温室气体CO_2加氢合成甲醇CuO-ZnO/TiO_2催化剂的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量排放的二氧化碳造成了全球温室效应和环境污染,研究CO_2的减排与利用已经成为世界性关注的热点和急需解决的问题。CO_2加氢合成甲醇是合理利用二氧化碳的有效途径之一,甲醇是一种极其重要的基础有机化工原料,又是一种很有发展前途的新型环保清洁优质燃料。CO_2加氢合成甲醇为能源结构的战略调整提供了新途径,对解决日益严重的环境与能源问题具有重要的意义。
     CO_2加氢合成甲醇通常采用的催化剂制备方法存在CO_2转化率低,甲醇选择性不高的问题。针对这些问题,提出了采用添加十六烷基三甲基溴化铵(CTAB)表面活性剂并流浆态共沉淀法制备CuO-ZnO/TiO_2催化剂,有效改善了催化剂的结构与催化性能。采用添加表面活性剂并流浆态共沉淀法、添加表面活性剂分步沉淀法、并流浆态共沉淀法及浸渍法制备了CuO-ZnO/TiO_2催化剂,利用BET、XRD、SEM、EDS、H_2-TPR、H_2-TPD、CO_2-TPD等方法对催化剂的物理与化学性能进行了表征,研究了不同的制备方法对CuO-ZnO/TiO_2催化剂性能的影响,通过固定床反应器对CO_2加氢合成甲醇CuO-ZnO/TiO_2催化剂的催化性能进行了评价。
     研究结果表明,不同方法制备的CuO-ZnO/TiO_2催化剂均为介孔材料,沉淀法制备的CuO-ZnO/TiO_2催化剂BET比表面积和孔容大于浸渍法制备的催化剂,CuO和ZnO的分散性好。TiO_2载体起到阻止CuO晶粒长大和促进CuO分散的作用。沉淀法中以添加表面活性剂并流浆态共沉淀法制备的CuO-ZnO/TiO_2催化剂上CuO的还原温度最低,催化活性最好。浸渍法制备的催化剂上CuO的还原温度最高,催化活性低。H_2-TPD表明高温强吸附态下H_2的脱附峰面积大,催化剂表面上吸附更多的活化H_2,促进了CO_2加氢合成甲醇的反应。CO_2-TPD表明中等强度的CO_2吸附中心与二氧化碳加氢合成甲醇的效果密切相关。不同方法制备的CuO-ZnO/TiO_2催化剂活性及CH3OH选择性由高到低的顺序依次为:添加表面活性剂并流浆态共沉淀法>添加表面活性剂分步沉淀法>并流浆态共沉淀法>浸渍法,添加表面活性剂有效地改善了CuO-ZnO/TiO_2催化剂的催化性能。
     添加表面活性剂并流浆态共沉淀法制备的CuO-ZnO/TiO_2催化剂上CO_2加氢合成甲醇反应的催化性能最好。在反应压力2.5MPa、反应空速2100h-1、反应温度230℃、H_2和CO_2摩尔比3:1、反应时间4h的条件下,CO_2的转化率为13.26%,CH3OH的选择性为23.95%,CH3OH的产率最大为3.18%。
     添加助剂对CO_2加氢合成甲醇催化剂的结构与性能具有重要影响,研究了在CuO-ZnO/TiO_2催化剂中分别添加ZrO_2、Al2O3及MnOχ助剂,采用添加CTAB表面活性剂并流浆态共沉淀法制备了CuO-ZnO-ZrO_2/TiO_2、CuO-ZnO-Al2O3/TiO_2及CuO-ZnO-MnOχ/TiO_2催化剂,利用BET、XRD、SEM、EDS、H_2-TPR、H_2-TPD、CO_2-TPD等方法对各催化剂的结构与化学性能进行了表征,研究了添加不同助剂及改变添加的ZrO_2助剂含量对CuO-ZnO/TiO_2催化剂性能的影响。通过XRD、XPS、H_2-TPD、CO_2-TPD、DRIFT等方法探讨了CuO-ZnO-ZrO_2/TiO_2催化剂上CO_2加氢合成甲醇的反应机理。
     研究结果表明,添加不同助剂均增加了CuO-ZnO/TiO_2催化剂的比表面积和孔容,添加MnOχ使CuO-ZnO/TiO_2催化剂上CuO的还原温度升高,吸附H_2的浓度降低,催化活性下降。添加ZrO_2或Al2O3助剂均降低了CuO的还原温度,吸附H_2和CO_2的能力增强,促进了甲醇的合成。含不同助剂的CuO-ZnO/TiO_2催化剂中,添加ZrO_2助剂的CuO-ZnO-ZrO_2/TiO_2催化剂的催化性能最好,在反应压力2.5MPa、反应空速2100h-1、反应温度230℃、H_2和CO_2摩尔比3:1、反应时间4h的条件下,CO_2的转化率为18.24%,CH3OH的选择性为31.52%,CH3OH的产率最大为5.75%。
     ZrO_2助剂的含量对CuO-ZnO/TiO_2催化剂的结构与性能具有显著影响。随着ZrO_2助剂含量的增加,催化剂的比表面积和孔容增大,孔径分布变均匀。ZrO_2促进了催化剂上CuO和ZnO的分散,降低了CuO的还原温度,提高了催化剂的活性。H_2-TPD表明增加催化剂中ZrO_2含量促进了对H_2的强吸附,催化剂表面上吸附H_2的浓度高,并具有储氢的作用,提高了CO_2加氢合成甲醇反应的速率。CO_2-TPD表明ZrO_2对促进CO_2的吸附与活化具有显著作用。ZrO_2助剂含量增加,提高了催化剂的催化性能。
     CuO-ZnO-ZrO_2/TiO_2催化剂上的CuO还原后为零价金属铜,Cu~0是H_2吸附与解离的活性中心,ZnO和ZrO_2是CO_2的吸附活性中心。甲醇合成机理是CuO-ZnO-ZrO_2/TiO_2催化剂上双活性中心分别吸附活化H_2和CO_2,以CO_2为碳源直接加氢合成甲醇的反应。
A large amount of carbon dioxide emission led to global greenhouse effect andenvironmental pollution. Research of carbon dioxide emission reduction andutilization is of focus and urgent issues in the world. Methanol synthesis by carbondioxide hydrogenation is one of approaches of carbon dioxide utilization. Methanolis considered an important raw material of fundamental organic chemical industryand a new-type environmental protection clean fuels. Carbon dioxide hydrogenationto methanol is a new pathway for strategic adjustment of energy structure, and it isimportant significance to solve the increasingly environmental pollution and energyquestions.
     In the process of carbon dioxide hydrogenation to methanol, the existingproblems of the general preparation methods of catalysts are lower to carbon dioxideconversion and methanol selectivity. In regard to these problems, CuO-ZnO/TiO_2catalysts were prepared by a novel parallel-slurry-mixing-precipitation methodcombined with addition of cetyltrimethylammonium bromide (CTAB) surfactant.Structure and catalytic performance of catalysts were improved effectively.CuO-ZnO/TiO_2catalysts were prepared by parallel-slurry-mixing-precipitationmethod combined with addition of surfactant, two-step precipitation methodcombined with addition of surfactant, parallel-slurry-mixing-precipitation andimpregnation method, respectively. Characterizations of physical and chemicalproperties of the catalysts were investigated by BET, XRD, SEM, EDS, H_2-TPR,H_2-TPD and CO_2-TPD. The effects of different preparation methods on catalyticperformances of CuO-ZnO/TiO_2catalysts were studied. The catalytic performancesof CuO-ZnO/TiO_2catalysts for methanol synthesis from CO_2hydrogenation wereevaluated by fixed bed reactor.
     The research results show that CuO-ZnO/TiO_2catalysts of different preparationmethods are mesoporous materials. BET specific surface area and pore volume forthe CuO-ZnO/TiO_2catalysts of precipitation methods are greater than that ofimpregnation method, and dispersion of CuO and ZnO is better. TiO_2preventedgrowth of CuO crystal particles and promoted the dispersion of CuO species. In theprecipitation methods, CuO reduction temperature of CuO-ZnO/TiO_2catalyst ofparallel-slurry-precipitation method combined with addition of surfactant is lowest,and its reduction is easiest. CuO reduction temperature of that of impregnationmethod is highest, and its catalytic activity is lowest. H_2-TPD showed that hydrogendesorption peak area was large at high temperature and strong adsorption state, andactive hydrogen molecules on catalyst surface were more and more, and methanol synthesis from CO_2hydrogenation was promoted. CO_2-TPD revealed that CO_2adsorption center of moderate intensity was closely related to methanol synthesisfrom CO_2hydrogenation. From high to low, the activity and methanol selectivity ofCuO-ZnO/TiO_2catalysts of different preparation methods wasparallel-slurry-mixing-precipitation method combined with addition of surfactant,two-step precipitation method combined with addition of surfactant,parallel-slurry-mixing-precipitation and impregnation method. Addition ofsurfactant improved effectively catalytic performances of CuO-ZnO/TiO_2catalysts.
     CuO-ZnO/TiO_2catalyst of parallel-slurry-precipitation method combined withaddition of surfactant for methanol synthesis from CO_2hydrogenation was best.Under the conditions of reaction pressure of2.5MPa, space velocity of2100h-1,reaction temperature of230℃, H_2/CO_2molar ratio of3:1and reaction time4h,carbon dioxide conversion and methanol selectivity and maximum of methanol yieldwere13.26%,23.95%and3.18%, respectively.
     Additives of catalysts used in methanol synthesis from carbon dioxidehydrogenation are important effect on structure and performance of catalyst.CuO-ZnO/TiO_2catalyst added ZrO_2, Al2O3and MnOχ, respectively.CuO-ZnO-ZrO_2/TiO_2, CuO-ZnO-Al2O3/TiO_2and CuO-ZnO-MnOχ/TiO_2catalystswere prepared by parallel-slurry-mixing-precipitation method combined withaddition of CTAB surfactant. The structure characterization and chemical propertiesof the catalysts were investigated by BET, XRD, SEM, EDS, H_2-TPR, H_2-TPD,CO_2-TPD. The effects of different promoters and ZrO_2content on catalyticperformance of CuO-ZnO/TiO_2catalyst were studied. In the presence ofCuO-ZnO-ZrO_2/TiO_2catalyst, reaction mechanism of carbon dioxide hydrogenationto methanol was discussed by XRD, XPS, H_2-TPD, CO_2-TPD and DRIFT.
     The research results show that addition of different promoters increasedspecific surface area and pore volume for the CuO-ZnO/TiO_2catalysts. The additionof MnOχon CuO-ZnO/TiO_2catalyst increased the reduction temperature of CuO,and decreased adsorptive hydrogen concentration and catalytic activity. AddingZrO_2or Al2O3promoter decreased the reduction temperature of CuO, enhancedcapacity of H_2and CO_2adsorption, and promoted methanol synthesis. In theCuO-ZnO/TiO_2catalysts containing different promoter, CuO-ZnO-ZrO_2/TiO_2catalyst exhibited an optimal catalytic performance. Under the conditions ofreaction pressure of2.5MPa, space velocity of2100h-1, reaction temperature of230℃, H_2/CO_2molar ratio of3:1and reaction time4h, carbon dioxide conversionand methanol selectivity and maximum of methanol yield were18.24%,31.52%and5.75%, respectively.
     ZrO_2content is important effect on the structure and performance ofCuO-ZnO/TiO_2catalysts. Along with the increase of ZrO_2content, specific surface areas and pore volume of the catalysts increase, and pore size distribution isconcentrated. ZrO_2promoted the dispersion of CuO and ZnO species and decreasedthe reduction temperature of CuO, and enhanced catalyst activity. H_2-TPD showedthat increasing ZrO_2content of catalysts promoted strong adsorption of hydrogenand adsorptive hydrogen of higher concentration on catalyst surface, and possessedfunction of hydrogen storage and enhanced reaction rate of CO_2hydrogenation.CO_2-TPD revealed that ZrO_2improved CO_2adsorption and activation. IncreasingZrO_2content of catalysts enhanced catalytic performance.
     On the CuO-ZnO-ZrO_2/TiO_2catalyst, CuO being reduced to Cu species are theactive sites of H_2adsorption and dissociation. ZnO and ZrO_2species are the activesites of CO_2adsorption. The dual-site reaction mechanism of adsorption andactivation for H_2and CO_2is reasonable for the directly synthesis methanol by CO_2hydrogenation on the CuO-ZnO-ZrO_2/TiO_2catalyst.
引文
[1]张一平,费金华,郑小明.二氧化碳催化加氢研究进展[J].化学世界,2002,(4):214-216.
    [2] Jacquemin M, Beuls A, Ruiz P. Catalytic Production of Methane from CO2and H2at Low Temperature: Insight on the Reaction Mechanism[J]. CatalysisToday,2010,157:462-466.
    [3]金三林.我国二氧化碳排放的特点、趋势及政策取向[J].中外能源,2010,15(6):18-22.
    [4] Nieskens D L S, Ferrari D, Liu Y, et al. The Conversion of Carbon Dioxideand Hydrogen into Methanol and Higher Alcohols[J]. CatalysisCommunications,2011,14:111-113.
    [5] Farsi M, Jahanmiri A. Application of Water Vapor-permselectiveAlumina–silica Composite Membrane in Methanol Synthesis Process toEnhance CO2Hydrogenation and Catalyst Life Time[J]. Journal of Industrialand Engineering Chemistry,2012,18:1088-1095.
    [6] Gogate M R, Davis R J. Comparative Study of CO and CO2Hydrogenationover Supported Rh–Fe Catalysts[J]. Catalysis Communications,2010,11:901-906.
    [7] Yang Y X, White M G, Liu P. Theoretical Study of Methanol Synthesis fromCO2Hydrogenation on Metal-Doped Cu(111) Surfaces[J]. The Journal ofPhysical Chemistry C,2012,116:248-256.
    [8] Kieffer R, Fujiwara M, Udron L, et al. Hydrogenation of CO and CO2towardMethanol, Alcohols and Hydrocarbons on Promoted Copper-rare Earth OxidesCatalysts[J]. Catalysis Today,1997,36:15-24.
    [9] Pontzen F, Liebner W, Gronemann V, et al. CO2-based Methanol and DME-Efficient Technologies for Industrial Scale Production[J]. Catalysis Today,2011,171:242-250.
    [10]张建祥,赵彦巧,陈吉祥,等.二氧化碳加氢直接合成二甲醚催化剂的研究Ⅰ.沉淀剂对催化剂结构和性能的影响[J].燃料化学学报,2003,31(5):444-448.
    [11] Ohnishi Y Y, Matsunaga T, Nakao Y, et al. Ruthenium(II)-catalyzedHydrogenation of Carbon Dioxide to Formic Acid: Theoretical Study of RealCatalyst, Ligand Effects, and Solvation Effects[J]. Journal of the AmericanChemical Society,2005,127(11):4021-4032.
    [12] Cabrera I M, Granados M L, Fierro J L G. Pd-modified Cu-Zn Catalysts forMethanol Synthesis from CO2/H2Mixtures: Catalytic Structures andPerformance[J]. Journal of Catalysis,2002,210(2):285-294.
    [13] Zhao T S, Zhang K, Chen X R, et al. A Novel Low-temperature MethanolSynthesis Method from CO/H2/CO2Based on the Synergistic Effect betweenSolid Catalyst and Homogeneous Catalyst[J]. Catalysis Today,2010,149:98-104.
    [14] Barbieri G, Marigliano G, Golemme G, et al. Simulation of CO2Hydrogenation with CH3OH Removal in a Zeolite Membrane Reactor[J].Chemical Engineering Journal,2002,85:53-59.
    [15] Liu S H, Wang H P, Wang H C, et al. In Situ EXAFS Studies of Copper onZrO2during Catalytic Hydrogenation of CO2[J]. Journal of ElectronSpectroscopy and Related Phenomena,2005,144-147:373-376.
    [16] Yang C, Ma Z Y, Zhao N, et al. Methanol Synthesis from CO2-rich Syngasover a ZrO2Doped Cu-ZnO Catalyst[J]. Catalysis Today,2006,115:222-227.
    [17] Olah G A. After Oil and Gas: Methanol Economy[J]. Catalysis Letters,2004,93:1-2.
    [18] Ma J, Sun N N, Zhang X L, et al. A Short Review of Catalysis for CO2Conversion[J]. Catalysis Today,2009,148:221-231.
    [19]朱明乔,吴廷华,谢方友.合成甲醇催化剂的新进展[J].现代化工,2003,23(3):18-21.
    [20]孙鲲鹏,丘凤炎,徐贤伦.二氧化碳催化转化在化学合成中的应用[J].现代化工,2002,22(11):57-58.
    [21]王桂轮,李成岳.甲醇合成路线及其进展[J].现代化工,2000,20(8):25-27.
    [22]应卫勇,曹发海,房鼎业.碳一化工主要产品生产技术[M].北京:化学工业出版社,2004:151.
    [23]黄黎明,陈赓良.二氧化碳的回收利用与捕集储存[J].石油与天然气化工,2006,35(5):354-358.
    [24]吴昊.应对二氧化碳浓度上升问题的研究: CO2的捕获、储存与利用[J].中国安全科学学报,2008,18(8):5-11.
    [25] Borodko Y, Somorjai G A. Catalytic Hydrogenation of Carbon Oxides—a10-year Perspective[J]. Applied Catalysis A: General,1999,186:355-362.
    [26] Raudaskoski R, Turpeinen E, Lenkkeri R, et al. Catalytic Activation of CO2:Use of Secondary CO2for the Production of Synthesis Gas and for MethanolSynthesis over Copper-based Zirconia-containing Catalysts[J]. CatalysisToday,2009,144:318-323.
    [27] Ipatieff V N, Monroe G S. Synthesis of Methanol from Carbon Dioxide andHydrogen over Copper-alumina Catalysts. Mechanism of Reaction[J]. Journalof the American Chemical Society,1945,67:2168-2171.
    [28]张忠涛,李方伟,迟克彬,等.甲醇工艺新进展[J].辽宁化工,2001,30(11):477-480.
    [29] Wang S, Mao D S, Guo X M, et al. Dimethyl Ether Synthesis via CO2Hydrogenation over CuO-TiO2-ZrO2/HZSM-5Bifunctional Catalysts[J].Catalysis Communications,2009,10:1367-1370.
    [30]王继元,曾崇余,吴昌子. SiO2改性的Cu-ZnO/HZSM-5催化剂及合成二甲醚性能[J].燃料化学学报,2006,34(2):195-199.
    [31] Zhao Y Q, Chen J X, Zhang J Y. Effects of ZrO2on the Performance ofCuO-ZnO-Al2O3/HZSM-5Catalyst for Dimethyl Ether Synthesis from CO2Hydrogenation[J]. Journal of Natural Gas Chemistry,2007,16:389-392.
    [32] Sun K P, Lu W W, Wang M, et al. Low-temperature Synthesis of DME fromCO2/H2over Pd-modified CuO-ZnO-Al2O3-ZrO2/HZSM-5Catalysts[J].Catalysis Communications,2004,5:367-370.
    [33]郭芳,储伟,徐慧远,等.采用等离子体强化制备CO2甲烷化用镍基催化剂[J].催化学报,2007,(28)5:429-434.
    [34]魏树权,李丽波,商永臣,等.沉淀型Ni-La2O3/ZrO2催化剂上CO2甲烷化性能的研究[J].天然气化工,2004,29(5):10-13.
    [35] Jessop P G, Ikariya T, Noyori R. Homogeneous Hydrogenation of CarbonDioxide[J]. Chemical Reviews,1995,95(2):259-272.
    [36] Jessop P G, Ikariya T, Noyori R. Homogeneous Catalysis in SupercriticalFluids[J]. Chemical Reviews,1999,99(2):475-494.
    [37]于英民,费金华,张一平,等.功能化MCM-41固载的钌基催化剂上二氧化碳加氢合成甲酸[J].燃料化学学报,2006,34(6):700-705.
    [38] Hao C Y, Wang S P, Li M S, et al. Hydrogenation of CO2to Formic Acid onSupported Ruthenium Catalysts[J]. Catalysis Today,2011,160(1):184-190.
    [39]刁杰,王金福,王志良,等.甲醇合成反应热力学分析及实验研究[J].化学反应工程与工艺,2001,17(1):10-14.
    [40]赵彦巧,陈吉祥,张继炎.二氧化碳加氢直接合成二甲醚反应体系的热力学[J].天津大学学报,2006,39(4):408-413.
    [41]刘志坚,廖建军,谭经品,等.二氧化碳加氢合成二甲醚的热力学分析[J].石油与天然气化工,2000,29(4):163-164.
    [42]付严,鲁皓,常杰,等.生物质气催化合成甲醇的热力学分析[J].化工学报,2006,57(5):1064-1067.
    [43]万华,王黎,张占涛,等. CO2加氢合成C1~C5醇反应体系热力学分析[J].石油化工,2005,34(7):637-642.
    [44] Hong Z S, Cao Y, Deng J F, et al. CO2Hydrogenation to Methanol overCu/ZnO/Al2O3Catalysts Prepared by a Novel Gel-network-coprecipitationMethod[J]. Catalysis Letters,2002,82(1):37-44.
    [45]李基涛,区泽棠,陈明旦,等. CO2加氢合成甲醇催化剂中Al2O3的作用[J].天然气化工,1997,22(5):13-16.
    [46]许勇,吴善良,汪仁. CO2/H2在Cu-ZnO-Al2O3催化剂上低压合成甲醇反应的研究[J].化学工程师,1993,(1):19-21.
    [47] Saito M, Wu J G, Mabuse H. Activity and Stability of Cu/ZnO/Al2O3CatalystPromoted with B2O3for Methanol Synthesis[J]. Catalysis Letters,2000,68:55-58.
    [48] Zhang Q, Zuo Y Z, Han M H, et al. Long Carbon Nanotubes IntercrossedCu/Zn/Al/Zr Catalyst for CO/CO2Hydrogenation to Methanol/DimethylEther[J]. Catalysis Today,2010,150:55-60.
    [49]吴瑛,吴彬福,王海涛,等. Mn助剂对CO2加氢合成甲醇催化剂Cu/Zn/Al2O3的改性作用[J].浙江师范大学学报(自然科学版),2008,31(1):55-59.
    [50]黄树鹏,张永春,陈绍云,等.助剂对CuO-ZnO-Al2O3催化剂在CO2加氢制甲醇反应中性能的影响[J].石油化工,2009,38(5):482-485.
    [51]阴秀丽,常杰,汪俊锋,等. Cu/Zn/Al/Mn催化剂上CO/CO2加氢合成甲醇特性研究[J].燃料化学学报,2004,32(4):492-497.
    [52] Meshkini F, Taghizadeh M, Bahmani M. Investigating the Effect of MetalOxide Additives on the Properties of Cu/ZnO/Al2O3Catalysts in MethanolSynthesis from Syngas using Factorial Experimental Design[J]. Fuel,2010,89:170-175.
    [53] Zhang X B, Zhong L, Guo Q H, et al. Influence of the Calcination on theActivity and Stability of the Cu/ZnO/Al2O3Catalyst in Liquid Phase MethanolSynthesis[J]. Fuel,2010,89:1348-1352.
    [54] Arena F, Barbera K, Italiano G, et al. Synthesis, Characterization and ActivityPattern of Cu-ZnO/ZrO2Catalysts in the Hydrogenation of Carbon Dioxide toMethanol[J]. Journal of Catalysis,2007,249:185-194.
    [55] Arena F, Italiano G, Barbera K, et al. Basic Evidences for Methanol-synthesisCatalyst Design[J]. Catalysis Today,2009,143:80-85.
    [56] Guo X M, Mao D S, Wang S, et al. Combustion Synthesis of CuO-ZnO-ZrO2Catalysts for the Hydrogenation of Carbon Dioxide to Methanol[J]. CatalysisCommunications,2009,10:1661-1664.
    [57] S oczyn′ski J, Grabowski R, Olszewski P, et al. Effect of Metal OxideAdditives on the Activity and Stability of Cu/ZnO/ZrO2Catalysts in theSynthesis of Methanol from CO2and H2[J]. Applied Catalysis A: General,2006,310:127-137.
    [58] S oczy′nski J, Grabowski R, Koz owska A, et al. Effect of Mg and Mn OxideAdditions on Structural and Adsorptive Properties of Cu/ZnO/ZrO2Catalystsfor the Methanol Synthesis from CO2[J]. Applied Catalysis A: General,2003,249:129-138.
    [59]丛昱,田金忠,黄宁表,等.超细Cu-ZnO-ZrO2催化剂的制备及其催化CO2加氢合成甲醇的性能[J].催化学报,2000,21(3):247-250.
    [60]丛昱,包信和,张涛,等. CO2加氢合成甲醇的超细Cu-ZnO-ZrO2催化剂的表征[J].催化学报,2000,21(4):314-318.
    [61] Toyir J, Piscina P R, Fierro J L G, et al. Highly Effective Conversion of CO2to Methanol over Supported and Promoted Copper-based Catalysts: Influenceof Support and Promoter[J]. Applied Catalysis B: Environmental,2001,29:207-215.
    [62]解红娟,谭猗生,牛玉琴. CuO/SiO2催化剂用于CO2加氢合成甲醇的研究[J].煤炭转化,2000,23(3):92-96.
    [63] Fisher I A, Woo H C, Bell A T. Effects of Zirconia Promotion on the Activityof Cu/SiO2for Methanol Synthesis from CO/H2and CO2/H2[J]. CatalysisLetters,1997,44:11-17.
    [64]朱毅青,马延风,林西平,等.用于CO2加氢合成甲醇的超细CuO-ZnO/SiO2-ZrO2催化剂[J].催化学报,1998,19(5):393-397.
    [65]迟亚武,粱东白,罗洪原,等.在超细催化剂CuO-ZnO-SiO2上CO2加氢合成甲醇的优化研究[J].煤化工,1997,(1):41-46.
    [66] Zhang Y P, Fei J H, Yu Y M, et al. Methanol Synthesis from CO2Hydrogenation over Cu Based Catalyst Supported on Zirconia Modifiedγ-Al2O3[J]. Energy Conversion and Management,2006,47:3360-3367.
    [67] Zhang Y P, Fei J H, Yu Y M, et al. Study of CO2Hydrogenation to Methanolover Cu-V/γ-Al2O3Catalyst[J]. Journal of Natural Gas Chemistry,2007,16:12-15.
    [68] Liang X L, Dong X, Lin G D, et al. Carbon Nanotube-supported Pd-ZnOCatalyst for Hydrogenation of CO2to Methanol[J]. Applied Catalysis B:Environmental,2009,88:315-322.
    [69] Liaw B J, Chen Y Z. Liquid-phase Synthesis of Methanol from CO2/H2overUltrafine CuB Catalysts[J]. Applied Catalysis A: General,2001,206:245-256.
    [70] Shao C P, Fan L, Fujimoto K, et al. Selective Methanol Synthesis from CO2/H2on New SiO2-supported PtW and PtCr Bimetallic Catalysts[J]. AppliedCatalysis A: General,1995,128:1-6.
    [71]李桂英,胡常伟. Fe助剂对CuO/Al2O3催化剂上CO2+H2合成甲醇影响的研究[J].天然气化工,2005,30(3):13-16.
    [72]王仁国,陈彤,张国民,等. V助剂对CuO/Al2O3上CO2加H2合成甲醇的影响[J].天然气化工,1999,24(6):12-16.
    [73]王仁国. Fe、V助剂对CuO/Al2O3催化剂上CO2加氢合成甲醇的影响[J].化学研究与应用,1999,11(6):640-645.
    [74] Chiavassa D L, Barrandeguy J, Bonivardi A L, et al. Methanol Synthesis fromCO2/H2using Ga2O3-Pd/Silica Catalysts: Impact of Reaction Products[J].Catalysis Today,2008,133-135:780-786.
    [75] Zhang Y L, Sun Q, Deng J F, et al. A High Activity Cu/ZnO/A12O3Catalystfor Methanol Synthesis: Preparation and Catalytic Properties[J]. AppliedCatalysis A: General,1997,158:105-120.
    [76] Qi G X, Fei J H, Hou Z Y, et al. Methanol Synthesis by CO2Hydrogenationover Titanium Modified γ-Al2O3Supported Copper Catalysts[J]. ReactionKinetics and Catalysis Letters,2001,73(1):151-160.
    [77]刘源,钟炳,王琴,等.氧化铜/氧化锆甲醇合成催化剂的性能研究[J].催化学报,1995,16(6):442-446.
    [78]邵昌平,杨秀芝,王捷宇. SiO2负载的Pt-M、Rh-M异双核络合物催化剂催化CO2氢化反应[J].分子催化,1996,10(5):363-367.
    [79] Wu J G, Luo S C, Toyir J, et al. Optimization of Preparation Conditions andImprovement of Stability of Cu/ZnO-based Multicomponent Catalysts forMethanol Synthesis from CO2and H2[J]. Catalysis Today,1998,45:215-220.
    [80]刘志坚,廖建军,谭经品,等.二氧化碳加氢合成甲醇的CuO-ZnO催化剂制备Ⅰ.制备方法[J].石油炼制与化工,2000,31(9):58-61.
    [81]刘志坚,廖建军,谭经品,等.二氧化碳加氢合成甲醇的CuO-ZnO催化剂制备Ⅱ.制备规律[J].石油炼制与化工,2000,31(12):37-40.
    [82]郭宪吉,陈炳义,鲍改玲,等.不同制备方式的铜基甲醇合成催化剂的性质和结构研究[J].天然气化工,2003,28(2):9-13.
    [83] Raudaskoski R, Niemela M V, Keiski R L. The Effect of Ageing Time onCo-precipitated Cu/ZnO/ZrO2Catalysts Used in Methanol Synthesis from CO2and H2[J].Topics in Catalysis,2007,45:1-4.
    [84] Fujitani T, Nakamura J. The Effect of ZnO in Methanol Synthesis Catalysts onCu Dispersion[J]. Catalysis Letters,1998,56:119-124.
    [85]郑小明,齐共新,费金华. TiO2改性的γ-Al2O3负载Cu催化剂上CO2加氢合成甲醇的研究[J].宁夏大学学报(自然科学版),2001,22(2):132-133.
    [86] Arakawa H, Bando K K, Sayama K. In-situ FT-IR Study on CO2Hydrogenation over Cu Catalysts Supported on SiO2, Al2O3and TiO2[J].Applied Catalysis A: General,1997,165:391-409.
    [87]温丽丹,李金来. Cu/Zn/TiO2负载型催化剂上CO2加氢合成甲醇[J].化学研究,2009,20(1):61-64.
    [88]朱毅青,文艺,赖梨芳,等.超细CuO/ZnO/TiO2-SiO2的表征和CO2加氢合成甲醇性能研究[J].燃料化学学报,2004,32(4):486-491.
    [89]林西平,马延风,朱毅青,等.溶胶-凝胶法CuO-ZnO/SiO2-ZrO2超细微粒催化剂的研究[J].江苏石油化工学院学报,1997,9(4):1-5.
    [90] Guo X M, Mao D S, Lu G Z, et al. Glycine-nitrate Combustion Synthesis ofCuO-ZnO-ZrO2Catalysts for Methanol Synthesis from CO2Hydrogenation[J].Journal of Catalysis,2010,271:178-185.
    [91] Zhuang H D, Bai S F, Liu X M, et al. Structure and Performance of Cu/ZrO2Catalyst for the Synthesis of Methanol from CO2Hydrogenation[J]. Journal ofFuel Chemistry and Technology,2010,38(4):462-467.
    [92] Fujita S I, Moribe S, Kanamori Y, et al. Preparation of a CoprecipitatedCu/ZnO Catalyst for the Methanol Synthesis from CO2—Effects of theCalcination and Reduction Conditions on the Catalytic Performance[J].Applied Catalysis A: General,2001,207:121-128.
    [93]化明利,郭宪吉,鲍改玲,等.二步共沉淀法制备的铜基甲醇合成催化剂的研究[J].天然气化工,2003,28(6):1-4.
    [94] Liu J Y, Shi J L, He D H, et al. Surface Active Structure of Ultra-fine Cu/ZrO2Catalysts Used for the CO2+H2to Methanol Reaction[J]. Applied Catalysis A:General,2001,218:113-119.
    [95] Jun K W, Shen W J, Rao K S R, et al. Residual Sodium Effect on the CatalyticActivity of Cu/ZnO/Al2O3in Methanol Synthesis from CO2Hydrogenation[J].Applied Catalysis A: General,1998,174:231-238.
    [96] Wang G C, Zhao Y Z, Cai Z S, et al. Investigation of the Active Site of CO2Hydrogenation to Methanol over a Cu-based Catalyst by the UBI-QEPApproach[J]. Surface Science,2000,465(1):51-58.
    [97] Tagaawa T, Pheizier G, Amenomiya Y. Methanol Synthesis from CO2+H2I.Characterization of Catalysts by TPD[J]. Applied Catalysis,1985,18(2):285-293.
    [98] Bourzutschky J A B, Homs N, Bell A T. Hydrogenation of CO2and CO2/COMixtures over Copper-containing Catalysts[J]. Journal of Catalysis,1990,124(1):73-85.
    [99] Jia L S, Gao J, Fang W P, et al. Influence of Copper Content on StructuralFeatures and Performance of Prereduced LaMn1-xCuxO3(0≤x<1) Catalysts forMethanol Synthesis from CO2/H2[J]. Journal of Rare Earths,2010,28(5):747-751.
    [100] Jia L S, Gao J, Fang W P. Carbon Dioxide Hydrogenation to Methanol overthe Pre-reduced LaCr0.5Cu0.5O3Catalyst[J]. Catalysis Communications,2009,10:2000-2003.
    [101]殷永泉,肖天存,苏继新,等. CO和CO2在CuO/ZnO/Al2O3催化剂上加氢反应机理的原位红外研究[J].燃料化学学报,1999,27(6):565-571.
    [102] French S A, Sokol A A, To J, et al. Active Sites for Heterogeneous Catalysisby Functionalisation of Internal and External Surfaces[J]. Catalysis Today,2004,93:535-540.
    [103] Fujitani T, Nakamura I, Uchijima T, et al. The Kinetics and Mechanism ofMethanol Synthesis by Hydrogenation of CO2over a Zn-deposited Cu(111)Surface[J]. Surface Science,1997,383:285-298.
    [104] Hong Q J, Liu Z P. Mechanism of CO2Hydrogenation over Cu/ZrO2(212)Interface from First-principles Kinetics Monte Carlo Simulations[J]. SurfaceScience,2010,604:1869-1876.
    [105] Fujitani T, Matsuda T. Creation of the Active Site for Methanol Synthesis on aCu/SiO2Catalyst[J]. Catalysis Letters,1997,49:175-179.
    [106] Chiavassa D L, Collins S E, Bonivardi A L, et al. Methanol Synthesis fromCO2/H2using Ga2O3–Pd/silica Catalysts: Kinetic Modeling[J]. ChemicalEngineering Journal,2009,150:204-212.
    [107] Saito M, Murata K. Development of High Performance Cu/ZnO-basedCatalysts for Methanol Synthesis and the Water-gas Shift Reaction[J].Catalysis Surveys from Asia,2004,8(4):285-294.
    [108] Chinchen G C, Denny P J, Parker D G, et al. Mechanism of MethanolSynthesis from CO2/CO/H2Mixtures over Copper/Zinc Oxide/AluminaCatalysts: Use of14C-labelled Reactants[J]. Applied Catalysis,1987,30(2):333-338.
    [109] Erd helyi A, Pásztor M, Solymosi F. Catalytic Hydrogenation of CO2overSupported Palladium[J]. Journal of Catalysis,1986,98(1):166-177.
    [110] Tang Q L, Hong Q J, Liu Z P. CO2Fixation into Methanol at Cu/ZrO2Interface from First Principles Kinetic Monte Carlo[J]. Journal of Catalysis,2009,263:114-122.
    [111]丛昱,包信和,张涛,等.超细Cu-ZnO-ZrO2催化剂上甲醇合成的TPSR和TPD研究[J].燃料化学学报,2000,28(3):238-243.
    [112] Yang R Q, Yu X C, Zhang Y, et al. A New Method of Low-temperatureMethanol Synthesis on Cu/ZnO/Al2O3Catalysts from CO/CO2/H2[J]. Fuel,2008,87:443-450.
    [113] Guo X M, Mao D S, Lu G Z, et al. Preparation of CuO-ZnO-ZrO2by CitricAcid Combustion Method and Its Catalytic Property for Methanol Synthesisfrom CO2Hydrogenation[J]. Acta Physico-Chimica Sinica,2012,(28)1:170-176.
    [114] Toyir J, Miloua R, Elkadri N E, et al. Sustainable Process for the Production ofMethanol from CO2and H2Using Cu/ZnO-based Multicomponent Catalyst[J].Physics Procedia,2009,2:1075-1079.
    [115] Arena F, Italiano G, Barbera K, et al. Solid-state Interactions, Adsorption Sitesand Functionality of Cu-ZnO/ZrO2Catalysts in the CO2Hydrogenation toCH3OH[J]. Applied Catalysis A: General,2008,350:16-23.
    [116] Arakawa H, Sayama K, Okabe K, et al. Promoting Effect of TiO2Addition toCuO-ZnO Catalyst on Methanol Synthesis by Catalytic Hydrogenation ofCO2[J]. Studies in Surface Science and Catalysis,1993,77:89-392.
    [117]黄仲涛,耿建铭.工业催化[M].第二版.北京:化学工业出版社,2006:48,193.
    [118]张喜通,常杰,王铁军,等.添加表面活性剂两步沉淀法制备甲醇催化剂[J].燃料化学学报,2005,33(4):479-482.
    [119]夏增敏,文利雄,宋继瑞,等. Ce掺杂的蛋壳型CuO/ZnO/SiO2颗粒催化剂的制备和表征[J].过程工程学报,2007,7(4):812-816.
    [120]国海光,沈强,姚洪,等.沉淀方法对铜基甲醇合成催化剂性能影响的研究[J].浙江化工,2004,35(1):18-19.
    [121] Guo X J, Li L M, Liu S M, et al. Preparation of CuO/ZnO/Al2O3Catalysts forMethanol Synthesis using Parallel-slurry-mixing Method[J]. Journal of FuelChemistry and Technology,2007,35(3):329-333.
    [122]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004:145.
    [123]辛勤,罗孟飞.现代催化研究方法[M].北京:科学出版社,2009:21,277.
    [124]季先进,王继元,曾崇余,等.焙烧温度对TiO2成型载体性能的影响[J].工业催化,2008,16(12):30-33.
    [125]李辉. Co修饰碳纳米管作为二氧化碳加氢合成甲醇Cu-ZrO2氧化物基催化剂的高效促进剂[D].夏门:厦门大学硕士学位论文,2008:51-53.
    [126]刘志铭. CO2加氢合成甲醇用Co修饰碳纳米管促进CuO-ZnO-ZrO2催化剂的研究[D].厦门:厦门大学硕士学位论文,2009:66-67,69.
    [127]杨海贤.二氧化碳加氢合成二甲醚铜锰基催化剂的研究[D].厦门:厦门大学硕士学位论文,2008:30-31.
    [128] Zhang L X, Zhang Y C, Chen S Y. Effect of Promoter SiO2, TiO2or SiO2-TiO2on the Performance of CuO-ZnO-Al2O3Catalyst for Methanol Synthesis fromCO2Hydrogenation[J]. Applied Catalysis A: General,2012,415-416:118-123.
    [129]商敏静,陈绍云,李桂民,等.助剂对二氧化碳加氢合成甲醇催化剂性能的影响[J].现代化工,2011,31(7):50-52.
    [130] Guo X M, Mao D S, Lu G Z, et al. CO2Hydrogenation to Methanol overCu/ZnO/ZrO2Catalysts Prepared via a Route of Solid-state Reaction[J].Catalysis Communications.2011,12(12):1095-1098.
    [131]庄会栋,白绍芬,刘欣梅,等. Cu/ZrO2催化剂的结构及其CO2加氢合成甲醇催化反应性能[J].燃料化学学报,2010,38(4):462-467.
    [132] Saito M, Fujitani T, Takeuchi M, T. et al. Development of Copper/ZincOxide-based Multicomponent Catalysts for Methanol Synthesis from CarbonDioxide and Hydrogen[J]. Applied Catalysis A: General,1996,138:311-318.
    [133] Melián C I, López G M, Fierro J L G. Reverse Topotactic Transformation of aCu-Zn-Al Catalyst during Wet Pd Impregnation: Relevance for thePerformance in Methanol Synthesis from CO2/H2Mixtures[J]. Journal ofCatalysis,2002,210:273-284.
    [134]齐共新. CO2催化加氢合成醇、醚等含氧化合物的Cu基催化剂及其机理研究[D].杭州:浙江大学博士学位论文,2001:69-73.
    [135] Toyir J, Piscina P R D L, Fierro J L G, et al. Catalytic Performance for CO2Conversion to Methanol of Gallium-promoted Copper-based Catalysts:Influence of Metallic Precursors[J]. Applied Catalysis B: Environmental,2001,34:255-266.
    [136] Kang S H, Bae J W, Sai Prasad P S, et al. Influence of Ga Addition on theMethanol Synthesis Activity of Cu/ZnO Catalyst in the Presence and Absenceof Alumina[J]. Journal of Industrial and Engineering Chemistry,2009,15:665-669.
    [137]郭晓明.二氧化碳加氢合成甲醇铜基催化剂的研究[D].上海:华东理工大学博士学位论文,2011:63,97.
    [138]王篙,毛东森,吴贵升,等.铜/氧化锆催化剂的制备及应用研究进展[J].化工进展,2008,27(6):837-843.
    [139] Spassova I, Khristova M, Panayotov D, et al. Coprecipitated CuO-MnOxCatalysts for Low-temperature CO-NO and CO-NO-O2Reactions[J]. Journalof Catalysis,1999,185:43-57.
    [140] Kung M, Park E D, Kim J M, et a1. Cu-Mn Mixed Oxides for LowTemperature NO Reduction with NH3[J]. Catalysis Today,2006,111:236-241.
    [141] Stankova N B, Khristova M S, Mehandjiev D R, et al. Catalytic Reduction ofNO with CO on Active Carbon-supported Copper, Manganese, andCopper-manganese Oxides[J]. Journal of Colloid and Interface Science,2001,241:439-447.
    [142]齐共新,费金华,侯昭胤,等. Cu-MnOx/Al2O3催化剂上CO2加氢反应的研究[J].石油化工,1999,28(10):660-662.
    [143]王继元.二氧化碳加氢合成二甲醚的催化剂和本征动力学研究[D].南京:南京工业大学博士学位论文,2006:121.
    [144] Clausen B S, Steffensen G, Fabius B, et al. In Situ Cell for Combined XRDand On-line Catalysis Tests: Studies of Cu-based Water Gas Shift andMethanol Catalysts[J]. Journal of Catalysis,1991,132:524-535.
    [145]刘欣梅,阎子峰.介孔纳米二氧化锆的微观结构及其应用[J].科学通报,2004,49(6):522-527.
    [146] Okamoto Y, Ukino K, Tmananka T, et al. Surface Characterization of Cu-ZnMethanol-synthesis Catalysts by X-ray Photoelectron Spectroscopy: ReducedCatalysts[J]. The Journal of Physical Chemistry,1983,87(19):3747-3754.
    [147]赵彦巧.二氧化碳催化加氢直接合成二甲醚的研究[D].天津:天津大学博士学位论文,2006:89.
    [148] Cabrera I M, Granados M L, Terreros P, et al. CO2Hydrogenation over PdModified Methanol Synthesis Catalysts[J]. Catalysis Today,1998,45:251-256.
    [149] Zheng X C, Zhang X L, Wang X Y, et al. Preparation and Characterization ofCuO/CeO2Catalysts and Their Applications in Low-temperature COOxidation[J]. Applied Catalysis A: General,2005,295(2):142-149.
    [150] Avgouropoulos G, Ioannides T. Selective CO Oxidation over CuO-CeO2Catalysts Prepared via the Urea-nitrate Combustion Method[J]. AppliedCatalysis A: General,2003,244:155-167.
    [151]井立强,孙晓君,蔡伟民,等. Pd/ZnO和Ag/ZnO复合纳米粒子的SPS和XPS研究[J].物理化学学报,2002,18(8):754-758.
    [152]郭先芝,黄静,王彦美,等.以TiO2多孔微球为载体的CuO/TiO2催化剂的制备、表征及CO氧化催化性能[J].高等学校化学学报,2008,29(6):1220-1223.
    [153]马中义,徐润,杨成,等.不同形态ZrO2的制备及其表面性质研究[J].物理化学学报,2004,20(10):1221-1225.
    [154]甄开吉,王国甲,毕颖丽,等.催化作用基础[M].第三版.北京:科学出版社,2005:20.
    [155] Rasmussen P B, Holmblad P M, Askgaard T, et al. Methanol Synthesis onCu(100) from a Binary Gas Mixture of CO2and H2[J].Catalysis Letters,1994,26:373-381.
    [156] Dong X, Zhang H B, Lin G D, et al. Highly Active CNT-PromotedCu-ZnO-Al2O3Catalyst for Methanol Synthesis from H2/CO/CO2[J]. CatalysisLetters,2003,85:237-246.
    [157] Wilmer H, Genger T, Hinrichsen O. The Interaction of Hydrogen withAlumina-supported Copper Catalysts: A Temperature-programmedAdsorption/Temperature-programmed Desorption/Isotopic Exchange ReactionStudy[J]. Journal of Catalysis,2003,215:188-198.
    [158] Wang S G, Liao X Y, Cao D B, et al. Factors Controlling the Interaction ofCO2with Transition Metal Surfaces[J]. The Journal of Physical Chemistry C,2007,111:16934-16940.
    [159] Bianchi D, Gass J L, Khalfallah M, et al. Intermediate Species on ZirconiaSupported Methanol Aerogel Catalysts: I. State of the Catalyst Surface beforeand after the Adsorption of Hydrogen [J]. Applied Catalysis A: General,1993,101:297-315.
    [160] Genger T, Hinrichsen O, Muhler M. The Temperature-programmedDesorption of Hydrogen from Copper Surfaces[J]. Catalysis Letters,1999,59:137-141.
    [161] Liu X M, Lu G Q, Yan Z F, et al. Recent Advances in Catalysts for MethanolSynthesis via Hydrogenation of CO and CO2[J]. Industrial&EngineeringChemistry Research,2003,42(25):6518-6530.
    [162] Jones P M, May J A, Reitz J B, et al. Photoelectron Spectroscopic andElectronic Structure Studies of CH2O Bonding and Reactivity on ZnOSurfaces: Steps in the Methanol Synthesis Reaction[J]. Inorganic Chemistry,2004,43(11):3349-3370.
    [163] Ahlers J A, Grasser J A, Loveless B T, et al. Room-temperature Oxidation ofReduced Cu/ZnO Surfaces by Lattice Oxygen Diffusion[J]. Catalysis Letters,2007,114:185-191.
    [164] Schild C, Wokaun A, Baiker A. On the Mechanism of CO and CO2Hydrogenation Reactions on Zirconia-supported Catalysts: A DiffuseReflectance FTIR Study: Part II. Surface Species on Copper/ZirconiaCatalysts: Implications for Methanol Synthesis Selectivity[J]. Journal ofMolecular Catalysis,1990,63(2):243-254.
    [165] Fisher I A, Bell A T. In Situ Infrared Study of Methanol Synthesis from H2/COover Cu/SiO2and Cu/ZrO2/SiO2[J]. Journal of Catalysis,1998,178:153-173.
    [166] Fisher I A, Bell A T. In-Situ Infrared Study of Methanol Synthesis fromH2/CO2over Cu/SiO2and Cu/ZrO2/SiO2[J]. Journal of Catalysis,1997,172:222-237.
    [167] Bianchi D, Chafik T, Khalfallah M, et al. Intermediate Species on ZirconiaSupported Methanol Aerogel Catalysts: III. Adsorption of Carbon Monoxideon Copper Containing Solids[J]. Applied Catalysis A: General,1994,112(1):57-73.
    [168] Hertl W. Surface Chemistry of Zirconia Polymorphs[J]. Langmuir,1989,5:96-100.
    [169] Wambach J, Baiker A, Wokaun A. CO2Hydrogenation over Metal/ZirconiaCatalysts CO [J]. Physical Chemistry Chemical Physics,1999,1(22):5071-5080.
    [170] Pokrovski K, Jung K T, Bell A T. Investigation of CO and CO2Adsorption onTetragonal and Monoclinic Zirconia[J]. Langmuir,2001,17(14):4297-4303.
    [171] Liu X M, Lu G Q, Yan Z F. Nanocrystalline Zirconia as Catalyst Support inMethanol Synthesis[J]. Applied Catalysis A: General,2005,279:241-245.
    [172] Walter E J, Lewis S P, Rappe A M. First Principles Study of Carbon MonoxideAdsorption on Zirconia-supported Copper[J]. Surface Science,2001,495(1):44-50.
    [173] Ma Z Y, Yang C, Wei W, et al. Surface Properties and CO Adsorption onZirconia Polymorphs[J]. Journal of Molecular Catalysis A: Chemical,2005,227:119-124.
    [174] Wang J B, Lee H K, Huang T J. Synergistic Catalysis of Carbon DioxideHydrogenation into Methanol by Yttria-doped Ceria/Alumina-supportedCopper Oxide Catalyst: Effect of Promotor and Dopant[J]. Catalysis Letters,2002,83(1-2):79-86.
    [175] Won L H, June P M, Hwan K S. Modeling of the Kinetics for MethanolSynthesis using Cu/ZnO/Al2O3/ZrO2Catalyst: Influence of Carbon Dioxideduring Hydrogenation[J]. Industrial&Engineering Chemistry Research,2009,48:10448-10455.
    [176] Yoshihara J, Parker S C, Schafer A, et al. Methanol Synthesis and ReverseWater-gas Shift Kinetics over Clean Polycrystalline Copper[J]. CatalysisLetters,1995,31:313-324.
    [177] Fujita S I, Usui M, Ito H, et al. Mechanisms of Methanol Synthesis fromCarbon Dioxide and from Carbon Monoxide at Atmospheric Pressure overCu/ZnO[J]. Journal of Catalysis,1995,157:403-413.
    [178] Schild C, Wokaun A. On the Mechanism of CO and CO2HydrogenationReactions on Zirconia-supported Catalysts: A Diffuse Reflectance FTIR Study:Part II. Surface Species on Copper/Zirconia Catalysts: Implications forMethanol Synthesis Selectivity[J]. Journal of Molecular Catalysis,1990,63:243-254
    [179] Kilo M, Weigel J, Wokaun A, et al. Effect of the Addition of Chromium andManganese Oxides on Structural and Catalytic Properties of Copper/ZirconiaCatalysts for the Synthesis of Methanol from Carbon Dioxide[J]. Journal ofMolecular Catalysis A: Chemical,1997,126:169-184.
    [180] Bianchi D, Chafik T, Khalfallah M, et al. Intermediate Species on ZirconiaSupported Methanol Aerogel Catalysts: IV. Adsorption of Carbon Dioxide[J].Applied Catalysis A: General,1994,112:219-235.
    [181] Rhodes M D, Pokrovski K A, Bell A T. The Effects of Zirconia Morphologyon Methanol Synthesis from CO and H2over Cu/ZrO2Catalysts Part II.Transient-response Infrared Studies[J]. Journal of Catalysis,2005,233:210-220.
    [182] Rhodes M D, Bell A T. The Effects of Zirconia Morphology on MethanolSynthesis from CO and H2over Cu/ZrO2Catalysts Part I. Steady-stateStudies[J]. Journal of Catalysis,2005,233:198-209.
    [183] Jung K D, Bell A T. Role of Hydrogen Spillover in Methanol Synthesis overCu/ZrO2[J]. Journal of Catalysis,2000,193:207-223.
    [184] Fisher I A, Bell A T. A Mechanistic Study of Methanol Decomposition overCu/SiO2, ZrO2/SiO2, and Cu/ZrO2/SiO2[J]. Journal of Catalysis,1999,184:357-376.
    [185] Keskitalo T J, Veringa Niemel M K, Krause A O I. Modeling of theAdsorption and Desorption of CO2on Cu/ZrO2and ZrO2Catalysts[J].Langmuir,2007,23(14):7612-7619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700