, comparison of two methodologies-Fourier Transform Rheology and Relaxation." Rheol. Acta 2004, 44(2): 174-187
    [110] Schlatter G, Fleury G, Muller R, "Fourier transform rheology of branched polyethylene: Experiments and models for assessing the macromolecular architecture ", Macromolecules 2005, 38(15): 6492-6503
    [111] Hyun K, Wilhelm M, "Establishing a new mechanical nonlinear coefficient Q from FT-Rheology: First investigation of entangled linear and comb polymer model systems", macromolecules 2009, 42(1): 411-422
    [112] Hyun K, Baik E S, Ahn K H, et al., "Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts ", J. Rheol. 2007, 51(6): 1319-1342
    [113] Neidh?fer T, Sioula S, Hadjichristidis N, et al., "Distinguishing linear from star-branched polystyrene solutions with Fourier-transform rheology ", Macromol. Rapid Commun. 2004, 25(22): 1921-1926
    [114] Hyun K, Ahn K H, Lee S J, et al., "Degree of branching of polypropylene measured from Fourier-transform rheology", Rheol. Acta 2006, 46(1):123-129
    [115] Vittorias I, Parkinson M, Klimke K, et al., "Detection and quantification of industrial polyethylene branching topologies via Fourier-transform rheology, NMR and simulation using the Pom-pom model ", Rheol. Acta 2007, 46(3): 321-340
    [116] Vittorias I, Wilhelm M, "Application of FT rheology to industrial linear and branched polyethylene blends", Macromol. Mater. Eng. 2007, 292(8): 935-948
    [117] Wood-Adams P M, Dealy J M, deGroot A W, et al., "Effect of molecular structure on the linear viscoelastic behavior of polyethylene", Macromolecules 2000, 33(20): 7489-7499
    [118] Garcia-Franco C A, Lohse D J, Robertson C G, et al., "Relative quantification of long chain branching in essentially linear polyethylenes ", Eur. Polym. J. 2008, 44(2): 376-391
    [119] Shroff R N, Mavridis H, "Long-chain-branching index for essentially linear polyethylenes ", Macromolecules 1999, 32(25): 8454-8464
    [120] Shroff R N, Mavridis H, "Assessment of NMR and rheology for the characterization of LCB in essentially linear polyethylenes", Macromolecules 2001, 34(21): 7362-7367
    [121] Kolodka E, Wang W J, Zhu S P, et al., "Copolymerization of propylene with poly(ethylene-co-propylene) macromonomer and branch chain-length dependence of rheological properties ", Macromolecules 2002, 35(27): 10062-10070
    [122] Janzen J, Colby R H, "Diagnosing long-chain branching in polyethylenes", J. Mol. Struct. 1999, 485-486(10): 569-584
    [123] Wood-Adams P M, Dealy J M, "Using rheological data to determine the branching level in metallocene polyethylenes ", Macromolecules 2000, 33(20): 7481-7488
    [124] Weng W Q, Hu W G, Dekmezian A H, et al., "Long chain branched isotactic polypropylene ", Macromolecules 2002, 35(10): 3838-3843
    [125] Gabriel C, Kaschta J, Münstedt H, "Influence of molecular structure on rheological properties of polyethylenes I. Creep recovery measurements in shear ", Rheol. Acta 1998, 37(1): 7-20
    [126] van Gurp M, Palmen J, "Time-temperature superposition for polymeric blends ", J. Rheol. Bull. 1998, 67(-): 5-8
    [127] Giacomine A J, Dealy J M, Techniques in Rheological Measurement, London: Chapman & Hall, 1998
    [128] Hyun K, Nam J G, Wilhelm M, et al., "Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow ", Korea-Aust. Rheol. J. 2003, 15(2): 97-105
    [129] Hyun K, Kim S H, Ahn K H, et al., "Large amplitude oscillatory shear as a way to classify the complex fluids ", J. Non-Newton. Fluid Mech. 2002, 107(1-3): 51-65
    [130] Pearson D S, Rochefort W E, "Behavior of concentrated polystyrene solutionin large-amplitude oscillating shear fields", J. Polym. Sci.: Polym. Phys. Ed. 1982, 20(1): 83-98
    [131] Wilhelm M, Maring D, Spiess H W, "Fourier transform rheology", Rheol. Acta 1998, 37(4): 399-405
    [132] Wilhelm M, Reinheimer P, Ortseifer M, "High sensitive Fourier transform rheology", Rheol. Acta 1999, 38(4): 349-356
    [133] Wilhelm M, "Fourier-transform rheology", Macromol. Mater. Eng. 2002, 287(2): 83-105
    [134] Wilhelm M, Reinheimer P, Ortseifer M, et al., "The crossover between linear and non-linear mechanical behaviour in polymer solutions as detected by Fourier-transform rheology ", Rheol. Acta 2000, 39(3): 241-246
    [135] Neidh?fer T, Wilhelm M, Debbaut B, "Fourier-transform rheology experiments and finite-element simulations on linear polystyrene solutions ", J. Rheol. 2003, 47(6): 1351-1371
    [136] Robertson C G, Garcia-Franco C A, Srinivas S, "Extent of branching from linear viscoelasticity of long-chain-branched polymers", J. Polym. Sci. Part B: Polym. Phys. 2004, 42(9): 1671-1684
    [137] de Gennes P G, "Diffusion controlled reaction in polymer melts", Radiat. Phys. Chem. 1983, 22(1-2): 193-196
    [138] de Gennes P G, "Kinetics of diffusion-controlled processes in dense polymer systems. I. Nonentangled regimes", J. Chem. Phys. 1982, 76(6): 3316-3321
    [139] de Gennes P G, "Kinetics of diffusion-controlled processes in dense polymer systems. II. Effects of entanglements", J. Chem. Phys. 1982, 76(6): 3322-3326
    [140] Fredrickson G H, Leibler L, "Theory of Diffusion-Controlled Reactions in Polymers under Flow", Macromolecules 1996, 29(7): 2674-2685
    [141] Mader D, Heinemann J, Walter P, et al., "Influence of n-alkyl branches on glass-transition temperatures of branched polyethylenes prepared by means of metallocene- and palladium-based catalysts", Macromolecules 2000, 33(4): 1254-1256
    [142] Garcia-Franco C A, Harrington B A, Lohse D J, "Effect of short-chain branching on the rheology of polyolefins", Macromolecules 2006, 39(7): 2710-2717
    [143] Bubeck R A, "Structure-property relationships in metallocene polyethylenes", Mater. Sci. Eng., R 2002, 39(1): 1-28
    [144] Chum P S, Kruper W J, Guest M J, "Materials Properties Derived from INSITE Metallocene Catalysts", Adv. Mater. 2000, 12(23): 1759-1767
    [145] Chum P S, Kao C I, Knight G W, "Structure/property relationships in polyolefins made by constrained geometry catalyst technology", Plast. Eng. 1995, 51(6): 21-23
    [146] Weber M, Fischer H, "Absolute rate constants for the beta-scission and hydrogen abstraction reactions of the tert-butoxyl radical and for several radical rearrangements: Evaluating delayed radical formations by time-resolved electron spin resonance ", J. Amer. Chem. Soc. 1999, 121(32):7381-7388
    [147] Russell K E, "Free radical graft polymerization and copolymerization at higher temperatures", Prog. Polym. Sci. 2001, 27(6): 1007-1038
    [148] Ryu S H, Gogos C G, Xanthos M, "Parameters affecting process efficiency of peroxide-initiated controlled degradation of polypropylene", Adv. Polym. Technol. 1992, 11(2): 121-131
    [149] Laza'r M, Kleinova' A, Fiedlerova' A, et al., "Role of minority structures and mechanism of peroxide crosslinking of polyethylene", J. Polym. Sci. Part A: Polym. Chem. 2004, 42(3): 678-688
    [150] Garc?′a-Franco C A, Harrington B A, Lohse D J, "Effect of short-chain branching on the rheology of polyolefins", Macromolecules 2006, 39(7): 2710-2717
    [151] Ball R C, McLeish T C B, "Dynamic dilution and the viscosity of star-polymer melts", Macromolecules 1989, 22(4): 1911-1913
    [152] Milner S T, McLeish T C B, "Parameter-Free Theory for Stress Relaxation in Star Polymer Melts", Macromolecules 1997, 30(7): 2159-2166
    [153] Pooter M D, Smith P B, Dohrer K K, et al., "Determination of the composition of common linear low density polyethylene copolymers by 13C-NMR spectroscopy", J. Appl. Polym. Sci. 1991, 42(2): 399-408
    [154] Yang L Q, Zhang F R, Endo T, et al., "Structural characterization of maleic anhydride grafted polyethylene by 13C NMR spectroscopy ", Polymer 2002, 43(8): 2591-2594
    [155] Yang L Q, Zhang F R, Endo T, et al., "Microstructure of maleic anhydride grafted polyethylene by high-resolution solution-state NMR and FTIR spectroscopy ", Macromolecules 2003, 36(13): 4709-4718
    [156] Qu B J, Qu X, Xu Y H, et al., "13C NMR studies of photoinitiated cross-linking of low-density polyethylene ", Macromolecules 1997, 30(5): 1408-1413
    [157] Wehrli F W, Marchand A P, Wehrli S, Interpretation of Carbon-13 NMR Spectra, New York: John Wiley&Sons, 1998
    [158] Helfand E, Pearson D S, "Calculation of the nonlinear stress of polymers in oscillatory shear fields", J. Polym. Sci.: Polym. Phys. Ed. 1982, 20(7): 1249-1258
    [159] Ewoldt R H, Hosoi A E, McKinley G H, "New measures for characterizing nonlinearvi scoelasticity in large amplitude oscillatory shear", J. Rheol. 2008, 52(6): 1427-1458
    [160] Doi M, Edwards S F, Theory of polymer dynamics, Oxford University Press, 1986
    [161] Watanabe H, "Viscoelasticity and dynamics of entangled polymers ", Prog. Polym. Sci. 1999, 24(9): 1253-1403
    [162] Vega J F, Mu?oz E A, Santamaría A, et al., "Comparison of the rheological properties of Metallocene-Catalyzed and conventional High-Density polyethylenes", Macromolecules 1996, 29(3): 960-965
    [163] Sun T, Brant P, Chance R R, et al., "Effect of short chain branching on the coildimensions of polyolefins in dilute solution", Macromolecules 2001, 34(19): 6812-6820
    [164] Marrucci G, G. I, "Flow-induced orientation and stretching of entangled polymers", Philos. Trans. R. Soc. London, Ser. A 2003, 361(1805): 677-688
    [165] Das C, Inkson N J, Read D J, et al., "Computational linear rheology of general branch-on-branch polymers", J. Rheol. 2006, 50(2): 207-234
    [166] Ferry J D, Viscoelastic properties of polymers, New York: Wiley, 1980
    [167] Pakula T, Vlassopoulos D, Fytas G, et al., "Structure and dynamics of melts of multiarm polymer stars ", Macromolecules 1998, 31(25): 8931-8940
    [168] Adams C H, Hutchings L R, Klein P G, et al., "Synthesis and dynamic rheological behavior of polybutadiene star polymers", Macromolecules 1996, 29(17): 5717-5722
    [169] Fetters L J, Kiss A D, Pearson D S, et al., "Rheological behavior of star-shaped polymers", Macromolecules 1993, 26(4): 647-654
    [170] Dorgan J R, Williams J S, Lewis D N, "Melt rheology of poly(lactic acid): Entanglement and chain architecture effects ", J. Rheol. 1999, 43(5): 1141-1155
    [171] Gell C B, Graessley W W, Efstratiadis V, et al., "Viscoelasticity and self-diffusion in melts of entangled asymmetric star polymers", J. Polym. Sci. Part B: Polym. Phys. 1997, 35(12): 1943-1954
    [172] Li S W, Park H E, Dealy J M, et al., "Effect of molecular structure on rheological behavior of nearly monodisperse H-shaped polybutadienes", AIP Conf. Proc. 2008, 1027(1): 430-432
    [173] McLeish T C B, Allgaier J, Bick D K, et al., "Dynamics of entangled H-polymers: Theory, rheology, and neutron-scattering ", Macromolecules 1999, 32(20): 6734-6758
    [174] Roovers J, Graessley W W, "Melt rheology of some model comb polystyrenes", Macromolecules 1981, 14(3): 766-773
    [175] Kapnistos M, Vlassopoulos D, Roovers J, et al., "Linear rheology of architecturally complex macromolecules: Comb polymers with linear backbones ", Macromolecules 2005, 38(18): 7852-7862
    [176] Roovers J, Toporowski P, "Relaxation by constraint release in combs and star-combs", Macromolecules 1987, 20(9): 2300-2306
    [177] Daniels D R, McLeish T C B, Crosby B J, et al., "Molecular rheology of comb polymer melts. 1. Linear viscoelastic response ", Macromolecules 2001, 34(20): 7025-7033
    [178] Inkson N J, Graham R S, McLeish T C B, et al., "Viscoelasticity of monodisperse comb polymer melts ", Macromolecules 2006, 39(12): 4217-4227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700