潜望式卫星光通信终端45度镜空间温变特性及影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星激光通信技术由于其传输数据率高、保密性好、体积小而且重量轻,受到世界各国越来越多的关注。美国、欧洲和日本等国已相继实现了卫星激光通信技术工程化,并成功进行了星地和星间激光通信实验,其他国家也在大力发展卫星激光通信技术。
     卫星激光通信由于传输距离远,激光光束束散角小,使得瞄准、捕获和跟踪(PAT)技术成为链路建立和保持的关键技术。卫星激光通信系统主要包括光信号收发子系统、跟瞄子系统以及通信子系统。跟瞄子系统由粗瞄机构和精瞄机构两部分构成,粗瞄机构的结构形式一般分为潜望式结构和经纬仪式结构。对于潜望式结构,需要在粗瞄机构上安装两块45度放置的反射镜,粗瞄机构及其45度反射镜安装在卫星舱外用以实现光信号的收发和跟瞄。这样,45度反射镜就暴露在空间热环境中,形成具有一定梯度的温度场并使反射镜产生热形变,对卫星激光通信系统的跟瞄性能和通信性能产生一定的影响。因此,研究潜望式卫星光通信终端45度反射镜空间温度场分布,及其对激光通信系统跟瞄性能和通信性能的影响具有重要意义。
     本文首先阐述了世界各国卫星激光通信技术的发展情况,介绍了空间热环境对激光通信终端性能影响的国内外研究现状。针对潜望式卫星光通信终端,对45度反射镜空间温度场分布、及其对系统跟瞄性能和通信性能的影响进行了深入系统的研究,具体工作如下:
     本文建立了潜望式卫星光通信终端45度反射镜上的温度分布对系统跟瞄性能影响的理论模型,分析了45度反射镜上的温度分布对发射端瞄准性能和接收端跟踪性能的影响,得到了跟瞄误差和接收平面上的光强分布随45度反射镜上温度梯度和均匀温差的变化规律。
     研究了存在卫星平台振动环境下,45度反射镜上的温度分布对系统通信性能的影响。在不考虑噪声和考虑噪声两种条件下,建立了45度反射镜上的温度分布对通信误码率影响的理论模型,给出了通信误码率随45度反射镜上的温度梯度和均匀温差的变化规律。分析过程中,通过采用不同的通信光波长、振动角偏差和光束切断比,在45度反射镜上存在温度分布变化情况下,得到了通信误码率随各个参量的变化关系。
     在45度反射镜上存在温度梯度和均匀温差分布情况下,对比分析了背部框架固定方式与传统的圆周压圈固定方式对系统跟瞄性能和通信性能的影响。分析结果表明,相比于圆周压圈固定方式,背部框架固定方式更加适合于45度反射镜的固定。
     建立了潜望式卫星光通信终端在轨运行过程中,45度反射镜在轨温度场分布的理论模型,给出了典型的低轨和高轨上45度反射镜的在轨温度场变化规律。对比分析了四种不同材料的45度反射镜的在轨温度场分布及其变化规律,结果表明SiC反射镜具有最小的温度变化范围和温度不均匀性,是45度反射镜的可选材料。本文对背部固定方式下SiC材料反射镜的在轨温度场分布情况进行了实验模拟,通过对实验结果与仿真结果的对比分析,验证了采用仿真方法进行45度反射镜在轨温度场计算的正确性。
     最后研究了45度反射镜在轨温度场分布对系统跟瞄性能和通信性能的影响,得到了潜望式卫星光通信终端在轨运行过程中,跟瞄误差、接收平面光强分布和通信误码率随时间的变化规律。
     该项研究工作为潜望式卫星光通信终端45度反射镜温控指标的设计、反射镜材料的选择及固定方式的选择提供了理论依据,为终端在轨性能指标优化设计提供重要的参考依据,也为实际应用中终端在轨性能测试结果的分析提供了理论依据和参考,因此,该项研究具有重要意义。
More and more attentions globally are paid to satellite laser communication, a new communication technique which has many advantages including higher data rate, low probability of intercept, less volume, less mass and so on. Among others, America, Europe and Japan have come to the engineering reality of satellite laser communications, succeeding in the satellite-to-earth and intersatellite laser communication experiments, and investing more in this grow up field.
     Because of far communication distance and ultra-small divergence of laser beam, the pointing, acquisition and tracking (PAT) become the key technologies in founding and keeping the satellite laser communication links. Generally, a satellite laser communication system mainly includes transmitter-receiver, pointing-tracking, and communication subsystems. The pointing-tracking subsystem consists of coarse pointer and fine pointer mechanisms. A coarse pointer is usually of a periscope structure or a theodolite structure. For the periscope structure, two 45-degree placed reflectors should be set on the coarse pointer. The coarse pointer and 45-degree reflectors must be fixed outside the satellite to transmit-receive and point-track optical signal. Therefore, this makes the 45-degree reflectors on coarse pointing structure exposed to the space thermal environment. Apparently, the temperature field with temperature gradient will be formed on the reflectors and this in turn results in the deformation of the reflectors. Consequently, performance of the pointing, tracking and communication subsystems of satellite laser communication system will be affected. Therefore, it is of significance to study the temperature field distribution on 45-degree reflectors in periscopic satellite laser terminals in space and the induced influence to laser communications’performance.
     This dissertation is organized as follows, first, a brief review of the development status of satellite laser communications globally is given in this dissertation. We give the introduction of the research on the effect on the performance of laser communication terminals due to thermal environment in space. For periscopic satellite laser communication terminals, in-depth and systematic research is made on temperature field distribution on 45-degree reflectors in space, and its influence on pointing-tracking performance and communication performance in laser communication systems. The specific works are list as following.
     In this dissertation, we established the theoretical model of the effects on pointing and tracking performance due to temperature distribution on 45-degree reflectors in periscopic satellite optical terminals. Effects on pointing performance at emitter and tracking performance at receiver are analyzed respectively due to temperature distribution on reflectors. We got the variation of pointing error, tracking error and intensity distribution on receiving plane with the temperature gradient and uniform temperature difference on 45-degree reflectors.
     Effects on communication performance due to temperature distribution on 45-degree reflectors are studied when vibration of satellite platform exists. The theoretical model of effects on BER due to temperature distribution on reflectors is established in this dissertation with and without noise. The variation of BER with temperature gradient and uniform temperature difference on reflectors is given. Through the analysis of effects on BER because of different wavelength, vibration angle deviation and beam truncation, we got the relationship between BER and these parameters.
     When there is temperature gradient and uniform temperature difference on 45-degree reflectors, the effects on pointing-tracking and communication performance are compared to the back-fixing using blank and traditional around-fixing using press-board. It is found that the back-fixing method using blank is more suitable to be used to fix 45-degree reflectors comparing to around-fixing method using press-board.
     The theoretical model of temperature field distribution on 45-degree reflectors in periscopic satellite optical terminals on orbit is established in this dissertation. The variation regularity of temperature field on 45-degree reflectors is given most typical low earth orbit and high earth orbit. The temperature distribution on reflectors of the four different materials is given on orbit. It is found that the reflector with SiC material has the minimum temperature changing range and the minimum temperature difference on orbit. And SiC material is more suitable to be used to make 45-degree reflectors in periscopic satellite optical terminals. The experiment of temperature field distribution on orbit of SiC material reflectors under back-fixing method is given. Through the comparation of the experiment and simulation results, the simulation method computing 45-degree reflectors’temperature field on orbit is validated to be right.
     Finally, the influence of temperature field on 45-degree reflectors on orbit on pointing, tracking and communication performance in periscopic satellite optical terminals is studied at the end of this dissertation. The variation regularity of pointing error, tracking error, intensity distribution on receiving plane and communication BER performance with time on orbit is given.
     In summary, the study of this dissertation provides theoretical support guidance in the aim design of thermal control of 45-degree reflectors in periscopic satellite optical terminals, and also in choosing materials and fixing methods for 45-degree reflectors. This can serve as good reference in optimizing design of performance parameter of terminals on orbit in space, as well as theoretical support and reference in testing and evaluating of performance test of periscopic satellite optical terminals on orbit in practical application. Therefore, these research and works are of great significance.
引文
[1] K. E. Wilson and J. R. Lesh. Overview of the Ground-to-Orbit Lasercom Demonstration. Proc. SPIE. 1997, 2990: 23~30.
    [2] M. Gueleman, A. Kogan, A. Kazarian, A. Livne, M. Orenstein and S. Arnon. Acquisition and Pointing Control for Inter-Satellite Laser Communications. IEEE Transactions on Aerospace and Electronic Systems. 2004. 40(4): 1239~1248
    [3] Y. Arimoto, M. Toyoshima, M. Toyoda, T. Takahashi, M. Shikatani and K. Araki. Preliminary Result on Laser Communication Experiment Using ETS-VI. Proc. SPIE. 1995, 2381: 151~158
    [4] M. Toyoda, M. Toyoshima, T. Fukazawa, T. Takahashi, M. Shikatani, Y. Arimoto and K. Araki. Measurement of Laser Link Scintillation between ETS-VI and a Ground Optical Station. Proc. SPIE. 1997, 2990: 287~295
    [5] V. Carrozzo and G. Parca. Hybrid network based on optical intersatellite communication links and WDM technology. Wireless Communications and Mobile Computing. 2010, 10(9): 1186~1192
    [6] T. Morio, T. Hideki, S. Yozo and T. Yoshihisa. Frequency Characteristics of Atmospheric Turbulence in Space-to-Ground Laser Links. Proc. SPIE. 2010, 7685: 76850G-1~76850G-12
    [7] F. Huang, G. Li and H. Shen. Simulation of Earth Background Radiation Characteristic for Satellite Borne Laser Warning System. Optics Communications. 2010, 283(18): 3415~3418
    [8] H. Kunimori, Y. Shoji, M. Toyoshima and Y. Takayama. Research and Development Activities on Space Laser Communications in NICT. Proc. SPIE. 2009, 7199: 719904-1~719904-7
    [9] S. Zoran, F. Bernhard and L. Hanspeter. Optical Intersatellite Communication. IEEE Journal on Selected Topics in Quantum Electronics. 2010, 16(5): 1051~1057
    [10] M. Wei, C. Cheng and S. Wu. Instability and Satellite Pulse of Passively Q-switching Nd: LuVO4 Laser with Cr4+: YAG Saturable Absorber. Optics Communications. 2008, 281(13): 3527~3531
    [11] M. S. Mazalkova. The System Transfering between Laser-Satellites. WSEAS Transactions on Communications. 2008, 7(3): 152~159
    [12] J. N. Pelton, A. U. Macrac and K. B. Bhasin. Globa Satellite Communications Technology and Systems. International Technology Research Institute. 1998:21~24
    [13] T. Jono, M. Toyoshima, N. Takahashi, T. Yamawaki, K. Nakagawa and A. Yamamoto. Laser Tracking Test under Satellite Microvibrational Disturbances by OICETS ATP System. Proc. SPIE. 2002, 4714: 97~104
    [14] S. Philipp and S. Yannick. In-flight Accuracy Estimation for Airborne Lidar Data. 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation. 2009, 6: 3309~3316
    [15] T. Jono, Y. Takayama, N. Kura, K. Ohinata, Y. Koyama, K. Shiratama, Z. Sodnik, B. Demelenne, A. Bird and K. Arai. OICETS on-orbit Laser Communication Experiments. Proc. SPIE. 2006, 6105: 610503-1~610503-11
    [16] J. C. Cardema, J. N. Tanzillo, S. Lee and C. B. Dunbar. Performance and Characterization Results of a Lasercom Testbed for the Pointing, Acquisition, and Tracking Subsystem of a Satellite-to-Satellite Laser Communications Link. Proc. SPIE. 2008, 7091: 70910P-1~70910P-11
    [17] A. Shlomi. Minimization of Outage Probability of WiMAX Link Supported by Laser Link between a High-Altitude Platform and a Satellite. Journal of the Optical Society of America A: Optics and Image Science. 2009, 26(7): 1545~1552
    [18] X. Li, H. Jiang, J. Zhou, D. Li and H. Zhao. A Low-cost Antenna Reflector Shape and Distortion Measuring System with High Accuracy. Proc. SPIE. 2008, 7155: 715517-1~715517-9
    [19] J. Sun, L. Liu, Y. Zhou and D. Liu. Test Results of the Optical PAT Test Bed for Satellite Laser Communications. Proc. SPIE. 2008, 7091: 70910R-1~70910R-6
    [20] L. Tan, Y. Yang, J. Ma and J. Yu. Pointing and Tracking Errors Due to Localized Deformation in Inter-satellite Laser Communication Links. Optics Express. 2008, 16(17): 13372~13380
    [21] R. Lange and B. Smutny. Homodyne BPSK-based optical inter-satellite communication links. Proc. SPIE. 2007, 6457: 645703-1~645703-9
    [22] S. Zoran, L. Hanspeter, F. Bernhard and M. Rolf. Optical Satellite Communications in Europe. Proc. SPIE. 2010, 7587: 758705-1~758705-9
    [23] O. Gail. Sophisticated Optical Systems Extend Reach of Free-space Communications. Laser Focus World. 2010, 46(11): 51~57
    [24] W. John and Z. Keith. The Missile Defense Agency's Space Tracking and Surveillance System. Proc. SPIE. 2008, 7106: 710617-1~710617-7
    [25] M. Oliver, G. Miquel, Y. Yoke, S. Steffen and J. Adrian. Antenna Phase Center Calibration for Precise Positioning of LEO Satellites. GPS Solutions. 2009, 13(1): 23~34
    [26] S. Berry, K. Hartmut, M. Gerd, S. Uwe, W. Bernhard, H. Frank, H. Ulrich, D. Daniel, R. Martin, F. Axel, L. Robert, B. Knut, F. Thomas, M. Juergen, W. Andreas, G. Peter, S. Stefan, M. Rolf and C. Reinhard. 5.6 Gbps Optical Intersatellite Communication Link. Proc. SPIE. 2009, 7199:719906-1~719906-8
    [27] J. Kovalik, A. Biswas, K. Wilson, M. Wright and W.T. Roberts. Data Products for the OCTL to OICETS Optical Link Experiment. Proc. SPIE. 2010, 7587: 75870C-1~75870C-12
    [28] N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coc, C. D. Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Néauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret and C. Rouyer. Overview of PETAL, the Multi-Petawatt Project on the LIL Facility. Plasma Physics and Controlled Fusion. 2008, 50(12): 1~10
    [29] N. Blanchot, E. Bar, G. Behar, C. Bellet, D. Bigourd, F. Boubault, C. Chappuis, O. Flour, O. Hartmann, L. Hilsz, E. Hugonnot, E. Lavastre, J. Luce, E. Mazataud, J. Neauport, S. Noailles, B. Remy, F. Sautarel, M. Sautet and C. Rouyer. Experimental Demonstration of a Synthetic Aperture Compression Scheme for Multi-Petawatt High-energy Lasers. Optics Express. 2010, 18(10): 10088~10097
    [30] Z. Sodnik and H. Lutz. More than 20 Years of Laser Communication Technology Development in ESA. American Institute of Aeronautics & Astronautics or published with permission of author(s) and/or author(s)’sponsoring organization. 2000, 1031~1041
    [31] Y. Takayama, M. Toyoshima, Y. Shoji, Y. Koyama, H. Kunimori, M. Sakaue, S. Yamakawa, Y. Tashima and N. Kura. Expanded Laser Communications Demonstrations with OICETS and Ground Stations. Proc. SPIE. 2010, 7587: 75870D-1~75870D-8
    [32] N. P. Garaymovich, V. N. Grigoriev, A. P. Huppenen, M. A. Sadovnikov V. D. Shargorodsky and V. V. Sumerin. Free-space Laser Communication Systems: Internationally and in Russia. Proc. SPIE. 2001, 4354: 197~203
    [33] G. C. Baister, T. Dreischer, E. R. Grond, L. Gallmann, B. Thieme and K. Kudielka. The OPTEL Terminal Development Programme-Enabling Technologies for Future Optical Crosslink Applications. American Institute of Aeronautics and Astronautics. 1~8
    [34] J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody and R. A. Nichols. Free-Space Optical Communications for Next-Generation Military Networks. IEEE Communications Magazine. 2006(11): 46~51
    [35] W. S. Chan. Free-Space Optical Communications. Journal of Lightwave Technology. 2006, 24(12): 4750~4762
    [36] Optical Intersatellite Links Lectronics & Communication Engineering Journal. 1991(12), 280~288
    [37] K. E. Wilson and J. Sandusky. Development of a 1-m Class Telescope at TMF to Support Optical Communications Demonstrations. Proc. SPIE. 1998, 3266: 146~152
    [38] H. Hemmati. Overview of Laser Communications Research at JPL. Proc. SPIE. 2001, 4273: 190~193
    [39] K. E. Wilson, J. R. Lesh, K. Araki and Y. Arimoto. Overview of the Ground-to-Orbit Lasercom Demonstration. Proc. SPIE. 1997, 2990: 23~30
    [40] K. E. Wilson, M. Britcliffe and N. Goishan. Progress in Design and Construction ofthe Optical Communications Laser Laboratory. Proc. SPIE. 1999, 3615: 201~205
    [41] K. E. Wilson, M. Britcliffe and N. Golshan. Progress in Design and Construction of the Optical Communications Telescope Laboratory (OCTL). Proc. SPIE. 2000, 3932: 112~116
    [42] M. Toyoshima, K. Araki and Y. Arimoto. Reduction of ETS-VI Laser Communication Equipment Optical-Downlink Telemetry Collected During GOLD. TDA Progress Report. 1997, 42(128): 1~9
    [43] K. E. Wilson. An Overview of the GOLD Experiment between the ETS-VI Satellite and the Table Mountain Facility. TDA Progress Report. 1996, 42(124): 1~19
    [44] I. I. Kim, H. Hakakha, B. Riley, N. M. Wong, M. Mitchell, R. Howe, C. Moursund, W. Brown, P. Adhikari, A. Lath and E. J. Korevaa. Preliminary Results of the STRV-2 Satellite-to-Ground Lasercom Experiment. Proc. SPIE. 2000, 3932: 21~34
    [45] E. Korevaar, J. Schuster and H. Hakakha. Design of Ground Terminal for STRV-2 Satellite-to-Ground Laser Experiment. Proc. SPIE. 1998, 3266: 153~164
    [46] I. I. Kim, B. Riey and N. M. Wong. Lessons Learned from the STRV-2 Satelitte-to-Ground Lasercom Experiment. Proc. SPIE. 2001, 4272: 1~15
    [47] E. Korevaar, J. Schuster, P. Adhikari, H. Hakakha, R. Ruigrok, R. Stieger, L. Fletcher and B. Riley. Description of STRV-2 Lasercom Flight Hardware. Proc. SPIE. 1997, 2990: 38~49
    [48] M. Jeganathan, A. Portillo, C. Racho, S. Lee, D. Erickson, J. DePew, S. Monacos and A. Biswas. Lessons Learnt from the Optical Communications Demonstrator(OCD). Proc. SPIE. 1999, 3615: 23~30
    [49] K. Nakagasa and A. Yamamoto. Performance Test Result of LUCE (Laser Utilizing Communications Equipment) Engineering Model. Proc. SPIE. 2000, 3932: 68~76
    [50] A. Biswas, N Page, J. Neal, D. Zhu, M Wright, G. G. Ortiz, W. H. Farr and H. Hernnzati. Airborne Optical Communications Demonstrator Design and Preflight Test Results. Proc. SPIE. 2005, 5712: 205~216
    [51] M. Oliver and R. Pere. Precision Real-time Navigation of LEO Satellites Using Global Positioning System Measurements. GPS Solutions. 2008, 12(3): 187~198
    [52] A. P. Matthew, P. T. Jacob, B. H. Christopher, G. B. Mark, S. L. John and L. Lance. Development of Ka-band Frequency Translators for High Data Rate Communications. IEEE Aerospace Conference Proceedings. 2010: 1070~1076
    [53] G. Yang, P. Andy, T. Mark, A. C. Ian, J. B. Andrew, L. Wilson, D. Parker, S. Martin, S. C. Alex, D. Phil, B. Adam, P. W. Thomas, S. Alan and G. Rob. Lunar Science with Affordable Small Spacecraft Technologies: MoonLITE and Moonraker. Planetary and Space Science. 2008, 56(3-4): 368~377
    [54] L. B. Kendra. Current Wideband MILSATCOM Infrastructure and the Future of Bandwidth Availability. IEEE Aerospace and Electronic Systems Magazine. 2010, 25(12): 23~28
    [55] H. Hemmati, A. Biswas and D.M. Boroson. 30-dB Data Rate Improvement for Interplanetary Laser Communication. Proc. SPIE. 2008, 6877: 687707-1~ 687707-8
    [56] M. S. David, G. Andrew, C. Ting-Shuo. Applicability of Open-source Software Routers on the Design of a Flexible Network-centric MILSATCOM Terminal. 26th AIAA International Communications Satellite Systems Conference. 2008: 1425~1449
    [57] P. Rodolphe. EDA and Satellite Communication. IET Seminar Digest. 2010, 13468: 11~26
    [58] L. Wang and J. Brian OFDM Modulation Schemes for Military Satellite Communications. IEEE Military Communications Conference MILCOM. 2008, 978: 2677~2683
    [59] L. Wang and J. Brian. Terminal Transmit Adaptation for Optimal Link Availability. IEEE Military Communications Conference MILCOM. 2009, 978: 5239~5245
    [60] M. Reyes, S. Chueca, A. Alonso, T. Viera and Z. Sodnik. Analysis of the Preliminary Optical Links between ARTEMIS and the Optical Ground Station.Proc. SPIE. 2002, 4821: 33~43
    [61] M. Reyes, J. A. Rodriguez, T. Viera, H. Moreno, J. L. Rasilla, F. Gago, L. F. Rodriguez, P. Gomez and E. Ballesteros. Design and Performance of the ESA Optical Ground Station. Proc. SPIE. 2002, 4635: 248~261
    [62] J. Romba, Z. Sodnik, M. Reyes, A. Alonso and A. Bird. ESA’s Bidirectional Space-to-Ground Laser Communication Experiments. Proc. SPIE. 2004, 5550: 287~298
    [63] T. T. Nie1sen and G. Oppenhaeuser. In Orbit test result of an Operational Optical Intersatellite Link between ARTEMIS and SPOT4, SILEX. Proc. SPIE. 2002, 4635: 1~15
    [64] A. Comerón, J. A. Rubio. A. Belmonte, E. Garcia, T. Prud'homme, Z. Sodnik and C. B. Connor. Propagation experiments in the near-infrared along a 150-km path and from stars in the Canarian archipelago. Proc. SPIE. 2002, 4678: 78~90
    [65] B. Demelenne, T. T. Nielsen and J. C. Guillen. SILEX GROUND SEGMENT CONTROL FACILITIES AND FLIGHT OPERATIONS. Proc. SPIE. 1999, 3615: 2~10
    [66] B. Laurent and G. Plancre. SILEX overview after flight terminals campaign. Proc. SPIE. 1997, 2990: 10~22
    [67] A. F. Popescu and B. Furch. Status of the European developments for laser intersatellite communications. Proc. SPIE. 1993, 1866: 10~20
    [68] M. Reyes, S. Chueca, A. Alonso. Analysis of the Preliminary Optical Links between ARTEMIS and the Optical Ground Station. Proc. SPIE. 2002, 4821: 33~43
    [69] J. Romba, Z. Sodnik, M. Reyes. ESA’s Bidirectional Space-to-Ground Laser Communication Experiment. Proc. SPIE. 2004, 5550: 287~298
    [70] M. Reyes, Z. Sodnik, P. Lopez. Preliminary Results of the In-Orbit Test of ARTEMIS with the Optical Ground Station. Proc. SPIE. 2002, 4635: 38~49
    [71] K. Pribil, C. Serbe, B. Wandernoth and C. Rapp. Solacos YKS-An optical high datarate communication system for intersatellite link applications. Proc. SPIE. 1995, 2381: 83~88
    [72] R. Lange, B. Smutny, B. Wandernoth. 142km, 5.625 Gbps Free-Space Optical Link Based on Homodyne BPSK Modulation. Proc. SPIE. 2006, 6105: 61050A-1~61050A-9
    [73] F. Heine, T. Schwander, R. Lange and B. Smutny. Space qualified laser sources. Proc. SPIE. 2006, 6189: 618921-1~618921-8
    [74] K. Araki, Y. Arimoto, M. Shikatani. Performance Evaluation of Laser Communication Equipment onboard the ETS-VI Satellite. Proc. SPIE. 1996,2699: 52~59
    [75] M. Toyoda, M. Toyoshima, T. Tarhashi. Ground to ETS-VI Narrow Laser Beam Transmission. Proc. SPIE. 1996, 2699: 71~80
    [76] T. Jono, Y. Takayama, Y. Koyama and K. Arai. In-orbit measurements of spacecraft microvibrations for satellite laser communication links. Optical Engineering. 2007, 49(8): 083604-1~083604~10
    [77] M. Toyoshima, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, K. Arai. Laser Beam Propagation in Ground-to-OICETS Laser Communication Experiments. Proc. of SPIE. 2007, 6551: 65510A-1~65510A-12
    [78] Y. Koyama, E. Morikawa, K. Shiratama, et al.. Optical Terminal for NeLS In-orbit Demonstration. Proc. SPIE. 2004, 5338: 29~36
    [79] Y. Koyama, E. Morikawa, H. Kunimori, et al.. Components Development for NeLS Optical Terminal. Proc. SPIE. 2005, 5712: 217~224
    [80]马晶,潘锋,谭立英.星地上行激光链路中最佳光束参数的研究.强激光与粒子束. 2006, 18(8): 1233~1237
    [81]韩琦琦,于思源,马晶等.卫星光通信中耦合运动对光信号跟踪影响分析.宇航学报. 2006, 27(4): 405~409
    [82]于思源,马晶,谭立英.提高卫星光通信扫描捕获概率的方法研究.光电子·激光. 2004, 15(4): 472~476
    [83]马晶,高宠,谭立英.星地光通信中PAT链路的衰落冗余.光学精密工程. 2007, 15(3): 308~314
    [84]李晓峰,胡渝.空-地激光通信链路总体设计思路及重要概念研究.应用光学. 2005, 25(6): 57~62
    [85] F. Xiao, W. Hu and A. Xu. Optical Phased-Array Beam Steering Controlled by Wavelength. Appl. Opt. 2005, 44(10): 5429~5433
    [86]王建民,汤俊雄,孙东喜,朱彦,谷亚权.卫星激光通信均匀信标光的研究.光学学报. 2006, 26(1): 7~10
    [87]刘立人.卫星激光通信II地面检测和验证技术.中国激光. 2007, 34(2): 147~154
    [88]罗彤,胡渝,李贤.星间光链路中捕获系统分析与仿真.应用光学. 2002, 23(1): 5~8
    [89]刘淑华,卢亚雄,罗彤.空间光通信中快速倾斜镜的数字控制研究.激光与红外. 2002, 32(3): 165~167
    [90]陈纯毅,杨华民,佟首峰,蒋振刚.空间光通信卫星平台振动实时模拟.系统仿真学报. 2007, 19(16): 3834~3837
    [91]张景旭.卫星捕获与大气补偿技术.光机电信息. 1999, 16(10): 3~6
    [92]韩琦琦,于思源,马晶,谭立英,王骐.耦合运动对星间激光链路瞄准过程影响及补偿方法研究.宇航学报. 2006, 27(4): 582~584
    [93]韩琦琦,于思源,马晶,谭立英,王骐.卫星光通信耦合运动对光信号跟踪影响分析.宇航学报. 2005, 26(4): 405~409
    [94]高宠,马晶,谭立英,于思源,潘锋.大气光通信中大气闪烁时间平滑效应研究.光学学报. 2006, 26(4): 481~486
    [95]高宠,马晶,谭立英,于思源,潘锋.自由空间光通信的最大后验概率检测.光电工程. 2007, 34(3): 54~56
    [96] J. Ma, C. Gao and L. Tan. Angle-of-arrival Fluctuation at Large Zenith Angles. ACTA PHOTONICA SINICA. 2007, 36(1): 164~168
    [97]高宠,马晶,谭立英.光束在强湍流区中传播的到达角起伏.强激光与粒子束. 2006, 18(6): 891~894
    [98]高宠,谭立英,马晶,于思源.空间光通信的到达角起伏实验研究.强激光与粒子束. 2007, 19(2): 177~181
    [99] W. Du, L. Tan, J. Ma and Y. Jiang. Temporal-frequency spectra for optical wave propagating through non-Kolmogorov turbulence. Optics Express. 2009, 18(6): 5763~5775
    [100]W. Du, S. Yu, L. Tan, Y. Jiang and W. Xie. Angle-of-arrival fluctuations for wave propagtaion through non-Kolmogorov turbulence. Optics Communications. 2009, 282: 705~708
    [101]J. Ma, Y. Jiang, L. Tan, S. Yu and W. Du. Influence of Beam Wander on Bit-error Rate in a Ground-to-satellite Laser Uplink Commuication System. Optics Letters. 2008, 33(22): 2611~2613
    [102]J. Ma, Y. Jiang, S. Yu, L. Tan and W. Du. Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications. Optics Communications. 2010, 283: 237~242
    [103]于思源,马晶,谭立英.提高卫星光通信扫描捕获概率的方法研究.光电子·激光. 2004, 15(4): 472~476
    [104]于思源,马晶,谭立英.激光星间链路中天线扫描捕获技术实验室模拟研究.中国激光. 2005, 16(5): 498~502
    [105]马晶,徐科华,谭立英,王健.美国火星激光通信系统分析.空间科学学报. 2006, 26(5): 364~369
    [106]徐科华,马晶,谭立英.深空光通信中光束瞄准技术研究.光学精密工程.2006, 14(1): 16~21
    [107]韩琦琦,马晶,谭立英,王骐.恒星背景噪声对星间激光链路跟瞄系统影响的仿真分析. 2006, 32(3): 444~448
    [108]马晶,张光宇,谭立英,王强.量子密码通信中量子比特率理论分析.量子光学学报. 2006, 12(1): 36~39
    [109]张光宇,马晶,谭立英.星地量子密钥分配中单光子捕获理论分析.光电工程. 2006, 33(3): 91~94
    [110]徐荣伟,刘立人,刘宏展,张德江.大型干涉仪镜子的支承设计与温度变形分析.光学学报. 2005, 25(6): 809~815
    [111]冯树龙,张新,翁志成,丛小杰.温度对大口径主镜面形变形的影响分析.光学技术. 2005, 31(1): 41~43
    [112]杨怿,张伟,陈时锦.空间望远镜主镜的热光学特性分析.光学技术. 2006, 32(1): 144~147
    [113]V. N. Mahajan and G. Dai. Orthonormal polynomials in wavefront analysis: analytical solution. J. Opt. Soc. Am. A. 2007, 24(9): 2994~3016
    [114]G. Dai and V. N. Mahajan. Orthonormal polynomials in wavefront analysis: error analysis. Appl. Opt. 2008, 47(19), 3433~3445
    [115]X. Hou, F. Wu, L. Yang and Q. Chen. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials. Appl. Opt. 2006, 45(35): 8893~8901
    [116]M. Toyoshima, N. Takahashi, T. Jono, T. Yamawaki, K. Nakagawa and A. Yamamoto. Mutual alignment errors due to the variation of wave-front aberrations in a free-space laser communication link. Opt. Exp. 2001, 9(11): 592~602
    [117]J. Sun, L. Liu, M. Yun and L. Wan. Mutual alignment errors due to wave-frant aberrations in intersatellite laser communications. Appl. Opt. 2005, 44(23): 4953~4958
    [118]Y. Yang, L. Tan and J. Ma. Pointing and tracking errors due to localized deformation induced by transmission-type antenna in intersatellite laser communication links. Appl. Opt. 2009, 48(4): 786~791
    [119]李晓峰,汪波,胡渝.在轨运行热环境下的天线镜面热变形对空地激光通信链路的影响.宇航学报. 2005, 26(5): 581~585
    [120]李晓峰.空地激光通信星载光学天线在太阳阴影区的镜面热变形有限元分析.光电子·激光. 2006, 17(2): 183~186
    [121]李晓峰.镜面热形变对空地激光通信链路性能的影响.强激光与粒子束.2005,17(3):369~372
    [122]R. Lange and B. Smutny. Optical inter-satellite links based on homodyne BPSK modulation: Heritage, status and outlook. Proc. SPIE. 2005, 5712: 1~12
    [123]李维特,黄保海,毕仲波.热应力理论分析及应用.中国电力出版社, 2006: 10~22
    [124]M. Zeman. Optical and electrical modeling of thin-film silicon solar cells. Krc, J. Source: Journal of Materials Research, 2008, 23(4): 889~898
    [125]K. R. Matthias, O. Tsuyoshi, K. Masami, Y. Yukari, I. Hiroko, K. Haruyoshi, T. Yoshio, N. Takao. Manufacturing and performance test of a 800 mm space optic. Proc. SPIE. 2009, 7426: 74260K-1~74260K-9
    [126]A. Andrea and R. Joseph. Production of extreme ultraviolet (EUV) quality silicon carbide (SiC) aspheric optics. Proc. SPIE. 2008, 7018: 70180U-1~70180U-12
    [127]D. Chandan, L. Andreas, H. Juergen, R. Wilfried and F. Friedhelm. A constructive combination of antireflection and intermediate-reflector layers for a-Sic-Si thin film solar cells. Applied Physics Letters, 2008, 92(5): 509~512
    [128]G. Amorette, D. Aurelien, W. Yuan, W. Claude and S. James. Demonstration of distributed Bragg reflectors for deep ultraviolet applications. Japanese Journal of Applied Physics. 2007, 46(29-32): 767~769
    [129]K. Behrooz, F. M. Reisi, B. E. Thomas, M.W. Don and W. Wolfgang. Monte Carlo modeling of count rates and defects in a silicon carbide detector neutron monitor system, highlighting GT-MHR. Nuclear Technology. 2007, 159(2): 208~220
    [130]K. R. Matthias and O. Tsuyoshi. HB-Cesic composite for space optics and structures. Proc. SPIE. 2007, 6666: 66660E-1~66660E-10
    [131]宋义伟,于思源,谭立英,马晶,韩琦琦,刘剑峰,杨旺.空间温度场对平面反射镜面形影响研究.宇航学报, 2010, 31(3): 868~874
    [132]V. Ramachandra, T. George, M.J. Nair and B.K. Sarkar. Development of Ti-6Al-4V gas bottle for satellite applications. Transactions of the Indian Institute of Metals. 1982, 35(2): 127~136
    [133]M. Chitoshi. Tensile fracture mechanism for SiCf(SCS-6)/Ti alloy based mono-composites. TMS Annual Meeting. 2007, 121~125
    [134]E. P. Donald and S. R. Scott. The backseat control architecture for autonomous robotic vehicles: A case study with the Iver2 AUV. Marine Technology Society Journal. 2010, 44(4): 42~54
    [135]E. P. Donald and S. R. Scott. The backseat control architecture for autonomous robotic vehicles: A case study with the Iver2 AUV. MTS/IEEE Biloxi - MarineTechnology for Our Future: Global and Local Challenges. 2009, 978: 4960~4967
    [136]A. Richard, E. R. Steven, H. Jim and M. Dougal. Wireless avionics and human interfaces for inflatable spacecraft. IEEE Aerospace Conference Proceedings. 2008, 978: 1487~1502
    [137]M. Toyoshima, T. Jono, K. Nakagawa and A. Yamamoto. Optimum divergence angle of a Gaussian beam wave in the presence of random jitter in free-space laser communication systems. J. Opt. Soc. Am. A. 2002, 19(3): 567~571
    [138]J. Ma, Y. J. Jiang, L. Y. Tan, S. Y. Yu and W. H. Du. Influence of beam wander on bit-error rate in a ground-to-satellite laser uplink communication system. Optics Letters. 2008, 33(22): 2611~2613
    [139]M. Toyoshima and K. Araki. Far-field pattern measurement of an onboard laser transmitter by use of a space-to-ground optical link. Appl. Opt. 1998, 37(10): 1720~1730
    [140]M. Toyoshima and K. Araki. Effects of time averaging on optical scintillation in a ground-to-satellite atmospheric propagation. Appl. Opt. 2000, 39(12): 1911~1919
    [141]谭立英,马晶,韩琦琦,林维秋.空间光通信中基本振动对误码率的影响分析.光学技术. 1999, 6: 22~25
    [142]G. H. Guo, B. Luo, Y. X. Ren, S. N. Zhao and A. H. Dang. Influence of beam wander on uplink of ground-to-satellite laser communication and optimization for transmitter beam radius. Optics Letters. 2010, 35(12): 1977~1979
    [143]B. Guy, K. Klaus, D. Thomas and T. Michael. Results from the DOLCE (Deep Space Optical Link Communications Experiment) Project. Proc. SPIE. 2009, 7199: 71990B-1~71990B-9
    [144]马晶,谭立英,金恩培,耿完桢.振动对空间光通信系统误码率影响的分析.宇航学报. 1999, 20(3): 76~81
    [145]王骐,马晶,谭立英,韩琦琦.简化振动模型下空间光通信系统误码率分析.激光技术. 2002, 26(1): 4~8
    [146]于思源,高惠德,韩琦琦,董蕴华,马祖光.卫星光通信中正弦振动对误码率影响研究.高技术通讯. 2001, 12: 44~47
    [147]S. Arnon. Power versus stabilization for laser satellite communication. Appl. Opt. 1999, 38(15): 3229~3233
    [148]S. Arnon. Use of satellite natural vibrations to improve performance of free-space satellite laser communication. Appl. Opt. 1998, 37(21): 5031~5036
    [149]C. Y. Yang. Rand vibration of structures. 1986: 46
    [150]R. M. Gagliardi, S. Karp. Optical Telecommunications. Beijing: Publishing House of Electronics Industry, 1998: 40~62
    [151]王雨三,张中华,林殿阳.光电子学原理与应用.哈尔滨工业大学出版社, 2005: 71~72
    [152]杨世铭,陶文铨.传热学.高等教育出版社, 2006: 33~49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700