岸式振荡水柱波能发电装置的试验及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岸式振荡水柱波能发电装置是目前世界上应用最为广泛的波能转换利用装置。对该类波能转换装置的全面深入研究,可为开发设计更为高效的波能转换与利用装置提供指导,对解决日益严峻的能源和环境问题具有重要意义。本文以岸式振荡水柱波能发电装置的实用化开发为背景,采用物理模型试验和数值模拟相结合的方法对该类波能发电装置进行了系统的研究。
     对气室结构的物理模型试验研究,发现了气室内自由水面振荡波幅、相对压强及输气管内空气流速与入射波要素的变化关系,考察了气室宽度、前墙吃水深度、前墙厚度、底坡坡角及气室顶部开口形式在不同的波周期区对气室波能俘获能力的影响,在此基础上遴选出影响气室工作性能的主要参量,并建议根据不同气室结构和参量选择二、三维数值计算模式。
     本研究构建了基于水气两相VOF模型的二、三维数值波浪水槽,采用PLIC法进行自由水面追踪方法有效可靠,波浪周期、波长及波高等参量的计算值与理论解析解基本一致。
     气室结构的二维数值模拟发现,相对波幅会在入射波周期范围内形成三个具有不同分布特征的区域:短周期区,峰值区及长周期区。气室宽度较小时,气室墙前水深、气室前墙吃水深度、气室前墙厚度及海底坡角对气室性能具有一定的影响;气室宽度较大时,相对波幅在入射波周期范围内不存在峰值区,且上述各参量对气室波能俘获能力的影响则较小。
     与二维计算及试验结果相比,三维数值波浪水槽能够更为准确地预测气室内相对波幅、相对压强及输气管内流速。气室宽度、气室长度及输气管管径对气室工作性能的影响较大,输气管管长及其装配位置对气室波能转换效率的影响则较小。波浪聚集装置能够在长周期区提高气室—输气管系统的工作性能,多孔介质模型可模拟空气透平对气室—输气管系统的压降作用及其对输气管内流量变化的影响。
     本文建立了基于多重参考系模型冲击式透平的三维数值模拟方法,确定了计算中应采用的湍流计算模型,网格类型与网格数范围。与试验结果的比较表明,三维数值模拟对透平工作性能的计算结果优于二维模式。本研究通过数值模拟得到了透平内空气流场及动叶片表面压力分布规律,给出了动叶片数,透平径间比,动叶片入射角,动叶片装置角,透平轮毂比及动叶片外径间隙的最佳设计值,提出了在动叶片顶端安装环形盖板及设置动叶片弯扭角的优化方案。
Oscillating Water Column (OWC) wave energy convertor for electricity generation is most widely used in the world. The investigation of the OWC wave energy convertor can provide guidance to the research and design of the highly efficient wave energy converting and utilizing system, which is also extremely important to solving the nowadays energy and environmental crisis. In order to develop the OWC wave energy converting system practically, the physical model experiments and numerical simulations are employed to investigate the wave energy converting device systemically.
     In the experimental study on the air chamber, it is found that the oscillating amplitudes of the free surface and relative pressure in the chamber and the air flow velocities in the duct are related to the incident wave parameters. The effects of the chamber width, the draft of the chamber skirt, the thickness of the chamber skirt, bottom slope and the opening styles on the chamber performance are studied. The key parameters are selected for the numerical simulations, which will be different according to the variation of the chamber profiles.
     The 2D and 3D numerical wave tanks are established based on the two-phase air-water VOF model. The free surface methods applied in the thesis are validated with the experimental results. The numerical results of the wave parameters such as wave periods, wave lengths and wave heights show good agreement with the analytical solutions.
     In the 2D numerical simulation of the air chamber, the distributions of the relative amplitudes against the incident wave period are divided into the short-period zone, peak-value zone and long-period zone. The still water depth in front of the chamber, the draft of the chamber skirt and the thickness of the chamber skirt have effects on the chamber performance when the chamber width is small. The peak-value zone will disappear when the chamber width is large, and the effects of the above parameters are minor.
     The 3D numerical wave tank can predict the relative amplitudes and the relative pressure in the chamber and the air velocities in the duct more precisely than the 2D numerical wave tank. In the 3D numerical study, the effects of the chamber width, the chamber length and the duct diameter on the chamber performance are evident. The duct length and its installed position have little influence on the chamber wave energy converting ability. The wave focusing devices can improve the chamber performance in the long period zone. The porous media model can be applied to simulate the pressure loss in the chamber-duct system induced by the impulse turbine, which also has effects on the air flow rate in the duct.
     The 3D numerical predicting method on the impulse turbine based on the multiple reference frame model is established in the paper. The turbulence model, mesh type and mesh numbers are selected. The comparison with experimental results shows that the 3D numerical results are better than that of the 2D calculation. The air flow field and pressure distribution in the turbine are obtained. The optimal design value of the rotor blade number, the gap ratio of the turbine, the blade inlet angle, the blade setting angle, and the hub-to-tip ratio and the tip clearance are predicted in the calculation. The optimizing design of the ring-type plate covering the blade top and the staggered angle of the rotor blade are also provided.
引文
[1]赖向军,戴林.石油与天然气—机遇与挑战.北京:化学工业出版社,2005. 6~10
    [2] BP. Statistical Review of World Energy. London: Beyond petroleum, 2006. 2~4
    [3]王革华.能源与可持续发展—21世纪可持续能源丛书.北京:化学工业出版社, 2005.12~13
    [4]罗运俊,何梓年,王长贵.太阳能利用技术.北京:化学工业出版社,2005. 1~9
    [5]张希良.风能开发利用.北京:化学工业出版社,2005.2~7
    [6]张超.水电能资源开发利用.北京:化学工业出版社, 2005.1~15
    [7]姚向君,田宜水.生物质能资源清洁转化利用技术.北京:化学工业出版社. 2005.3~12
    [8] Edwards Cassedy.可持续能源的前景.北京:清华大学出版社. 2003.1~6
    [9]楮同金.海洋能资源开发利用—21世纪可持续能源丛书.北京:化学工业出版社. 2005.24~38
    [10]陈勇.中国能源与可持续发展/中国可持续发展总纲(第三卷).北京:科学出版社. 2007. 1~20
    [11]黄良民.中国海洋资源与可持续发展/中国可持续发展总纲(第八卷).北京:科学出版社. 2007. 1~18
    [12]孙洪,李永祺.中国海洋高技术及其产业化发展战略研究.青岛:中国海洋大学出版社. 2003.3~15
    [13] G. Lagstroem. Sea Power International—Floating Wave Power Vessel, FWPV. Wave power—moving towards commercial viability. London, UK: Institution of Mechanical Engineers Seminar. 1999. 8~12
    [14] Kraemer DRB, Ohl COG, McCormick ME. Comparison of experimental and theoretical results of the motions of a McCabe wave pump. In: The fourth European Wind Energy Conference. Aalborg, Denmark. 2000. 34~38
    [15] Nielsen K, Plum C. Comparison of experimental and theoretical results of the motions of a McCabe wave pump. In: The fourth European Wind Energy Conference. Aalborg, Denmark. 2000. 56~62
    [16] Kofoed J. P, Frigaard P, Serenson H. C, Madsen E. F, Development of the Wave Energy Converter- Wave Dragon. In: Proceedings of the Tenth International Offshore and Polar Engineering Conference. Seattle, USA: International Society of Offshore and Polar Engineers, 2000, 1: 405~412.
    [17] Frigaard P, Kofoed J. P, Rasmussen M. R. Overtopping Measurements on the Wave Dragon NIssum Bredning Prototype. In: Proceedings of the Fourteenth International Offshore and Polar Engineering Conference. Toulon, France: International Society of Offshore and Polar Engineers, 2004, 1: 210~216
    [18] Henderson R. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renewable Energy. 2006, 31: 271~283.
    [19] Retzler C. Measurements of the slow drift dynamics of a model Pelamis wave energy converter. Renewable Energy. 2005, 31: 257~269
    [20] Rademakersvan L, Schie R. G, Schuttema R, Vriesema B, Gardner F. Physical model testing for characterizing. In: The third European Wind Energy Conference Patras, Greece. 1998. 121~126
    [21] Leijon M, Danielsson O, Eriksson M. An electrical approach to wave energy conversion. Renewable Energy. 2006, 31: 1309~1319
    [22] Umesh A. Korde. Use of Oscillation Constraints in Providing a Reaction for Deep Water Floating Wave Energy Devices. In: Proceedings of the Tenth International Offshore and Polar Engineering Conference. Seattle, USA: International Society of Offshore and Polar Engineers, 2000, 1: 366~372
    [23] Retzler C. H. Experimental Results for the Wave Rotor Wave Energy Device. In: Proceedings of the Tenth International Offshore and Polar Engineering Conference. Seattle, USA: International Society of Offshore and Polar Engineers, 2000, 1: 394~398
    [24] Hadano K, Saito T, Hashida M. Experiment on the Energy Gain of Floats-Type Wave Generator. In: Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: International Society of Offshore and Polar Engineers, 2001, 1: 638~645.
    [25] Hadano K, Taneura K, Saito T, Nakano K. Evaluation of Energy Obtained by Float-Type Wave Generation System. In: Proceedings of the Fourteenth International Offshore and Polar Engineering Conference. Toulon, France: International Society of Offshore and Polar Engineers, 2004, 1: 246~252.
    [26] Float Incorporated. Wave Energy and The Pneumatically Stabilized Platform. Floating Ocean Real Estate. 2006. 1~5
    [27] Kondo H, Katoh M, Ohta N. A new system of wave power extraction and shore protection at erosive Coasts. In: The third European Wind Energy Conference. Patras, Greece. 1998. 34~38
    [28] Alves M, Melo A. B, Sarmento A. J. N. A. Numerical Modeling of the Pendulum Ocean Wave Power Converter using a Panel Method. In: Proceedings of the Twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan: International Society of Offshore and Polar Engineers, 2002, 1: 655~661
    [29] Keulenaer H. D. Seawave Slot-Cone generator, The Power of the Oceans-Leonardo Energy. 2007. 1~6
    [30] Washio Y, Osawa H, Nagata Y, Fujii F, Furuyama H, Fujita T. The offshore Floating Type Wave Power Device“Mighty Whale”: Open Sea Tests. In: Proceedings of the Tenth International Offshore and Polar Engineering Conference. Seattle, USA: International Society of Offshore and Polar Engineers, 2000, 1: 373~380
    [31] Osawa H, Washio Y, Ogata T, Tsuritani Y. The Offshore Floating Type Wave Power Device“Mighty Whale”Open Sea Tests- Performance of The Prototype. In: Proceedings of the Twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan: International Society of Offshore and Polar Engineers, 2002, 1: 595~600
    [32] Nagata Y, Yamashita S, Washio Y, Osawa H. The Offshore Floating Type Wave Power Type Device“Mighty Whale”Open Sea Tests- Environmental Conditions. In: Proceedings of the Twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan: International Society of Offshore and Polar Engineers, 2002, 1: 601~606
    [33] Johnson F, Chudley J, Dai Y. M. Prolongation of the Deployment and Monitoring of a Multiple Oscillating Water Column Wave Energy Converter. The University of Plymouth, UK. 2003. 23~32
    [34] Thorpe T. W. An Overview of Wave Energy Technologies: Status, Performance and Costs, Wave Power: Moving towards Commercial Viability. Broadway House, Westminster, London. 1999. 11~16
    [35] Falca?o A. F. Design and construction of the OWC wave power plant at the Azores. In: Wave power—moving towards commercial viability, London, UK: Institution of Mechanical Engineers Seminar. 1999. 35~42
    [36] Falca?o A. F. The shoreline OWC wave power plant at the Azores. In: The fourth European Wind Energy Conference. Aalborg, Denmark. 2000. 123~129
    [37] Alcorn R. G, Beattie W. C. Observations of time domain data on the Wells Turbine in the Islay wave power plant. In: Proceedings of the eighth International Offoreshore and Polar Enigeering Conference. Montreal, Canada: International Society of Offshore and Polar Engineers, 1998. 12~18
    [38] Heath T, Whittaker T, Boake C. B. The design, construction and operation of the LIMPET wave energy converter(Islay Scotland). In: The fourth European Wind Energy Conference. Aalborg, Denmark. 2000. 78~83
    [39] Alcorn R, Hunter S, Signorelli C. Results of the Testing of the Energetech Wave Energy Plant at Port Kembla. Energetech Australia Pty Limited. 2005. 2~7
    [40]梁贤光,孙培亚,游亚戈.汕尾100kW波力电站气室模型性能试验.海洋工程. 2003,21:113~116
    [41]任建莉,钟英杰,张雪梅,徐璋.海洋波能发电的现状与前景.浙江工业大学学报. 2006, 34: 69~73
    [42] Falnes J. Radiation Impedance Matrix and Optimum Power Absorption for Interacting Oscillators in Surface Waves. Applied Ocean Research. 1980, 2: 45~55
    [43] Evans D.V. Maximum Wave-power Absorption Under Motion Constraints. Applied Ocean Research. 1981, 3: 34~41
    [44]陈加菁,王东蛟,王龙纹.波浪发电系统的水动力匹配准则.水动力学研究与进展.1995, 10: 581~587
    [45] Evans D.V. The Hydrodynamic Efficiency of Wave-Energy Devices. Hydrodynamics of Ocean Wave-Energy Utilization. 1985. 23~28
    [46] Newman J. N. The Interaction of Stationary Vessels with Regular Waves. In: Proceeding of 11th symposium of Naval Hydrodynamics. London, British. 1976. 38~42
    [47] Ambli N, Bonke K, Malmo O, Reitan H. The Kvaerner multiresonant OWC. In: Proceedings of the 2nd International Symposium on Wave Energy Utilisation. Trondheim, Norway. Tapir. 1982. 275~295
    [48] Malmo O, Reitan A. Wave-power absorption by an oscillating water column in a channel. Journal of Fluid Mechanics. 1985, 158: 153~175
    [49] Malmo O, Reitan A. Wave-power absorption by an oscillating water column in a reflecting wall. Applied Ocean Research. 1986, 18: 42~48
    [50] Whittaker T. J. T, Stewart T. P. An experimental study of nearshore and shoreline oscillating water columns with harbors. In: Proceedings of the European Wave Energy Symposium. Edinburgh, Scotland, 1993. 151~156
    [51] Tseng Ruo-Shan, Wu Rui-Hsiang, Huang Chai-Cheng. Model Study of a shoreline wave-power system. Ocean Engineering. 2000, 27: 801~821
    [52]刘月琴.武强.岸式波力发电装置水动力性能试验研究.海洋工程. 2002, 20: 93~97
    [53] Count B.M, Evans D.V. The influence of projecting sidewalls on the hydrodynamic performance of wave-energy devices. Journal of Fluid Mechanics. 1984, 145: 361~376
    [54] Evans D.V. Wave-power absorption by systems of oscillating surface pressure distributions. Journal of Fluid Mechanics. 1982, 114: 481~499
    [55] Falca?o A.F.de O, Sarmento A.J.N.A. Wave generation by a periodic surface pressure and its application in wave-energy extraction. In: 15th International Congress on Theoretical and Applied Mechanics. Toronto. 1980. 45~51
    [56] Falnes J, McIver P. Surface wave interactions with systems of oscillating bodies and pressure distributions. Applied Ocean Research. 1985, 7: 225~234
    [57] You Ya-ge. Hydrodynamic analysis on wave power devices in near-shore zones. Journal of Hydrodynamics. 1993, Ser. B, 5 (3): 42~54
    [58] You Y, Yu Z, Katory M, Li Y. Onshore wave power stations: analytical and experimental investigations. In: 16th International Conference on Offshore Mechanics and Arctic Engineering. Yokohama, Japan. 1997, Ser B, 1: 105~112
    [59] Delaure Y. M. C and Lewis A. A 3D Parametric Study of a Rectangular Bottom-Mounted OWC Power Plant. In: Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: International Society of Offshore and Polar Engineers, 2001, 1: 548~554
    [60] Falca?o A.F. Wave-power absorption by a periodic linear array of oscillating water columns. Ocean Engineering. 2002, 29: 1163~1186
    [61] Wang D. J, Katory M, Bakountuzis L. Hydrodynamic Analysis of Shoreline OWC Type Wave Energy Converters. Journal of Hydrodynamics. 2002, Ser. B, 1: 8~15
    [62] Wehausen J. V, Laiton E. V. Surface Waves. Encyclopedia of Physics, Springer-Verlag. 1960, 9: 446~778
    [63] Lee C. H, Newman J. N, Nielsen F. G. Wave interactions with an oscillating water column. In: Proceedings of the 6th International Offshore and Polar Engineering Conference. Los Angles, USA: International Society of Offshore and Polar Engineers, 1996, 1: 82–90
    [64] Brito-Melo A, Sarmento A. J. N. A, Cle′ment A. H, Delhommeau G. A 3D boundary element code for analysis of OWC wave-power plants. In: Proceedings of the Ninth International Offshore and Polar Engineering Conference. Brest, France: International Society of Offshore and Polar Engineers, 1999, 1: 188~195
    [65] Delaure Y. M. C, Lewis A. 3D hydrodynamic modeling of fixed oscillating water column wave power plant by a boundary element methods. Ocean Engineering. 2003, 30: 309~330
    [66] Akabane M, Suzuki H, Yamauchi K. On the cross flow turbine for wave power plant. In: Proceedings of the 1st Symposium on wave energy utilization in Japan. 1984. 67~72
    [67] Katsuhara M, Kitamura F, Kajiwara K, Ohta Y. Characteristics of air turbines for wave activated generator used as light beacon. In: Proceedings of 2nd symposium on wave energy utilization in Japan. JAMSTEC. 1987: 83~91
    [68] K. Kaneko, T. Setoguchi, S. Raghunathan. Self-rectifying turbine for wave energy conversion. In: Proceedings of the 1st offshore and polar engineering conference. Edinburgh, UK: International Society of Offshore and Polar Engineers, 1991, 1: 385~392
    [69] Inoue M, Kaneko K, Setoguchi T, Shimamoto K. Studies on wells turbine for wave power generator (Part 4; Starting and running characteristics in periodically oscillating flow). Bull. JSME. 1986, 29 (250): 1177~1182
    [70] Inoue M, Kaneko K, Setoguchi T, Raghunathan S. Simulation of starting characteristics of the wells turbine. In: AIAA/ASME 4th Fluid Mech Plasma Dynamics Laser Conference. 1986. 1122~1127
    [71] Inoue M, Kaneko K, Setoguchi T, Saruwatari T. Studies on the wells turbine for wave power generator (Turbine characteristics and design parameter for irregular wave). JSME International Journal. 1988, Ser. II 31 (4): 676~682
    [72] Setoguchi T, Takao M, Kaneko K, Inoue M. Effect of guide vanes on the performance of a wells turbine for wave energy conversion. International Journal of Offshore and Polar Engineering. 1998, 8 (2): 155~160
    [73] Inoue M, Kaneko K, Setoguchi T, Hamakawa H. Air turbine with self-pitch-controlled blades for wave power generator (Estimation of performances by model testing). JSME International Journal. 1988, Ser. II 32 (1): 19~24
    [74] Setoguchi T, Raghunathan S, Takao M, Kaneko K. Air-turbine with self-pitch-controlled blades for wave energy conversion (Estimation of performances in periodically oscillating flow). International Journal of Rotating Machinery. 1997, 3(4): 233~238
    [75] Takao M, Setoguchi T, Kaneko K, Inoue M. Air turbine with self-pitch-controlled blades for wave energy conversion. International Journal of Offshore and Polar Engineering, 1997, 7 (4): 308~312
    [76] Thakker A, Frawley P, Sheik E. Experimental Investigation of CA9 Blades on a 0.3m Wells Turbine Rig. In:Proceedings of the Tenth International Offshore and Polar Engineering Conference. Seattle, USA: International Society of Offshore and Polar Engineers, 2000, 1: 345~350
    [77] Takao M, Setoguchi T, Kim T. H. The Performance of Wells Turbine with 3D Guide Vanes. In: Proceedings of the Tenth International Offshore and Polar Engineering Conference. Seattle, USA: International Society of Offshore and Polar Engineers, 2000, 1: 381~386
    [78] Lee Hyeong-Gu, Kim Jeong-Hwan, Lee Yeon-Won. Numerical Analysis of Flow Characteristics in a Wells Turbine for Wave Power Conversion. In: Proceedings of the Tenth International Offshore and Polar Engineering Conference. Seattle, USA: International Society of Offshore and Polar Engineers, 2000, 1: 427~433
    [79] Thakker A, Frawley P, Daly J. Preliminary 3D Computational Fluids Dynamics Analysis of the Wells Turbine. In: Proceedings of the Tenth International Offshore and Polar Engineering Conference. Seattle, USA: International Society of Offshore and Polar Engineers, 2000, 1: 442~451
    [80] Thakker A, Frawley P, Daly J. A 2D CFD Study of Symmetrical Airfoils PART I: in Isolated Flow. In: Proceedings of the Tenth International Offshore and Polar Engineering Conference. Seattle, USA: International Society of Offshore and Polar Engineers, 2000, 1: 452~458
    [81] Thakker A, Frawley P, Daly J. A 2D CFD Study of Symmetrical Airfoils PART II: in Cascade Flow. In: Proceedings of the Tenth International Offshore and Polar Engineering Conference. Seattle, USA: International Society of Offshore and Polar Engineers, 2000, 1: 459~464
    [82] Suzuki M and Arakawa C. Numerical Simulation of 3-D Stall Mechanism on Wells Turbine for Wave-Power Generating System. In: Proceedings of the Tenth International Offshore and Polar Engineering Conference. Seattle, USA: International Society of Offshore and Polar Engineers, 2000, 1: 465~471
    [83] Thakker A, Frawley P, Sheik Bajeet E. Numerical Analyssi of Wells Turbine Performance Using a 3D Navier-Stokes Explicit Solver. In: Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: International Society of Offshore and Polar Engineers, 2001, 1: 604~608
    [84] Thakker A, Frawley P, Sheik Bajeet E. CA9: Analysis of a Stall-Resistant Aerofoil in View of Wave Power Conversion. In: Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: International Society of Offshore and Polar Engineers, 2001, 1: 614~619
    [85] Kim Tae Ho, Setoguchi Toshiaki. Study of turbine with self-pitch-controlled blades for wave energy conversion. International Journal of Thermal Sciences. 2002, 41: 101~107
    [86] Setoguchi T, Kim T. H, Kaneko K. Air Turbine with Staggered Blades for Wave Power Conversion. In: Proceedings of the Twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan: International Society of Offshore and Polar Engineers, 2002, 1: 662~667
    [87] Kinoue Y, Setoguchi T, Kim T. H, Kaneko K. Air Turbine Using Self-Pitch- Controlled Blades for Wave Energy Conversion. In: Proceedings of the Twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan: International Society of Offshore and Polar Engineers, 2002, 1: 668~673
    [88] Kim T. H, Setoguchi T, Kinoue Y. Hysteretic Characteristics of Wells Turbine for Wave Power Conversion. In: Proceedings of the Twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan: International Society of Offshore and Polar Engineers, 2002, 1: 687~693
    [89] Kim Tae-Hun, Lee Yeon-Won, Park Ill-Kyoo. Numerical Analysis for Unsteady Flow Characteristics of the Wells Turbine. In: Proceedings of the Twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan: International Society of Offshore and Polar Engineers, 2002, 1: 694~699
    [90] Setoguchi T, Kinoue Y, et.al. Hysteretic characteristics of Wells turbine for wave power conversion. Renewable Energy. 2003, 28: 2113~2127
    [91] Kinoue Y, Kim T. H, Setoguchi T. Hysteretic characteristics of monoplane and biplane Wells turbine for wave power conversion, Energy Conversion and Management. 2004, 45: 1617~1629
    [92] Setoguchi T, Kinoue Y, Mohammad M, Kaneko K. Unsteady Flow Phenomena of Wells Turbine in Deep Stall Condition, In: Proceedings of the Fourteenth International Offshore and Polar Engineering Conference. Toulon, France: International Society of Offshore and Polar Engineers, 2004, 1: 266~271
    [93] Mamun M, Kinoue Y, Setoguchi T. Hysteretic Characteristics of Biplane Wells Turbine in a Deep Stall Condition. In: Proceedings of the Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea: International Society of Offshore and Polar Engineers, 2005, 1: 523~528
    [94] Takao M, Thakker A, Abdulhadi R. Effect of Blade Profile on the Performance of Large-Scale Wells Turbine. In: Proceedings of the Fourteenth International Offshore and Polar Engineering Conference. Toulon, France: International Society of Offshore and Polar Engineers, 2004, 1:272~276
    [95] Dhanasekaran T.S, Govardhanb M. Computational analysis of performance and flow investigation on wells turbine for wave energy conversion. Renewable Energy. 2005, 30: 2129~2147
    [96] Folley M, Curran R, Whittaker T. Comparison of LIMPET contra-rotating wells turbine with theoretical and model test predictions. Ocean Engineering. 2006, 33: 1056~1069
    [97]黄忠洲,余志,蒋念东. OWC波能转换装置输出控制技术的研究.节能技术. 2006, 24: 212~216
    [98] Tanaka M, Kawashima T, Isozaki T, Takehira A. Investigation of the two-dimensional performance of supersonic impulse turbine blade cascades (1st report, general characteristics of blade cascade). Trans of the JSME (in Japanese). 1981, 47(421): 1681~1689
    [99] Kim TW, Kaneko K, Setoguchi T, Matsuki E, Inoue M.. Impulse turbine with self-pitch-controlled guide vanes for wave power generator (effects of rotor blade profile and sweep angle). In: Proceedings of 2nd KSME-JSME Thermal and Fluid Engineering Conference. 1990, 1: 277~281
    [100] Setoguchi T, Kaneko K, Taniyama H, Maeda H, Inoue M. Impulse turbine with self-pitch-controlled guide vanes for wave power conversion: guide vanes connected by links. International Journal of Offshore and Polar Engineering. 1996, 6(1):76~80
    [101] Setoguchi T, Santhakumar S, Maeda H, Takao M, Kaneko K. A review of impulse turbines for wave energy conversion. Renewable Energy. 2001, 23: 261~292
    [102]梁贤光,孙培亚,王伟,蒋念东.往复流中双向导叶冲动透平模型性能试验研究.海洋工程. 2001,19: 84~93
    [103] Thakker A, Frawley P, Sheik Bajeet E. Comparison of 0.6m Impulse and Wells Turbines for Wave Energy Conversion Under Similar Conditions. In: Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: International Society of Offshore and Polar Engineers, 2001, 1: 630~633
    [104] Takao M, Itakura K, Setoguchi T. Noise Characteristics of Turbines for Wave Power Conversion. In: Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: International Society of Offshore and Polar Engineers, 2001, 1: 609~613
    [105] Thakker A, Frawley P, Khaleeq H. B. An Investigation of the Effects of Reynolds Number on the Performance of 0.6m Impulse Turbines for Different Hub to Tip Ratios. In: Proceedings of the Twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan: International Society of Offshore and Polar Engineers, 2002, 1:682~686
    [106] Thakker Ajit, Hourigan Fergal. Modeling and scaling of the impulse turbine for wave power applications. Renewable Energy. 2004, 29: 305~317
    [107] Thakker A, Dhanasekaran T.S. Experimental and computational analysis on guide vane losses of impulse turbine for wave energy conversion. Renewable Energy. 2005, 30: 1359~1372
    [108] Thakker A, Dhanasekaran T.S, Ryan J. Experimental studies on effect of guide vane shape on performance of impulse turbine for wave energy conversion. Renewable Energy. 2005, 30: 2203~2219
    [109] Kim Tae-Sik, Lee Hyeong-Gu, Park Il-Kyoo. Numerical Analysis of Impulse Turbine for Wave Energy Conversion. In: Proceedings of the Tenth International Offshore and Polar Engineering Conference. Seattle, USA: International Society of Offshore and Polar Engineers, 2000, 1: 414~419
    [110] Thakker A, Khaleeq H. B. Stress Analysis of Impulse Turbine Blades. In: Proceedings of the Eleventh international Offshore and Polar Engineering Conference. Stavanger, Norway: International Society of Offshore and Polar Engineers, 2001, 1: 589~595.
    [111] Thakker A, Frawley P, Khaleeq H. B. Experimental and CFD Analysis of 0.6m Impulse Turbine with Fixed Guide Vanes. In: Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: International Society of Offshore and Polar Engineers, 2001, 1: 625~629
    [112] Thakker A, Khaleeq H. B, Ansari A. R. Numerical Simulation of 0.6m Impulse Turbine for Wave Power Conversion Under Different Flow Conditions. In: Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: International Society of Offshore and Polar Engineers, 2001, 1: 634~637
    [113] Maeda H, Takao M, Setoguchi T. Impulse Turbine for Wave Power Conversion with Air Flow Rectification System. In: Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: International Society of Offshore and Polar Engineers, 2001, 1: 646~652
    [114] Lee Hyeong-Gu, Park Ill-Kyoo, Kim Tae-Hoon. A 3-Dimensional Numerical Simulation of Impulse Turbine for Wave Energy Conversion. In: Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: International Society of Offshore and Polar Engineers, 2001, 1: 620~624
    [115] Thakker A, Dhanasekaran T.S. Application of Numerical Simulation Method to Predict the Performance of Wave Energy Device with Impulse Turbine. Journal of Thermal Science. 2002, 12: 38~44
    [116] Thakker A, Frawley P, Khaleeq H. B. Performance prediction of an Impulse turbine under real sea conditions using numerical simulation techniques. In: Proceedings of the Twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan: International Society of Offshore and Polar Engineers, 2002, 1: 674~681
    [117] Thakker A, Dhanasekaran T.S. Computed effects of tip clearance on performance of impulse turbine for wave energy conversion. Renewable Energy. 2003, 29: 529~547
    [118] Thakker Ajit, Usmani Zia, Dhanasekaran T.S. Effects ofturbine damping on performance of an impulse turbine for wave energy conversion under different sea conditions using numerical simulation techniques. Renewable Energy. 2004, 29: 2133~2151
    [119] Thakker Ajit, Hourigan Fergal. Computational fluid dynamics analysis of a 0.6 m, 0.6 hub-to-tip ratio impulse turbine with fixed guide vanes. Renewable Energy. 2005, 30: 1387~1399
    [120] Kim T. W, Takao M, Setoguchi T. Effect of Tip Clearance on the Performance of Impulse Turbine for Wave Energy Conversion. In: Proceedings of the Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea:International Society of Offshore and Polar Engineers, 2005, 1: 513~517
    [121] Longuet-Higgins M. S. Mass transport in water waves. Philosophical Transactions of the Royal Society. 1953, Ser A, 245: 535~581
    [122]陈士荫.海岸动力学.北京:人民交通出版社. 1988. 32~37
    [123]文圣常,余宙文.海浪理论与计算原理.北京:科学出版社. 1984. 1~20
    [124]李孟国.蒋德才.关于波浪缓坡方程的研究.海洋通报. 1999, 18: 70~92
    [125] Berkhoff J. C. W. Computation of Combined Refraction Diffraction. In: Proceedings of the Thirteenth International Coastal Engineering Conference. ASCE. New York, USA, 2003,1: 471~490
    [126] Radder A. C. On the Parabolic Equation Method for Water-Wave Propagation. Journal of Fluid Mechanics. 1995, 26: 1~15
    [127] Copeland G. J. M. A practical alternative to the mild-slope equation. Coast Engineering. 1985, 9: 125~149
    [128] Booij N. Gravity waves on water with non-uniform depth and current, Report No. 81-1, Delft University of Technology. Department of Civil Engineering, 1981. 33~42
    [129] Lou J, Massel S. R. A combined refraction diffraction dissipation model of wave progation. Chinese Journal of Oceanology and Limnology. 1994, 12: 361~371
    [130] Kirby J. T. A note on linear surface wave current interaction over slowly varying topography. Journal of Geophysical Research. 1984, 89: 745~747
    [131] Beji S, Nadaoka K. A time dependent nonlinear mild-slope equation for water waves. Proceeding of Research Society. London, UK. A: 319~332
    [132] Grassa J. M. Directional random wave propagation on beaches. In: Proceedings of twenty-second International Conference on Coastal Engineering, ASCE. New York, USA. 1990, 1: 789~811
    [133] Boussinesq J. Theory of wave and swells propagated in long horizontal rectangular canal and imparting to the liquid contained in this canal. Journal de Mathmatiques Pures et Appliquees. 1872, 17(2): 55~108
    [134] Peregrine D. H. Long waves on a beach. Journal of Fluid Mechanics. 1967, 27: 815~827
    [135] Madsen P. A, Schaffer H. A. Higher order Boussinesq-type equations for surface gravity wave-derivation and analysis. Philosophical Transactions of the Royal Society. 1998, Ser A, 356: 3123~3184
    [136] Madsen P. A, Warren I. R. Performance of a numerical short-wave model. Coastal Engineering. 1984, 8: 73~93
    [137] Sorensen O. R, Schaffer H. A, Madsen P. A. Surf zone dynamics simulated by a Boussinesq type model III Wave-induced horizontal nearshore circulations. Coastal Engineering. 1998, 33: 155~176
    [138] Madsen P. A, Sorensen O. R. A New Form of the Boussinesq Equations with Improved Linear Dispersion Characteristics, Part 2. A Slowly-varying Bathymetry. Coastal Engineering. 1993, 119(6): 815~827
    [139] Hong G. W. Higher-order models of nonlinear and dispersive wave in water of varying depth with arbitrary sloping bottom. China Ocean Engineering. 1997, 11(3): 243~260
    [140] Chen Q, Kirby J. T, Dalrymple R. A. Boussinesq modeling of wave transformation, breaking, and runup, II: 2D, Journal of Port. Coastal and Ocean Engineering. 2000, 126(1): 48~56
    [141] Madsen P. A, Sorensen O. R, Schaffer H. A. Surf zone dynamics simulated by a Boussinesq type model Part II: Surf beat and swash oscillations for wave groups and irregular waves. Coastal Engineering. 1997, 32: 289~319
    [142] Veeramony J, Svendsen I. A. The flows in surf-zone waves. Coastal Engineering. 2000, 39: 93~122
    [143] Yoon S. B, Liu P. L. Interactions of currents and weakly nonlinear water waves in shallow water. Journal of Fluid Mechanics. 1989, 205: 397~419
    [144] Chen Q, Madsen P. A, Schaffer H. A. Wave-current interaction based on an enhanced Boussinesq approach. Coastal Engineering. 1998, 33: 11~39
    [145]邹志利,含强水流高阶Boussinesq水波方程.海洋学报. 2000, 22(4): 41~50
    [146]李孟国,王正林,蒋德才.近岸波浪传播变形数学模型的研究与进展.海洋工程. 2002, 20: 43~57
    [147]顾尔祚编著.流体力学中的有限差分法基础.上海:上海交通大学出版社. 1998. 35~45
    [148] J. N. Reddy. An Introduction to the Finite Element Method. McGraw-Hill. 2006. 77~89
    [149]高山.二维数值波浪水槽模式的建立和应用及浪流相互作用研究: [博士学位论文].中国海洋大学,2003.
    [150]谭维炎.计算水动力学—有限体积法的应用.北京:清华大学出版社. 1998. 1~32
    [151] Wei G, Kirby J. T. Time-dependent Numerical Code for Extended Boussinesq Equations. Journal of Waterway, Port, Coastal, and Ocean Engineering. 1995, 121(5): 251~261
    [152] Wei G, Kirby J. T, Sinha A. Generational of Waves in Boussinesq Models using a Source Function Method. Coastal Engineering. 1999, 36: 271~291
    [153]钦文婷. Boussinesq方程数学模型的改进及其工程应用: [硕士学位论文].天津:天津大学. 2003.
    [154] Ursell F, Dean R. G, Yu Y. S. Forced Small-amplitude Waters: a Comparison of Theory and Experiment. Fluid Mechanics. 1959, 22: 35~43
    [155] Sommerfeld A. Partial Differental Equation in Physics. Academic Press. New York, USA. 1949. 14~21
    [156] Larsen J, Dancy H. Open Boundaries in Short Wave Simulations- A new Approach. Coastal Engineering. 1983, 7: 285~297
    [157]陶建华.水波的数值模拟.天津:天津大学出版社. 2005. 66~68
    [158] Harlow F. H, Welch J. F. Numerical calculations of time dependent viscous incompressible flow of fluid with free surface. Journal of Physics of Fluids. 1965, 8: 182~218
    [159] Osher S, Sethian J. A. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics. 1988, 79: 12~22
    [160] Hirt C. W, Nichols B. D. Volume of fluid (VOF) method for the dynamics of free boundary. Journal of Computational Physics. 1981, 39: 201~225
    [161] Hinze J. O. Turbulence. McGraw-Hill Publishing Co., New York, 1975. 87~96
    [162] Fluent Inc. FLUENT User’s Guide. Fluent Inc., 2006
    [163] D. Choudhury. Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Inc. Technical Memorandum TM-107, 1993. 13~18
    [164] Menter F. R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. American Institute of Aeronautics and Astronautics Journal, 1994, 32: 1598-1605
    [165] Launder B. E, Reece G. J. Progress in the Development of a Reynolds-Stress Turbulence Closure. Journal of Fluid Mechanics, 1975, 68: 537-566
    [166] Speziale C. G, Sarkar S. Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach. Journal of Fluid Mechanics, 1991, 227: 245~272
    [167] Youngs D. L. Time-dependent multi-material flow with large fluid distortion. Numerical methods for fluid dynamics. 1982, 22: 273~285
    [168] Muzaferija S, Peric M. A Two-Fluid Navier-Stokes Solver to SimulateWater Entry. In: Proceedings of 22nd Symposium on Naval Hydrodynamics, Washington, DC, 1998, 1: 277~289
    [169] Vandoormaal J. P, Raithby G. D. Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows. Numeral Heat Transfer, 1984, 7: 147~163
    [170] Issa R. I. Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting. Journal of Computational Physics, 1985, 62: 40~65
    [171] Kim S.E, Choudhury D. A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient. In ASME FED, Separated and Complex Flows, ASME, 1995, 217: 124~134
    [172] Martin J. C, Moyce W. J. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos. Trans. Roy. Soc. London, Ser. A, 1952 , 244:314-324
    [173] Soliman A, Raslan M.S, and Reeve D.E. Numerical simulation of wave overtopping using two dimensional breaking wave model, Coastal Engineering VI, Cadiz, Spain, 2003: 439-447
    [174] Kobayashi N, Wurjanto A. Wave overtopping on coastal structures. J. Waterway, Port, Coastal Ocean Eng. ASCE , 1989, 115: 235–251
    [175] Hu K, Mingham C. G, D. M Causon. Numerical simulation of wave overtopping of coastal structures using the non-linear shallow water equations. Coastal Engineering, 2000, 41: 433-465.
    [176] Maeda H, Santhakumar S, Setoguchi T, Takao M, Kinoue Y and Kaneko K. Performance of an impulse turbine with fixed guide vanes for wave power conversion. Renewable Energy, 1999, 17: 533-547

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700