飞轮储能型柔性功率调控装置原理及其控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔性功率调控装置(FPC)是一个大容量的飞轮储能系统。它由储能电机和作为交流励磁电源的电压源型双PWM变流器组成。类似于超导磁储能(SMES)装置,FPC具有独立进行有功和无功功率调节的能力,可以用来提高电力系统稳定和改善电能质量。与SMES相比,FPC易于开发和运行,成本也低。本文讨论了FPC的原理、建模、控制、仿真以及样机研制等各方面的内容。
     以FPC的静态等值电路为基础,分析了转子交流励磁对FPC运行的影响。研究了FPC的不同工作状态以及在各种工作状态下FPC的能量传递关系。鉴于标量分析方法在FPC控制应用中的不足,推导了储能电机在多种坐标系中的数学模型。通过坐标变换,三相静止坐标系中多变量、高阶、非线性和强耦合的储能电机模型在两相同步旋转坐标系中得到了简化。
     研究了电网侧VSC变流器和转子侧VSC变流器的数学模型和控制策略。考虑到FPC经常工作在电力系统发生扰动的情况下,提出了一种改进型的定子磁链定向控制策略,该策略对电网电压波动具有更好的鲁棒性,并且易于实现。此外,还讨论了FPC的转速控制策略以及FPC励磁系统的综合控制方案。
     通过时域仿真研究了FPC的运行特性,验证了前文中讨论的FPC工作原理和控制策略。分析了转子电流、电压和功率限制对FPC功率极限的影响,指出FPC的功率极限主要受转子侧励磁电流的限制。此外,还讨论了FPC的励磁特性,FPC控制系统的稳定性和动态性能以及FPC稳态运行点的选取问题。
     提出了FPC的两种起动方法和相应的控制策略。此外,还讨论了VSC变流器可能出现的特殊运行状态。在此基础上,给出了电力系统故障时FPC的控制技术。
     建立了一个包含一台同步发电机和一台FPC的双机无穷大母线系统模型,通过特征值方法对系统的阻尼特性进行了分析。指出FPC的加入可以增加电力系统的总阻尼,特别是机电模式的阻尼,并增强系统的阻尼协调能力。由于FPC能够同时进行电压控制和阻尼控制,因此在电力系统的多目标协调控制方面具有更好的性能,对电力系统的暂态稳定性和小干扰稳定性都有显著改善作用。
     研制了一台10kW容量的FPC样机。样机包括储能电机本体、变频器及励磁控制系统和FPC的实时监控系统。此外,还给出了样机实验结果。
Flexible Power Conditioner (FPC) is a large-capacity flywheel energy storage system. It consists of an energy storage machine and a voltage-source pulse width modulation (PWM) rectifier-inverter used as an AC exciter. Similar to that of the Superconducting Magnetic Energy Storage (SMES), the FPC can realize an independent active and reactive power control, so it can be used to improve the stability of power system as well as the quality of power supply. Additional advantage of the FPC over the SMES based device is that it is easy to develop and to operate. Therefore, the cost will be greatly reduced. The principle, modeling, control, simulation, development of the prototype for the FPC have been discussed in this dissertation.
     Based on the static equivalent-circuit of the FPC, the influence of the rotor AC excition on the operation of the FPC is analyzed. Then, the operating states of the FPC and the energy flow in all above states are studied. In order to solve the deficiency of the scalar analytical method in the practical control of the FPC, mathematic models of the energy storage machine in several coordinates are deduced. By the coordinate transformation, the multi-variable, high-order, nonlinear and close coupled machine model in three phase static coordinates is simplified in the synchronous rotary coordinates. .
     The mathematic models and control strategies of grid-side converter and rotor-side converter are investigated. Considerring the fact that the FPC might be operated in grid disturbance conditions, an improved stator flux linkage orientated control strategy is proposed. This strategy is robust for the grid voltage fluctuation and easy to realize. In addition, the rotor speed control strategy of the FPC and the synthesis schemes of the excitation system are discussed.
     The operational characteristics of an FPC are investigated by time domain simulations. The effectiveness of the operating principle and the proposed excitation control strategies of the FPC are verified. The effect of rotor current, voltage and power limitation on the power margin of the FPC is analyzed. It was found that power margin of the FPC is mainly determined by the rotor-side excitation current. Besides, the FPC excitation characteristics, the FPC control system stability and dynamic performance and the choice of the FPC steady operating point are also discussed in this chapter.
     Two kinds of start methods and corresponding control strategy are proposed. In addition, the potential special operating states of VSC converters are studied. For this basis, the ride-through control of the FPC during grid faults is proposed.
     A two-machine and infinite bus power system model including a synchronous generator and an FPC is established. The damping characteristic of the proposed system is analyzed by eigenvalue method. Research results indicate that the total damping of power system, especially the damping of the electromechanical mode, is increased with the FPC. And the ability to coordinate damping is enhanced by the FPC. As FPC can realize voltage control and damping control simutaniously, it can offer better control performance in multiple objective coordinated control of power system. Also, both the transient state stability and the small disturbance stability of power system can be improved by the FPC.
     The details of the development for a 10kW prototype FPC are given, which includes the main body of the energy storage machine, the frequency-converter with excitation control system and the real-time supervisory system of the prototype. Besides, the experiment test results of the prototype FPC are given in this chapter.
引文
[1]韩祯祥,曹一家.电力系统的安全性及防治措施[J].电网技术, 2004, 28(9): 1-6.
    [2]卢强,梅生伟.面向21世纪的电力系统重大基础研究[J].自然科学进展, 2000, 10(10): 870-876.
    [3]卢强.我国电力系统灾变防治与经济运行的重大科学问题的研究项目介绍[J].电力系统自动化, 2000, 24(1): 1.
    [4]兰洲,倪以信,甘德强.现代电力系统暂态稳定控制研究综述[J].电网技术, 2005, 29(15): 40-50.
    [5]刘振亚.特高压交流输电技术研究成果专刊[M].北京:中国电力出版社, 2006.
    [6]刘振亚.特高压直流输电技术研究成果专刊[M].北京:中国电力出版社, 2006.
    [7] Wildberger A M. Complex adaptive systems: concepts and power industry applications [J]. IEEE Control Systems, 1997, 17(6): 77-88.
    [8]陈为化,江全元,曹一家,等.基于风险理论的复杂电力系统脆弱性评估[J].电网技术, 2005, 29(4): 12-17.
    [9]孙可,韩祯祥,曹一家.复杂电网连锁故障模型评价[J].电网技术, 2005, 29(13): 1-9.
    [10]曹一家,丁理杰,江全元,等.基于协同学原理的电力系统大停电预测模型[J].中国电机工程学报, 2005, 25(18): 13-15.
    [11]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象[J].电网技术,2005,29(15): 1-5.
    [12] Kosterev D N, Taylor C W, Mittelstadt W A. Model validation for the August 10, 1996 WSCC system outage [J]. IEEE Trans on Power Systems, 1999, 14(3): 967- 979.
    [13] U.S.-Canada power system outage task force.Final report on the August 14, 2003 blackout in the United States and Canada: causes and recommendations [R]. 2004.
    [14]甘德强,胡江溢,韩祯祥. 2003年国际若干停电事故思考[J].电力系统自动化, 2004, 28(3): 1-5.
    [15]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8.14”大停电的警示[J].电力系统自动化, 2003,27(18): 1-5.
    [16]程时杰,文劲宇,孙海顺.储能技术及其在现代电力系统中的应用[J].电气应用, 2005,24(4): 1-5.
    [17] P.C.Symons. Opportunities for energy storage in stressed electric supply systems [C]. 2001 IEEE Power Engineering Society Summer Meeting, July 15-19, 1993, 1: 448-449.
    [18] M.Rabinnowitz. Power systems of the future. IEEE Power Engineering Review [J], 2000, 20(8): 4-9.
    [19] A.Nabae. Power electronics in effective power systems [C]. Conference Record of the Power Conversion Conference - Yokohama, 1993, April 19-21, 1993.
    [20] S.M.Schoenung, C Burns. Utility energy storage applications studies. IEEE Transactions on Energy Conversion [J], 1996, 11(2): 658-665.
    [21] Energy Storage Association. Energy storage technologies and applications studies [R]. http://www.energystorage.org/technologies.htm.
    [22] C.F.Lu, C.C.Liu, C.J.Wu. Dynamic modeling of battery energy sytem and application to power system stability [J]. IEE Proceedings: Generation, Transmission and Distribution, 1995, 142(4): 429-435.
    [23] C.C.Chan, Y.S.Wong. Electric vehicles charge forward [J]. IEEE Power and Energy Magazine, 2004, 2(6): 24-33.
    [24] I.Boldea. Control of electric generators: a review [C]. The 29th Annual Conference of the IEEE Industrial Electronics Society, Nov.2-6, 2003.
    [25] W.V.Hassenzahl. Applications of superconductivity to electric power systems [J]. IEEE Power Engineering Review, 2000, 20(5): 4-7.
    [26] A.Abu-Siada. Applications of a superconducting magnetic energy storage unit toimprove the stability performance of power systems [C]. 2002 IEEE Canadian Conference on Electrical and Computer Engineering, May. 12-15, 2002.
    [27] A.Rufer. A supercapacitor-based energy storage substation for voltage compensation in week transportation networks [J]. IEEE Transaction Power Delivery, 2004, 19(2): 629-636.
    [28] P.J.Donalek. Role and value of hydro and pumped storage generation in a proposed regional electricity market in southeast Europe [C]. 2003 IEEE Power Engineering Society General Meeting, Jul. 13-17, 2003.
    [29] A.C.Ferreira, L.M.Souza, et al. Improving power quality with a variable speed synchronous condenser [C]. Proc. Power Electronics, Machines and Drives Conf., 2002, 456-460.
    [30] H. Akagi, H. Sato. Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system [J]. IEEE Trans. On Power Electronics, 2002, 17(1): 109-116.
    [31]肖强晖,姚若萍,郑逢时.交流励磁发电机系统的稳态分析——发电机的稳态性能[J].电工技术学报, 1997, 12(4): 25-28.
    [32]夏卡梁.异步化同步电机[M].北京,中国电力出版社, 1997.
    [33]张海红,邢立群,颜湘武.异步化同步发电机综述[J].华北电力技术, 2000, 10: 49-51.
    [34]王承熙等.风力发电[M].北京:中国电力出版社, 2003.
    [35]马洪飞,徐殿国,苗立杰.几种变速恒频风力发电系统控制方案的对比分析[J].电工技术杂志, 2000, 10: 1-4.
    [36] Lennart Soder, Thomas Ackermann. Wind energy technology and current status: a review [J]. Renewable and Sustainable Energy Review, 2000, 4: 315-374.
    [37]颜湘武,王仁洲,柳焯.交流励磁发电机综述[J].电力情报. 1996, 4: 6-10.
    [38]吴志敢,贺益康.交-交变频交流励磁电机谐波的解析分析[J].电工技术学报. 1999, 14(6): 9-14.
    [39]石赟,王文举,贺益康. PWM变频器供电交流励磁发电机输出谐波分析[J].大电机技术. 2000, 5: 19-24.
    [40]黄科元,贺益康,卞松江.矩阵式变换器交流励磁的变速恒频风力发电系统研究[J].中国电机工程学报, 2002, 22(11): 100-105.
    [41]黄科元,贺益康.矩阵式变换器励磁的双馈电机磁场定向控制研究[J].大电机技术, 2003, 6: 26-30.
    [42] Debiprasad Panda. A novel control strategy for the rotor side control of a doubly-fed induction machine [C]. IECON 2001, 2: 1695-1702.
    [43] J. Tamura, T. Sasaki, et al. Analysis of the steady state characteristics of doubly fed synchronous machines [J]. IEEE Trans. On Energy Conversion, 1988, 4(2): 250-256.
    [44] J. Tamura, T. Sasaki. Analysis of the steady state characteristics of doubly fed synchronous machines [J]. IEEE Trans. On Energy Conversion, 1989, 4(2): 250-256.
    [45] M. S. Vicatos, J. A. Tegopoulos. Steady state analysis of a doubly fed induction generator under synchronous operation [J]. IEEE Trans. On Energy Conversion, 1989, 4(3): 495-501.
    [46]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社, 1992.
    [47]陈伯时等.交流调速系统[M].北京:机械工业出版社, 1998.
    [48]陈国呈. PWM变频调速及软开关电力变换技术[M].北京:机械工业出版社, 2001.
    [49]李永东.交流电机数字控制系统[M].北京:机械工业出版社, 2002.
    [50]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究[D].中国,武汉:华中科技大学, 2005.
    [51] Mitsutoshi Yamamoto, Osamu Motoyoshi. Active and reactive power control for Doubly-fed wound rotor induction generator [J]. IEEE Trans. On Power Electronics, 1991, 6(4): 624-62.
    [52]刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制[J].中国电机工程学报, 2004, 24(3):6-11.
    [53] Yifan Tang, Longya Xu. A flexible active and reactive power control strategy for a variable speed constant frequency generating system [J]. IEEE Trans. On Power Electronics, 1995, 10(4): 472-478.
    [54] Yifan Tang, Longya Xu. Vector control and fuzzy logic control of doubly fed variable speed drives with dsp implementatation [J]. IEEE Trans. On Energy Conversion, 1995, 10(4): 661-668.
    [55]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报, 2003, 23(13): 122-125.
    [56]辜承林,韦忠朝,黄声华等.对转子交流励磁电流实行矢量控制的变速恒频发电机(第一部分:控制模型与数值仿真)[J].中国电机工程学报, 1996, 16(2): 119-124.
    [57]李健,李华德.双馈感应变速恒频风力发电机控制系统研究[J].电气传动, 2004, 4: 16-18.
    [58]杨文焕.双馈电机转子交流励磁矢量控制电压波形分析[J].电机与控制学报, 2003, 7(1): 18-21.
    [59] A.Petersson, L.Harnefors, T.Thiringer. Evaluation of current control methods for wind turbines using doubly-fed induction machines [J]. IEEE Trans. On Energy Conversion, 2005, 20(1): 227-235.
    [60] J.Ekanayak, N.Jenkins. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency [J]. IEEE Trans. On Energy Conversion, 2004, 19(4): 800-802.
    [61] Rajib Datta, V. T. Ranganathan. Variable-speed Wind Power Generation Using Doubly Fed Wound Rotor Induction Machine Comparison with Alternative Schemes [J]. IEEE Trans. On Energy Conversion, 2002, 17(3): 414-421.
    [62]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究[J].中国电机工程学报, 2003, 23(8): 159-162.
    [63]杨顺昌.异步化气轮发电机模型[J].电工技术学报, 1995, 10(2): 13-16.
    [64]廖勇,杨顺昌.双馈发电机考虑主磁路饱和数学模型[J].电工技术学报, 1996, 11(4): 1-5.
    [65]廖勇,杨顺昌.交流励磁发电机运行及控制原理[J].电工技术学报, 1997, 12(10): 21-25.
    [66]廖勇,杨顺昌.交流励磁发电机励磁控制[J].中国电机工程学报, 1998, 18(2):87-90.
    [67]廖勇,杨顺昌.交流励磁发电机参数变化时的解耦励磁控制[J].中国电机工程学报, 1998, 19(2): 37-46.
    [68]廖勇,杨顺昌.交流励磁发电机双通道励磁系统反馈系数的选取原则[J].中国电机工程学报, 1999, 19(1): 52-55.
    [69]廖勇,杨顺昌.交流励磁发电机的电磁设计[J].重庆大学学报(自然科学版), 1999, 22(6): 29-35.
    [70]杨顺昌,廖勇,漆小龙.动态同步轴及其应用[J].电工技术学报, 1999, 14(2): 42-46.
    [71] Yong Liao. Evaluation of the Effects of Rotor Harmonics in a Doubly-fed Induction Generator with Harmonic Induced Speed Ripple [J]. IEEE Trans. On Energy Conversion, 2003, 18(3): 225-230.
    [72] K.Hu, R.Yokoyama, K.Koyanagi. Modeling and Dynamic Simulations of Doubly-fed Rotary Frequency Converter in Power Systems [J]. PowerCon 2000, 3: 1443-1448.
    [73] M.Fujimitsu, T.Komatsu, K.Koyanagi. Modeling of Doubly-fed Adjustable-speed Machine for Analytical Studies on Long-term Dynamics of Power System [J]. PowerCon 2000, 1: 25-30.
    [74]李晶,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报, 2004, 24(6): 100-105.
    [75]李晶,王伟胜.考虑变频器特性的变速恒频双馈风力发电机组控制策略的研究与仿真[J].中国电机工程学报, 2004, 28(21): 11-16.
    [76]李晶,王伟胜.双馈感应发电机的线性化动态模型及运行特性分析[J].电网技术,2004, 28(13): 13-17.
    [77] B.Janaka. Dynamic Modeling of Doubly Fed Induction Generator Wind Turbine [J]. IEEE Trans. On Power Systems, 2003, 18(2): 803-809.
    [78]王祥珩,史文华,黎道成.交流励磁发电机系统并网运行谐波的分析[J].清华大学学报(自然科学版), 1999, 39(3): 96-99.
    [79] Longya Xu, Wei Cheng. Torqe and Reactive Power Control of a Doubly Fed Induction Machine by Position Sensorless Scheme [J]. IEEE Trans. On Industry Applications, 1995, 31(3): 636-642.
    [80]马小亮,刘志强.基于电流辨识速度的双馈矢量调速系统的研究[J].电工技术学报, 2003, 18(4): 89-93.
    [81]刘志强,王娜,魏学森.无速度传感器转子电流定向双馈电机的矢量控制调速系统[J].中小型电机, 2002, 29(6): 38-42.
    [82]郭可忠,黄宏亮,莫春霞.交流励磁发电机稳态运行的研究[J].上海交通大学学报, 2002, 36(2): 251-254.
    [83]肖强晖,姚若萍,许善椿.交流励磁发电机的励磁稳态分析[J].清华大学学报(自然科学版), 1997, 37(1): 45-47.
    [84]肖强晖,姚若萍,郑逢时.交流励磁发电机稳态运行的相量分析——发电机的稳态性能[J].电工技术学报, 1997, 12(4): 25-36.
    [85]邱培基,汤宁平,叶文键.变速交流励磁感应发电机的稳态分析[J].电工技术学报, 1998, 13(5): 16-20.
    [86]王勇,刘宪林,娄和恭.交流励磁发电机动态分析模型[J].郑州工业大学学报, 2001, 22(1): 86-88.
    [87]宁玉泉.双馈交流励磁变速电机的稳态特性及励磁容量分析[J].大电机技术, 2005, 6: 24-27.
    [88]韦忠朝,黄声华,陶醒世,辜承林.变速恒频双馈感发电机运行原理及稳态性能分析[J].华中理工大学学报, 1996, 24(5): 34-37.
    [89]李华德.交流调速控制系统[M].北京:电子工业出版社, 2003.
    [90]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社, 1996.
    [91]辜承林,陈乔夫,熊永前.电机学[M].武汉:华中科技大学出版社, 2001.
    [92]刘平.用于超导磁储能系统的高性能电压源变换器控制技术研究[D].中国,武汉:华中科技大学, 2000.
    [93]熊健.三相电压型高频PWM整流器研究[D].中国,武汉:华中科技大学, 1999.
    [94]彭力.基于状态空间理论的PWM逆变电源控制技术研究[D].中国,武汉:华中科技大学, 2004.
    [95]张崇巍,张兴. PWM整流器及其控制[M].北京:机械工业出版社, 2003.
    [96] Markus A P. Doubly-fed induction machine models for stability assessment of wind farms [C]. IEEE Bologna Power Tech Conference, Bologna, 2003.
    [97] Holdsworth L, Wu X G, Ekanayake J B. Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances [J]. IEE Proc-Gener. Trans. Distrib., 2003, 150(3): 343-352.
    [98]贺益康,郑康,潘再平,等.交流励磁变速恒频风电系统运行研究[J].电力系统自动化, 2004, 28(13): 55-68.
    [99]宋强,刘文华,严干贵.大容量PWM电压源逆变器的LC滤波器设计[J].清华大学学报(自然科学版), 2003, 43(3): 345-348.
    [100]陈俊琳,曹绳敏,曹路,等.同步电机正负励磁运行分析[J].电网技术, 1995, 19(7): 19-21.
    [101]申洪,王伟胜,戴慧珠.变速恒频风力发电机组的无功功率极限[J].电网技术, 2003, 27(11): 60-63.
    [102]于世涛,颜湘武,李和明,等.交流励磁发电机静态稳定性分析[J].电力系统自动化, 2004, 28(21): 34-37.
    [103]赵栋利,许洪华,赵斌,郭金东.变速恒频风力双馈发电机并网电压控制研究[J].太阳能学报, 2004, 25(5): 587-591.
    [104]秦晓平,王克成.感应电动机的双馈调速和串级调速[M].北京:机械工业出版社, 1990.
    [105]陈坚.电力电子学—电力电子变换和控制技术[M].北京:高等教育出版社, 2002.
    [106]马志云.电机瞬态分析[M] .北京:中国电力出版社, 1998.
    [107]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报, 2006, 26(3): 164-170.
    [108]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究[J].中国电机工程学报, 2006, 26(10): 130-135.
    [109] Nunes M V A, Beaerra U H, Zurn H H. Transient stability margin of variable versus fixed speed wind systems in electrical grids [C]. IEEE Bologna PowerTech Conference, 2003.
    [110] Tan Y L. Augmentation of transient stability using a superconducting coil and adaptive nonlinear control [J]. IEEE Transaction on Power Systems, 1998, 13(2): 361-365.
    [111] Buckles W. Superconducting magnetic energy storage [J]. IEEE Power Engineering Review, 2000, 5: 16-20.
    [112]韩翀,李艳,余江,等.超导电力磁储能系统研究进展-超导磁储能装置[J].电力系统自动化, 2001, 25(12): 63-68.
    [113]李艳.电力系统稳定控制用SMES系统的特性分析和控制策略研究[D].中国,武汉:华中科技大学, 2003.
    [114]侯勇,蒋晓华,姜建国.基于超导储能的综合电能质量调节装置及其控制策略[J].电力系统自动化, 2003, 27(21): 49-53.
    [115]刘逊,朱晓光,褚旭.基于超导储能的瞬时电压跌落补偿.电力系统自动化[J], 2004, 28(3): 40-44.
    [116] Koyanagi K, Fujimitsu M, Komatsu T. Analytical studies on power system Dynamic stability enhancement by doubly-fed adjustable speed machine [C]. Power System Technology, Proceedings. PowerCon. 2000 International Conference, Perth, Austrila, 2000.
    [117]何仰赞,温增银.电力系统分析[M].武汉:华中科技大学出版社, 2002.
    [118] Byerly B T, Bennon R J, Sherman D E. Eigenvalue analysis of synchronizing powerflow oscillations in large electric power system [J]. IEEE Trans on Power Systems, 1982, 1(1): 217-226.
    [119]王卫国,贺仁睦,王铁强,等.分析电力系统低频振荡的试验方法[J].电力系统自动化, 2001, 25(22): 28-31.
    [120]王铁强,贺仁睦,王卫国,等.电力系统低频振荡机理的研究[J].中国电机工程学报, 2002, 22(2): 21-25.
    [121] Demello F P, Concordia C. Concepts of synchronous machine stability as affected by excitation control [J]. IEEE Transactions. On Power Apparatus and System, 1969, 88(4): 316-329.
    [122]刘宪林,柳焯,娄和恭.考虑阻尼绕组作用的单机无穷大系统线性化模型[J] .中国电机工程学报, 2000, 20(10): 41-45.
    [123] IEEE/CIGRE Joint task force on stability terms and definitions. Definition and classification of power system stability [J]. IEEE Trans. Power Syst., 2004, 19(3): 1387-1401.
    [124] Power System Damping Ad Hoc Task Force. Damping representation for power system stability studies [J]. IEEE Trans. Power Syst., 1999, 14(1): 151-157.
    [125] Swift F J, Wang H F. The connection between modal analysis and electric torque analysis in studying the oscillation stability of multi-machine power systems [J]. Electrical Power & Energy Systems, 1997, 19(5): 321-330.
    [126]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响[J].中国电机工程学报, 2005, 25(11): 6-11.
    [127]郝思鹏.电力系统低频振荡综述[J].南京工程学院学报(自然科学版), 2003, 1(1): 1-8.
    [128]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社, 2003.
    [129]徐光虎,苏寅生,孙衢,陈陈.基于特征值分析法的PSS最佳安装地点的确定[J].继电器, 2004, 32(8): 1-4.
    [130]赵书强,常鲜戎,贺仁睦,马燕峰. PSS控制过程中的借阻尼现象与负阻尼效应[J].中国电机工程学报, 2004, 24(5): 7-11.
    [131]郝正航,邱国跃,陈卓,许克明.电力系统阻尼特性分析与研究[J].继电器, 2005, 33(23): 19-24.
    [132]郝正航,陈卓,戴培培,许克明.多机系统多变量励磁控制下的阻尼守恒阻尼竞争与阻尼协调[J].电工电能新技术, 2006, 25(4): 39-42.
    [133] Wang H F, Swift F J. A unified model for the analysis of FACTS devices in damping power system oscillations. I. Single-machine infinite-bus power systems [J]. IEEE Trans. On Power Delivery, 1997, 12(2): 941-946.
    [134]卢强,王仲鸿,韩英铎.输电系统最优控制[M].北京:科学出版社, 1984.
    [135] Katsuya Y, Mitani Y.Power system stabilization by synchronous condenser with fast excitation control [J].Power System Technology, Proceedings. PowerCon. 2000 International Conference, 3:1563-1568.
    [136]粟春天,姜齐荣,王仲鸿,纪勇.静止同步补偿器多目标协调控制器的设计[J].电工技术学报, 1999, 14(2): 21-24.
    [137]李刚,王少荣,程时杰.一种监控系统实时数据同步交换的新方法[J].继电器, 2004, 32(12): 51-54.
    [138]苗世洪,王少荣,刘沛,程时杰.利用双口RAM实现主机与远方多个子机的实时数据交换问题研究[J].计算机工程与应用报, 1999, 11: 120-121.
    [139]夏涛.基于GPS的功角和电压相量测量系统及其数据传输的研究[D].中国,武汉:华中科技大学, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700