卟啉二聚体—苝二酰亚胺系列化合物的光致能量传递和光致电子转移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色植物光合作用反应中心是一个多步的电荷转移体系,这个体系是由一系列按照一定空间顺序排列的分子组成,具有很高的光致电荷转移和分离效率。在这种意义上说,然界的植物光合作用反应中心是一种分子水平上的高效率的光伏器件。因此模拟生物光合作用中心的光致电子转移和能量转移对太阳能的光电转换和收集具有重要的理论和应用价值。分析给体-受体电子体系中光诱导电子转移和能量传递过程有助于改善对太阳能的捕获和储存。
     卟啉化合物是构成光合作用反应中心的主要染料分子-叶绿素的同系物,具有与叶绿素分子相似的光化学与光物理性质,是非常理想的人工光合作用研究中叶绿素分子的替代化合物,是非常理想的D-A体系中的供电子部分。苝二酰亚胺及其衍生物具有优异的化学和光热稳定性,在可见和紫外区都有很强的吸收,荧光发射强,量子产率高。虽然在普通有机溶剂中的溶解性不是很好,但可以通过引入取代基来提高其溶解性。因此近年来,苝二酰亚胺衍生物与卟啉衍生物相连的D-A体系受到越来越多的关注。但以卟啉二聚体与花二酰亚胺衍生物相连的D-A体系还很少见。本文首次开展了卟啉二聚体和苝二酰亚胺衍生物之间的光致能量传递和电子转移反应的研究,得到了一些有意义的结果。论文包括以下几个方面内容:
     1.综述了近几年来人工模拟光合作用研究进展以及各种卟啉-苝酰亚胺系列化合物的研究情况及其应用。
     2.合成并且表征了不同连接基(对苯二胺,乙二胺)相连的卟啉二聚体与苝二酰亚胺衍生物相连接的D-A体系化合物,作为对比我们还合成单卟啉与苝二酰亚胺衍生物相连的化合物。
     3.使用稳态电子吸收光谱,荧光光谱以及荧光寿命测量方法研究了化合物的光物理性质。稳态电子吸收光谱表明:在基态,卟啉二聚体中的两个卟啉分子之间有相互作用;而卟啉二聚体和苝二酰亚胺分子之间没有相互作用。荧光光谱表明了苝二酰亚胺向卟啉分子高效的光致能量传递和卟啉分子向苝二酰亚胺分子之间的光致电荷转移。这种光致能量传递不受连接基的影响,而卟啉分子向苝二酰亚胺的光致电子转移则明显的受给体受体之间的连接基以及溶剂极性的影响,且卟啉的二聚体结构在非极性溶剂中也加速了光致电子转移反应。
The most important process in natural photosynthetic reaction center is the quick and efficient multiple-step electron and the energy transfer. This has attracted many researchers to look for ways to duplicate the reactions in simplified chemical systems. To mimic both the charge separate and light harvesting process in photosynthetic protein, the artificial photosynthetic system are normally comprised of electron donors and acceptors which linked by covalent bonds or supramolecular interactions.
     The versatile optical, redox, and photochemical properties of porphyrins makes them ideal substitute for chlorophylls in artificial photosynthetic systems. It is proved to be a good electron donor in the most of D-A arrays as revealed by numerous literature reports. The perylene tetracarboxylic diimide (PDI) has strong absorption between the porphyrin Soret (B) and Q bands, strong emission with high fluorescence quantum yield, and rational fluorescence lifetime. The particular important is its high stabilities toward heat and light. PDIs can be modified easily on the molecular structure, which not only change photophysical and redox properties, as well as improve the solubility of theses compounds in common organic solvents. Very recently, the D-A systems composed of both porphyrin and PDI became the focus of many research groups. However, the D-A systems. containing face-to-face arranged porphyrin dimer and PDI has never been reported so far. In this thesis, we have prepared several D-A systems composed of a porphyrin dimer and a PDI lined by different bridges. Some novel photophysical properties have been found for these compounds. To the best of our knowledge, this represents the first example of the artificial photosynthetic model, which contains porphyrin dimer and PDI at the same time.
     The photophysical properties of these two compounds were investigated by the steady state electronic absorption and fluorescecne spectra and the lifetime measurements. The ground state absorption spectra revealed intense interactions between the porphyrin units within the porphyrin dimer but no interactions between porphyirn dimer and PDL The fluorescence spectra suggested an efficient energy transfer from PDI to porphyrin accompanied with a less efficient electron transfer from porphyrin to PDI. The energy transfer is not affected by the dimeric structure of porphyrin as well as the linkage between the porphyrin dimer and PDI. But the electron transfer from porphyrin to PDI is significantly affected by either the linkage between the donor and the acceptor or the polarity of the solvents. The dimeric structure of porphyrin unites in these compounds have promoted the electron transfer in non-polar solvent significantly, but not in polar solvents.
引文
[1]R.E.Blankenship,Molecular Mechanisms of Photosynthesis;Blackwell Science:Oxford,2002.
    [2]K.N.Ferreira,T.M.Iverson,K.Maghlaoui,J.Barber,S.Iwata,Architecture of the Photosynthetic Oxygen-Evolving Center,Science,2004,303,1831-1838.
    [3]J.Deisenhofer,O.Epp,K.Miki,R.Huber,H.Michel,X-ray structure analysis of a membrane protein complex:Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis,J.Mol.Biol.,1984,180,385-398.
    [4]J.P.Allen,G.Feher,T.O.Yeates,H.Komiya,D.C.Rees,Structure of the Reaction Center from Rhodobacter Sphaeroides R-26:The Cofactors,Proc.Natl.Acad.Sci.,U.S.A.1987,84,5730-5734.
    [5]C.H.Chang,O.El-Kabban,D.Tiede,J.Norris,M.Schiffer,Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides,Biochemistry 1991,30,5352-5360.
    [6]上海植物研究所,中科院北京植物研究所,《光合作用研究进展》,第一集
    [7]J.Deisenhoper,O.Epp,K.Miki,R.Huver,H.Michel,Structure of the protein subunits in the photosynthetic reaction centers of the Rhodopseudomonas viridis at 3 A resolution,Nature,1985,318,618-624.
    [8]田宏健博士论文,中科院感光化学研究所,1993年,p5.
    [9]N.J.Turro,Modern Molecular Photochemistry,Bejamin/Cummings;Menlo Park,CA,1978
    [10]董晓阳硕士论文,中科院感光化学研究所,1993,p4.
    [11]T.Hayashi,T.Takimura,H.Ogoshi,Photoinduced Singlet Electron Transfer in a Complex Formed from Zinc Myoglobin and Methyl Viologen:Artificial Recognition by a Chemically Modified Porphyrin.J.Am.Chem.Soc.,1995,117.11606-11607.
    [12]M.Sirishi,R.Kache,B.G.Maiya,Intramolecular excitation energy transfer in isomeric porphyrinanthracene dyads,J.Photochem.Photobio.:A Chem.,1996,93,129-136.
    [13]S.Gaspard,C.Giannotti,P.Maillard,C.Scheeffer,T.H.Trans-Thi,The first synthesis of covalently linked mixed dimer complexes containing phthalocyanine and porphyrin,Chem.Commun.,1956,1239-1241.
    [14]T.H.Tran-Thi.C.Thiec,S.Gaspard,Singlet-singlet and triplet-triplet intramolecular transfer processes in a covalently linked porphyrin-phthalocyanine heterodimer,J.Phys.Chem.,1989,93,1226-1233.
    [15]周庆复,田宏健,申淑引,许慧君,以共价键相连的卟啉-酞菁化合物分子内能量传递及光诱导电子转移,感光化学与光化学,1992,10(2),144-149.
    [16]H.J,Tian,Q.F.Zhou,S.Y.Shen,H.J.Xu,Singlet-singlet intramolecular energy and electron transfer in covalently-linked porphyrin-phthalocyanine heterodimers,J.Photochem.Photobiol.,1993,72,163-168.
    [17]D.Gust,T.A.Moore and A.L.Moore,Molecular mimicry of photosynthetic energy and electron transfer,Acc.Chem.Res.,1993,26,198-205.
    [18]J.L.Seller,B.Wang,A.Harriman,Long-range photoinduced electron transfer in an associated but non-covalently linked photosynthetic model system,J.Am.Chem.Soc.,1993,115,10418-10419.
    [19]A.M.Brun,S.J.Atherton,A.Harriman,V.Heitz,F.Odobel,J.P.Sauvage,Photophysics of entwined porphyrin conjugates:competitive exciton annihilation,energy-transfer,electron-transfer,and superexchange processes,J.Am.Chem.Soc.,1992,114,4632-4639.
    [20]J.Mantensson,K.Sandros,O.Wennerstrom,Supramolecular Chemistry;Dimerisation of mono zinc N,N'-bis[4-(meso-triphenylporphyrinyl)benzyl]-4,13-diaza-18-crown-6,Tetrahedren.Lett,1993,34(3),541-544.
    [21]C.M.Drain.K C.Russell and J.M.Lehn,Self-assembly of a multi-porphyrin supramolecular macrocycle by hydrogen bond molecular recognition,Chem.Commun.,1996,337-338.
    [22]S.Prathapan,S.I.Yang,J.Seth,M.A.Miller,D.F.Bocian,D.Holten,J.S. Lindsey,Synthesis and Excited-State Photodynamics of Perylene-Porphyrin Dyads.1.Parallel Energy and Charge Transfer via a Diphenylethyne Linker,J.Phys.Chem.B,2001,105,8237-8248.
    [23]S.I.Yang,S.Prathapan,M.A.Miller,J.Seth,D.F.Bocian,J.S.Lindsey,D.Holten,Synthesis and Excited-State Photodynamics in Perylene-Porphyrin Dyads 2.Effects of Porphyrin Metalation State on the Energy-Transfer,Charge-Transfer,and Deactivation Channels,J.Phys.Chem.B,2001,105,8249-8258.
    [24]K.Tomizaki,R.S.Loewe,C.Kirmaier,J.K.Schwartz,J.L.Retsek,D.F.Bocian,D.Holten,J.S.Lindsey,Synthesis and Photophysical Properties of Light-Harvesting Arrays Comprised of a Porphyrin Bearing Multiple Perylene-Monoimide Accessory Pigments,J.Org.Chem.,2002,67,6519-6534.
    [25]K.Muthukumaran,R.S.Loewe,C.Kirmaier,E.Hindin,J.K.Schwartz,I.V.Sazanovich,J.R.Diers,D.F.Bocian,D.Holten,J.S.Lindsey,Synthesis and Excited-State Photodynamics of A Perylene-Monoimide-Oxochlorin Dyad.A Light-Harvesting Array,J.Phys.Chem.B,2003,107,3431-3442.
    [26]M.A.Miller,R.K.Lammi,S.Prathapan,D.Holten,J.S.Lindsey,A Tightly Coupled Linear Array of Perylene,Bis(Porphyrin),and Phthalocyanine Units that Functions as a Photoinduced Energy-Transfer Cascade,J.Org.Chem.,2000,65,6634-6649.
    [27]S.-G Chen,P.Stradins,B.A.Gregg,Doping Highly Ordered Organic Semiconductors:Experimental Results and Fits to a Self-Consistent Model of Excitonic Processes,Doping,and Transport,J.Phys.Chem.B,2005,109,13451-13460.
    [28]S.G.Chen,H.M.Branz,;S.S.Eaton,P.C.Taylor,R.A.Cormier,B.A.Gregg,Substitutional n-Type Doping of an Organic Semiconductor Investigated by Electron Paramagnetic Resonance Spectroscopy,J.Phys.Chem.B,2004,108,17329-17336.
    [29]B.A.Gregg,Excitonic Solar Cells,J.Phys.Chem.B,2003,107,4688-4698.
    [30]E.E.Neuteboom,S.C.J.Meskers,P.A.Van Hal,J.K.J.Van Duren,E.W.Meijer, R.A.J.Janssen,H.Dupin,G.Pourtois,J.Cornil,R.Lazzaroni,J.-L.Bredas,D.Beljonne,Alternating Oligo(p-phenylene vinylene)-Perylene Bisimide Copolymers:Synthesis,Photophysics,and Photovoltaic Properties of a New Class of Donor-Acceptor Materials,J.Am.Chem.Soc.,2003,125,8625-8638.
    [31]B.A.Gregg,R.A.Cormier,Doping Molecular Semiconductors:n-Type Doping of a Liquid Crystal Perylene Diimide,J.Am.Chem.Soc.,2001,123,7959-7960.
    [32]J.J.Dittmer,E.A.Marseglia,R.H.Friend,Electron Trapping in Dye/Polymer Blend Photovoltaic Cells,Adv.Mater,2000,12,1270-1274.
    [33]S.Ferrere,A.Zaban,B.A.Gregg,Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives,J.Phys.Chem.B,1997,101,4490-4493.
    [34]W.E.Ford,P.V.Kamat,Photochemistry of 3,4,9,10-perylenetetracarboxylic dianhydride dyes.3.Singlet and triplet excited-state properties of the bis(2,5-di-tert-butylphenyl)imide derivative,J.Phys.Chem.,1987,91,6373-6380.
    [35]W.E.Ford,H.Hiratsuka,P.V.Kamat,Photochemistry of 3,4,9,10-Perylene-tetracarboxylic dianhydride dyes.4.Spectroscopic and redox properties of oxidized and reduced forms of the bis(2,5-di-tert-butylphenyl)imide derivative,J.Phys.Chem.,1989,93,6692-6696.
    [36]F.Wurthner,C.Thalacker,A.Sautter,Hierarchical Organization of Functional Perylene Chromophores to Mesoscopic Superstructures by Hydrogen Bonding and π-π Interactions,Adv.Mater.,1999,11,754-758.
    [37]H.Langhals,S.Saulich,Bichromophoric Perylene Derivatives:Energy Transfer from Non-Fluorescent Chromophores,Chem.-Eur J.,2002,8,5630-5643.
    [38]A.P.H.J.Schenning,J.van Herrikhuyzen,P.Jonkheijm,Z.Chen,F.Wurthner,E.W.Meijer,Photoinduced Electron Transfer in Hydrogen-Bonded Oligo (p-phenylene vinylene)-Perylene Bisimide Chiral Assemblies,J.Am.Chem.Soc.,2002,124,10252-10253.
    [39]C.Kirmaier,E.Hindin,J.K.Schwartz,I.V.Sazanovich,J.R.Diers,K.Muthukumaran,M,Taniguchi,D.F.Bocian,J.S.Lindsey,D.Holten,Synthesis and Excited-State Photodynamics of Perylene-Bis(Imide)-Oxochtorin Dyads.A Charge-Separation Motif,J.Phys.Chem.B,2003,107,3443-3454.
    [40] H. Langhals, R. Ismael, A Study of the Mechanism of Platinum (Ⅱ)/Tin (Ⅱ) Dichloride Mediated Hydrogenation of Alkynes and Alkenes Employing Parahydrogen-Induced Polarization, Eur. J. Org. Chem., 1998,1915-1917.
    [41] R. F. Kelley, W. S. Shin, B. Rybtchinski, L. E. Sinks, and M. R. Wasielewski, Photoinitiated Charge Transport in Supramolecular Assemblies of a 1, 7, N, N'-Tetrakis(zinc porphyrin)-perylene-3,4:9,10-bis(dicarboximide), J. Am. Chem. Soc., 2007, 129, 3173-3181.
    [42] M. J. Ahrens, M. J. Fuller, M. R.Wasielewski, Cyanated Perylene-3, 4- dicarboximides and Perylene-3,4:9,10-bis(dicarboximide): Facile Chromophoric Oxidants for Organic Photonics and Electronics, Chem. Mater., 2003, 15, 2684-2686.
    [43] Y. Zhao, M. R. Wasielewski, 3,4:9,10-Perylenebis(dicarboximide) chromophores that function as both electron donors and acceptors. Tetrahedron Lett., 1999, 40, 7047-7050.
    [44] R. T.Hayes, M. R. Wasielewski, Competitive Electron Transfer from the S_2 and S_1 Excited States of Zinc meso-Tetraphenylporphyrin to a Covalently Bound Pyromellitimide: Dependence on Donor-Acceptor Structure and Solvent, J. Phys. Chem. A, 2004, 108, 2375-2381.
    [45] M. P. O'neil, M. P. Niemezyk, W. A. Svee, D. Gosztola, G. L.Gaineslll, M. R. Wasielewski, Picosecond Optical Switching Based on Biphotonic Excitation of an Electron Donor-Acceptor-Donor Molecule, Scienee, 1992, 257, 63-65.
    [46] M. P. Debreczeny, W. A. Svec, M. R. Wasielewski, Optical Control of Photogenerated Ion Pair Lifetimes: An Approach to a Molecular Switch, Science, 1996, 274, 584-587.
    [47] D. GosZtola, M. P. Niemczyk, M. R. Wasielewski, Picosecond Molecular Switch Based on Bidirectional Inhibition of Photoinduced Electron Transfer Using Photogenerated Electric Fields, J. Am. Chem. Soc. 1998,120,5118-5119.
    [48] T. vander Boom, R. T. Hayes, Y. Zhao, P. J. Bushard, E. A. Weiss, M. R. Wasielewski, Charge Transport in Photofunctional Nanoparticles Self-Assembled from Zinc 5,10,15,20-Tetrakis(perylenediimide)porphyrin Building Blocks, J. Am.Chem.Soc.,2002,124,9582-9590.
    [49]S.I.Yang,R.K.Lammi,S.Prathapan,M.A.Miller,J.Seth,J.R.Diers,D.F.Bocian,J.S.Lindsey and D.Holten,Synthesis and excited-state photodynamics of perylene-porphyrin dyads Part 3.Effects of perylene,linker,and connectivity on ultrafast energy transfer,J.Mater.Chem.,2001,11,2420-2430.
    [50]A.Ambroise,C.Kirmaier,R.W Wagner,R.S.Loewe,D.F.Bocian,D.Holten,J.S.Lindsey,Weakly Coupled Molecular Photonic Wires:Synthesis and Excited-State Energy-Transfer Dynamics,J.Org.Chem.,2002,67,3811-3826.
    [51]R.S.Loewe,K.Tomizaki,W.J.Youngblood,Zh.Bo and J.S.Lindsey,Synthesis of perylene-porphyrin building blocks and rod-like oligomers for light-harvesting applications,J.Mater.Chem.,2002,12,3438-3451.
    [52]Sh.Xiao,M.E El-Khouly,Y.Li,Zh.Gan,H.Liu,L Jiang,Y.Araki,O.Ito,and D.Zhu,Dyads and Triads Containing Perylenetetracarboxylic Diimide and Porphyrin:Efficient Photoinduced Electron Transfer Elicited via Both Excited Singlet States,J.Phys.Chem.B,2005,109,3658-3667.
    [53]X.He,H.Liu,Y.Li,Y,Liu,F.Lu,Y.Li,D.Zhu,A New Copolymer Containing Perylene Bisimide and Porphyrin Moieties:Synthesis and Characterization,Macromol.Chem.Phys.,2005,206,2199-2205.
    [54]Ch.You and F.Wurthner,Porphyrin-Perylene Bisimide Dyads and Triads:Synthesis and Optical and Coordination Properties,Org.Lett.,2004,6,2401-2404.
    [1](a)Y.Wang,Y.Chen,R Li,Sh.Wang,W.Su,P.Ma,M.R.Wasielewski,X.Li,J.Jiang,Amphiphilic Perylenetretracarboxyl Diimide Dimer and Its Application in Field Effect Transistor,Langmuir,2007,23,5836-5842.
    (b)Ch.Zhao,Y.Zhang,R.Li,X Li,J.Jiang,Di(alkoxy)- and Di(alkylthio)-Substituted Perylene-3,4;9,10-tetracarboxy Diimides with Tunable Electrochemical and Photophysical Properties,J.Org.Chem.,2007,72,2402-2410.
    [2]L.E.Sink,B.Rybtchinski,M.Limura,B.A.Jones,A.J.Goshe,X.Zuo,D.M.Toiede,X.L,M.R.Wasielewski,Self-Assembly of Photofunctional Cylindrical Nanostructures Based on Perylene-3,4:9,10-bis(dicarboximide),Chem.Mater.2005,17,6295-6303.
    [3]G.H.Barnett,M.F.Hudson,K.M Smith,J.Chem.Soc.Perkin Trans.Ⅰ1975,1401-1403.T.Carofiglio,A.Varotto,and U.Tonellato,One-Pot Synthesis of Cyanuric Acid-Bridged Porphyrin-Porphyfin Dyads,J.Org.Chem.2004,69,8121-8124.
    [4]K.Ichihara,Y.Naruta,New and Efficient Synthesis of Oligomeric Porphyrins via Stepwise Nucleophilic Substitution of Aminoporphyrins to Cyanuric Chloride,Chem.Lett.,1995,631-632.
    [5]Y.Li,N.Wang,H.Gan,H.Liu,H,Li,Y.Li,X.He,Ch.Huang,S.Cui,S.Wang,D.Zhu,Synthesis and Characterization of 3,5-Bis(2-hydroxyphenyl)-1,2,4-triazole Functionalized Tetraaryloxy Perylene Bisimide and Metal-Directed Self-Assembly,J.Org.Chem.,2005,70,9686-9692.
    [1]C.C.Chao,M.K.Leung,Y.O.Su,K.Y.Chiu,T.-H.Lin,S.J.Shieh,S.C Lin,Photophysical and Electrochemica Properties of 1,7-Diaryl-Substituted Perylene Diimides,J.Org.Chem.,2005,70,4323-4331.
    [2]S.I.Yang,S.Prathapan,M.A.Miller,J.Seth,D.F.Bocian,J.S.Lindsey,and D.Holten,Synthesis and Excited-State Photodynamics in Perylene-Porphyrin Dyads 2.Effects of Porpbyrin Metalation State on the Energy-Transfer,Charge-Transfer,and Deactivation Channels,J.Phys.Chem.B.,2001,105,8249-8258.
    [3]Y.Wang,Y.Chen,R.Li,Sh.Wang,W.Su,P.Ma,M R.Wasielewski,X.Li,J.Jiang,Amphiphilic Perylenetretracarboxyl Diimide Dimer and Its Application in Field Effect Transistor,Langmuir,2007,23,5836-5842.
    [4]杨新国博士论文,浙江大学,2003年,p45.
    [5]R.V.Martin,P.M.V.Martin,E.Orti,Theoretical determination of the geometric and electronic structures of oligorylenes and poli(peri-naphthalene),J.Chem.Phy.,1992,97,8470-8480.
    [6]S.Prathapan,S.I.Yang,J.Seth,M.A.Miller,D.F.Bocian,D.Holten,and J.S.Lindsey,Synthesis and Excited-State Photodynamics of Perylene-Porphyrin Dyads.1.Parallel Energy and Charge Transfer via a Diphenylethyne Linker,J.Phys.Chem.B,2001,105,8237-8248.
    [7]C.M.Drain,K.C.Russell and J.M.Lehn,Self-assembly of a multi-porphyrin supramolecular macrocycle by hydrogen bond molecular recognition,Chem.Commun.,1996,337-338.
    [8]Sh.Xiao,M.E.El-Khouly,Y.Li,Zh.Gan,H.Liu,L.Jiang,Y.Araki,O.Ito,and D.Zhu,Dyads and Triads Containing Perylenetetracarboxylic Diimide and Porphyrin:Efficient Photoinduced Electron Transfer Elicited via Both Excited Singlet States,J.Phys.Chem.B,2005,109,3658-3667.
    [9]魏永臣,李娜,秦身均,磺基水杨酸的荧光光谱与荧光量子产率,光谱学与光谱分析,2004,24(6),647-651.
    [10]姜月顺,李铁津,《光化学》,化学工业出版社,2004.
    [11]李希友博士论文,1998年,p87
    [12]N.J.Turro,Modern molecular photochemistry.Benjamin/Cummings:Menlo Park,CA.1975.
    [13]G.Gritzner,Polarographic half-wave potentials of cations in nonaqueous solvents,Pure Appl.Chem.,1990,62,1839-1858.
    [14](A):G.L.Closs,J.R.Miller,Intramolecular Long-Distance Electron Transfer in Organic Molecules,Science,1985,240,440-446.
    (B):R.leiter,W.Schafer,Interactions between nonconjugated.pi.-systems,Acc.Chem.Res,,1990,23,369-375.
    [15]Hyperchem,version 5.02;Hypercube Inc.:Gainesville,FL,1997.
    [16]Z.R.Grabowski,Electron transfer and the structural changes in the excited state,Pure &Appl.Chem.,1992,64,1249-1255.
    [17]R.S.Loewe,K.-y.Tomizaki,W.J.Youngblood,Z.Bo,J.S:Lindsey,Synthesis of perylene-porphyrin building blocks and rod-like oligomers for light-harvesting applications,J.Mater:Chem.,2002,12,3438-3451.
    [18]C.-C.You,F.Wurthner,Porphyrin-Perylene Bisimide Dyads and Triads:Synthesis and Optical and Coordination Properties,Org.Lett.,2004,6,2401-2404.
    [19]K.Muthukumaran,J.K.Schwartz,I.V.Sazanovich,C.Kirmaier,E.Hindin,J.R.Diers,M.Taniguchi,D.F.Bocian,D.Holten,J.S.Lindsey,Synthesis and Excited-State Photodynamics of Perylene-Bis(Imide)-Oxochlorin Dyads.A Charge-Separation Motif,J.Phys.Chem.B,2003,107,3443-3454.
    [20]K.Muthukumaran,R.S.Loewe,C.Kirmaier,E.Hindin,J.K.Schwartz,I.V.Sazanovich,J.R.Diers,D.F.Bocian,D.Holten,J.S.Lindsey,Synthesis and Excited-State Photodynamics of A Perylene-Monoimide-Oxochlorin Dyad.A Light-Harvesting Array,J.Phys.Chem.B,2003,107,3431-3442.
    [21]C.Kirmaier,S.K.Yang,S.Prathapan,M.A.Miller,J.R.Diers,D.F.Bocian,J.S.Lindsey,D.Holten,Synthesis and excited-state photodynarnics of perylene-porphyrin dyads.4.Ultrafast charge separation and charge recombination between tightly coupled units in polar media,Res.Chem.Intermed.,2002,28,719-740.
    [22]D.Rehm,A.Weller,Kinetics of fluorescence quenching by electron and hydrogen-atom transfer,Isr.J.Chem.1970,8,259-271.
    [23]樊美公,《光化学基本原理与光子学材料科学》,科学出版社,2001
    [24]R.F.Kelley,W.S.Shin,B.Rybtchinski,L.E.Sinks,M.R.Wasielewski,Photoinitiated Charge Transport in Supramolecular Assemblies of a 1,7,N,N′-Tetrakis(zinc porphyrin)-perylene-3,4:9,10-bis(dicarboximide),J.Am.Chem.Soc.,2007,129,3173-3181.
    [25]P.Ballester,A.I.Oliva,A.Costa,P.M.Deya,A.Frontera,R.M Gomila,C.A.Hunter,DABCO-Induced Self-Assembly of a Trisporphyrin Double-Decker Cage:Thermodynamic Characterization and Guest Recognition,J.Am.Chem.Soc.,2006,128,5560-5569.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700