克螟稻中cry1Ab基因表达产物在土壤中的环境行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以转Bt(cry1Ab)基因水稻-克螟稻(KMD)及其亲本水稻-秀水11(Xiushui 11)为试材,通过田间和实验室试验,研究了克螟稻生育期间Bt蛋白的表达、分泌、土壤中的残留及秸秆还土后Bt蛋白在土壤中的降解规律;同时从克螟稻秸秆中纯化制备出Bt纯蛋白,进而研究该蛋白在不同土壤中的吸附解吸与降解规律。试验中还对抗性选择标记基因(nptⅡ、hpt)水平转移到土壤细菌的可能性进行了初步探讨。主要结果如下:
     1)Bt蛋白纯化制备和土壤中Bt蛋白提取方法的建立
     采用0.1M Na_2CO_3-NaHCO_3+5.0mM DTT缓冲液作为提取剂以提取克螟稻秸秆中的Bt蛋白。提取液经冷冻干燥浓缩和截留分子量浓缩至较小体积,然后用(NH_4)_2SO_4分级沉淀(20%去杂蛋白,80%收集Bt粗蛋白)、离子交换色谱(A-50)、凝胶渗透色谱(G-150)等步骤后,得到了纯度较高的Bt蛋白(经SDS-PAGE电泳检测相对纯度80%以上)。生物活性测定表明,纯化制备所得的Bt纯蛋白仍保留杀虫活性。
     国内外现有的方法难以有效地提取土壤中的Bt蛋白(提取效率4.6~35%),为研究Bt蛋白在土壤环境中的行为与归趋,建立适宜的提取方法尤为重要。本研究通过添加回收率试验(分别添加Bt纯蛋白和克螟稻秸秆),比较了3种提取方法对不同土壤中Bt蛋白的提取效率,得出了适用于从土壤中提取Bt蛋白的方法。利用新建的提取方法,土壤中Bt纯蛋白的添加回收率在46.18~81.73%之间;克螟稻秸秆还土后,秸秆中的Bt蛋白的提取回收效率在47.72~82.25%之间。新方法的提取效率明显高于Palm等法(提取效率7.25~34.15%)和Environlogic公司方法(提取效率4.61~21.32%)。某些土壤中Bt蛋白的提取效率相对较低,意味着Bt蛋白易与该土壤基质(粘土矿物和腐殖质等)形成难以提取的结合态残留,这进一步证实了Stotzky等人的研究结果。
     2)Bt纯蛋白和克螟稻秸秆中的Bt蛋白在土壤中的降解规律
     Bt纯蛋白的添加培养试验表明,在7种不同土壤中其降解趋势符合一级动力学反应方程Y=Y_0e~(-λt),半减期为15.2~97.6d,培养前期(30d前)降解比较快,而后缓慢降低。Bt纯蛋白在粗砂土降解最慢,半减期为97.6d;而在滨海盐土和盐碱土中降解最快,半减期分别为19.6d和15.2d;当Bt纯蛋白的添加量为1.25μg/g时,粗砂土培养345d后仍然能够检测到Bt蛋白。试验结果还表明,所有培养土壤中,Bt纯蛋白的持留时间都大干150d。
    
    浙江大学硕士学位论文
     克螟稻秸秆添加试验表明,克螟稻秸秆中的Bt蛋白在5种不同土壤中的降解趋势
    符合一级动力学反应方程Y=Yoe一“,半减期为10.7一32.ld,培养前期(20d前)降解比
    较快,而后缓慢降低。当克螟稻秸秆添加量为4%时,Bt蛋白在黄松土、小粉土、黄筋
    泥和红砂土中的半减期分别为15.2d、20.ld、32.ld和31.ld,其在后两种土壤中降解较
    慢,培养146d和138d后仍然能够检测到Bt蛋白存在。而在滨海盐土中,Bt蛋白降解
    最快,半减期仅为10.7d,培养60d后Bt蛋白浓度就低于检测限检测极限(0.5n岁g.air dried
    5011)。试验结果还表明,培养150d后,所有供试土壤中均检测不到Bt蛋白。
    3) Bt纯蛋白在土壤中的吸附解吸规律
     Bt纯蛋白在土壤中的吸附率随着Bt蛋白加入浓度的降低而升高(浓度
    125一780n留mL)。在7种供试土壤中,小粉土的吸附率最高,Bt蛋白浓度为125和
    780ng/mL时,其吸附率分别为24.9%和40.8%;而黄松土和滨海盐土的吸附率相对最
    低,相应的吸附率分别为9.1%和31.7%,12.5%和30.8%。解吸附率随着吸附量的减少
    而降低。小粉土的解吸附率较低,分别为13.0%和5.9%。土壤对Bt纯蛋白的单位吸附
    量与Bt蛋白加入浓度和土壤的OM呈显著正相关(P<0.05)。
    4)生育期间克螟稻Bt蛋白的表达、分泌与根际土中的残留规律
     分粟始期至成熟期,克螟稻地上部和根中Bt蛋白的表达量分别为3.23一8.22“g/s.
    FW和0.68一0.89协g/g.FW。克螟稻根系分泌的Bt蛋白量仅为1.66一48.02 ng/individual·d,
    根际土中的Bt蛋白的残留量低于检测限(0 .sn岁9 air-dried 5011)。生物测定还表明,克
    螟稻根际土及其提取液对棉铃虫(Heliochis armigera)初孵幼虫和3龄幼虫不产生致死
    性效应。因此,从Bt蛋白的空间转移角度分析,只要能防治克螟稻秸秆还田,生育期
    间根系分泌的Bt蛋白难以转移到土壤中,对敏感生物也不会造成危害。
    5)克螟稻生育期间和秸秆还土后抗性标记基因水平转移的可能性
     对抽提土壤细菌DNA的方法进行了比较和改进,改良方法抽提的土壤细菌DNA
    的A26夕凡80为1.61,A260/A23。为0.86,在一定程度上优化了提取质量与得率。用该方法
    分别研究了连续多年种植克螟稻的田间土壤细菌和添加秸秆实验室培养的土壤细菌的
    DNA分子图谱,试验结果表明,在土壤细菌DNA中均没有扩增到抗性标记基因(nPtll、
    hPt)的片段,即未发现克螟稻中与目的基因(c尽]Ab)相串联的抗性标记基因(nPtll、
    如t)水平转移到土壤细菌中。明确的结论还有待于进一步的试验证实。
The expression, exudation, residue in rhizosphere of Bt protein from Bt transgenic rice (KMD) and degradation of the Bt protein derived from KMD straws in soils were investigated in this paper. Degradation, adsorption and desorption of the Bt purified protein in soils were also studied. In addition, the probability of antibiotic marker genes (nptll and hpt) floating to soil bacteria was discussed, too. The results were as follows: l)The purification and extraction of Bt protein from KMD straws and soil
    A method of extracting and purifying CrylAb protein (Bt toxin) from crylAb transgenic rice was established. A solution of 0.1M Na2CO3-NaHCO3+5mM DTT effectively extracted most of Bt toxin presented in the tissue of crylAb transgenic rice. Bt crude protein was obtained after pretreatment with ultra-filtration, ammonium sulfate precipitation, desalinization by bagfilter and freeze-drying concentration. The dialysed crude protein was father separated on DEAE Sephadex A-50 columns and Sephadex G-150 columns. The purity and the bioactivity of the Bt toxin was determined by SDS-PAGE and larvicidal assay, respectively. The purity of the Bt protein obtained by this method was higher than 80%, and its insecticidal activity was retained after the toxin was purified.
    Efficiency of present methods (Palm and Envirologix Co.) on Bt protein extraction from soil was 4.6-35%. It was important to establish an effectively extracted method to study environmental behavior and fate of Bt protein in soil. A new method was improved in this study. Efficiency of Bt protein extracted from different soils by using the method was higher than that of Palm's and Envirologix Co.'s. Extraction recovery of Bt protein in soils amended with the purified protein and KMD straws were 46.18-81.73% and 47.72-82.25%, respectively. It suggested that Bt protein was easy to bound to the soil matrix based on the low efficiency( less than 50%). 2) Degradation of Bt purified protein and KMD straws in soil
    Degradation of Bt protein purified from KMD straws in soil was studied under lab condition. The results were as follows: degradation trends of Bt purified protein in 7 soils were in accord with first order kinetics equation(Y=Y0e-t); Half life of Bt protein in soils was among 15.2~97.6d; Degradation of purified Bt protein was rapid at the initial incubation time (30d), but slow at 150d incubation; The degradation of purified Bt protein in S7 (Intertidal sandy soil) was slowest with half-life of 97.6d. Despite incubation for 345d, Bt protein in the spiked soil amended with 1.25g/g could be still detected; The degradation of purified Bt protein in S5 (Coastal saline soil) and S6 (Aquic light saline sandy soil) were faster. Their half-lifes were 19.6d and 15.2d, respectively. The time of purified Bt protein residue in the soils was all more than 150d.
    Degradation trends of Bt protein in 5 soils amended with KMD straws (4%,W:W) were
    
    
    
    also in accord with equation(Y=Y0e-t). Their half-lifes were among 10.7-32.Id. The degradation of the Bt protein from the straws in S1 (paddy field on Quaternary red soil) and S2 (paddy field on red sandstone soil) was slow, with the half-lifes 32.Id and 31.1d, respectively. The results also showed that the Bt protein could be detected (detectable limit, 0.5ng/g.air-dried soil) after 146d and 138d incubation. Half life of Bt protein in S3 (Fluvio-marine yellow loamy soil) and S4 (powdery-muddy paddy soil) were 15.2d and 20.Id, respectively. However, the degradation of the Bt protein in S5 was fastest with half-life 10.7d, and the Bt protein couldn't be found in the soil after 60d incubation. After 150d, no Bt protein was detected in the amended soils.
    3) Adsorption and desorption of Bt purified protein in soils
    Adsorption rate of purified Bt protein in different soils was decreasing with its concentration increasing (125~780ng/mL). Adsorption rate (125 and 780ng/mL) in S3, S4 and S5 were 9.12% and 31.67%, 24.85% and 40.81%, 12.47%and 30.75%, respectively. Desorption rate in the soils dropped with content of soil-absor
引文
1. Abbott A. Transgenic trials under pressure in Germany. Nature, 1996, 380: 94.
    2. Adang MJ, merlo DJ, Murry EE. Sythetic gene for B. thuringiensis insecticidal protein designed agaist insect pests. Patent No. EP6882115, 1995.
    3. AI-Deeb M, Wild G E, Higgins R A. No effect of Bacillus thuringiensis corn and Bacillus thuringiensis(Berliner) on the predator Otius insidiosus(Hemiptera: Anthocoridae). Environ. Entomol, 2001, 30(3): 625~629.
    4. Allen G C, Hall G E, Childs L C, et al. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell, 1993, 5: 603~613.
    5. Allison A S, Pedro M P. Commercialization of transgenic plants: potential ecological risks. Bioscience, 1997, 47: 86~96.
    6. Allison R, Thompson C, Ahlquist P. Regeneration of functional RNA virus genome by recombination between deletion mutants for cowpea chlorotic mottle virus 3a and coat protein genes for systemic infection. Proceedings of the National Academy of Sciences, U.S.A., 1990, 87: 1820~1824.
    7. Angenent G C, Posthurnus E, Bol J F. Biological activity of transcripts synthesized in vitro from full-length and mutated DNA copies of tobacco rattle virus RNA 2. Virology, 1989c, 173: 68~76.
    8. Angenent G C, Posthumus E, Brederode F T, et al. Genome structure of tobacco rattle virus strain PLB: further evidence on the occurrence of RNA recombination among tobraviruses. Virology, 1989b,171: 271~274.
    9. Angenent G C, Verbeek H B M, Bol J F. Expression of the 16K cistron of tobacco rattle virus in protoplasts. Virology, 1989a, 169: 305~311.
    10. Angle J S. Release of transgenic plants: Biodiversity and population-level considerations. Mol. Ecol., 1994, 3: 45~50.
    11. Armer A C, Berry R E, Kogan M. Longevity of phytophagous heteropteran predators feeding on transgenic Btt-potato plants. Entomologia Experimentalis et Applicata, 2000, 95: 329~333.
    12. Aronson A I, Wu D, Zhang C. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. J. Bacteriol, 1995, 177: 4059~4065.
    13. Astwood J D, Leach J N, Roy L Fuchs. Stabiiity of food allergens to digestion in vitro. Nature Biotechnology, 1996, (14): 1269~1273.
    14. Barton K A, Whiteley H R, Yang N S. Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidoptern insects. Plant Physiol., 1987, 85: 1103~1109.
    15. Bartsch D, Lehnen M, Clegg J, et al. Impact of gene flow from cultivated beet on genetic diversity of wild sea beet populations. Molecular Ecology, 1999, 8(10): 1733~1741.
    16. Bell H A, Fitches E C, Down R E, et al. The effect of snowdrop lectin(GNA) delivered via artificial diet and transgenic plants on Eulophus pennicornis(Hymenoptera: Eulophidae), a parasitoid of the tomato moth Lacanobia oleracea(Lepidoptera: Noctuidae) J. Insect Physiol, 1999, 45(11): 983~991.
    17. Bell H A, Fitches E C, DownR E, et al. Transgenic GNA expressing potato plants augment the beneficial biocontrol of Lacanobia oleracea (Lepidoptera; Noctuidae) by the parasitoid Eulophus pennicornis(Hymenoptera; Eulophidae). Transgenic Research, 2001, 10(1): 35~42.
    18. Bergelson J, Purrington C B, Wichmann G. Promiscuity in transgenic plants. Nature, 1998, 395: 25.
    19. Birch A N E, Geoghegan I E, Majerus M E N, et al. Tri-trophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphis resistance.
    
    Molecular Breeding, 1999, 5(1): 75~83.
    20. Blank R G, Ely S, Tailor R H, et al. Bacterial genes. International Patent Application, 1989, PCT/GB90/00706.
    21. Blum H, Beier H, Gross H J. Improved method for silver staining of plant protein. RNA and DNA in polyacrylamide gel. Electrophoresis, 1987, 8: 93~99.
    22. Bosch D, Schipper B, Van der ldeij H, et al. Recombinant proteins with new properties: possibilities for resistance management. Bio/Technology. 1994, 12: 915~918.
    23. Bosch HJ, Stiekema WJ. New Bacillus thuringiensis hybrid toxin fragment (hybrid toxins, recombinant DNA, vectors, transformed plants and microorganisms)for insect. 1995, A01H005/00, Paten No. W09506730.
    24. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dyeing binding. Anal. Biochem, 1976, 72: 248~254.
    25. Bravo A, Hendrickx K, Jansens S, et al. Immunocytochemical analysis of specific binding of Bacillus thuringiensis insecticidal crystal proteins to lepidopteran and coleopteran midgut membranes. Journal of Invertebrate Pathology, 1992, 60: 247~253.
    26. Bravo-Angel A M, Gloeckler V, Hohn B, et al. Bacterial conjugation protein MobA mediates integratiom of complex DNA structures into plant cells. J. Bacteriol., 1999, 181: 5758~5765
    27. Brewer G J. Resistance to Bacillus thuringiensis subsp. Kurstaki in sunflower moth(Lepidoptera: Pyralidae). Environmentat Entomology, 1991, 20(1): 316~322.
    28. Burke T. Ecological implication of transgenic plant release. Molecular Ecology, 1994,3: 53~55.
    29. Chen X J, Lee M K, Dean D H. Sire-directed mutations in a highly conserved region of Bacillus thuringiensis δ-endotoxin affect inhibition of short circuit current across Bombyx mori midgets. Proc.Natl. Acad. Sci. USA, 1993, 90: 9041~9045.
    30. Colwell R K. Potential ecological and evolutionary problems of introducing transgenic crops into the environment. In: Biosafety for sustainable agriculture: Sharing biotechnology regulatory experiences of the western hemisphere.(eds, by Krattiger, A. F. et al.). ISAAA & SEI, Stockholm, 1994, pp:33~46.
    31. Conner A J, Jacobs M E. Genetic engineering of crops as potential source of genetic hazard in the humin diet. Mutation Res. Gene Toxic and Envir. Mutag, 1999, 443(1): 223~234.
    32. Conner T. Food safety issues relating to genetic engineering of crop plants. Agricultural Science, 1993,6(3): 36~41.
    33. Cooksey K E. The protein crystal toxin of Bacillus thuringiensis. Biochemistry and mode of action. In Microbial Control of Insects and Mites(Eds. H. D. Burges and N.W. Hussey), Academic Prers. London,1971, pp247~274,
    34. Cowell R K. Potential ecological and evolutionary problems of instroducing transgenic crops into the environment. In: Biosafety for sustainable agriculture: Sharing biotechnology regulatory experiences of the western hemisphere(eds, by Krattiger AF, et al) ISAAA and SEI, Stockholm, 1994, pp33~46.
    35. Cox A L, Skipper J, Chen Y, et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines, Science, 1994, 264: 716~719.
    36. Creamer R, Falk B W. Direct detection of transencapsidated barley yellow dwarf luteoviruses in doubly infected plants. J. Gen. Virol., 1990, 71: 211~217.
    37. Crecchio C, Stotzky G. Insecticidal activity and Biodegradation fo the toxin from Bacillus thuringiensis subsp, kurstaki bound to humic acids from soil, Soil Biol. Biochem, 1998, 30: 463~470.
    38. Dashman T, Stotzky G. Adsorption and binding of peptides on homoionic montmorillonite and kaolinite. Soil Biol. Biochem, 1984, 16(1): 51~55.
    39. De Barjac H, Bonnefoi A. Mise au point sur la classification des Bacillus thuringiensis. Entomophaga,
    
    1973, 18: 5-17.
    40. De Barjac H, Frachon E. Clssification of swains of Bacillus thuringiensis with a key to their differentiaton. J. Invert. Pathol., 1990, 11: 335~347.
    41. De Maagd R A, Bosch D, Stiekema W. Bacillus thuringiensis toxin-mediated insect resistance inplants. Trends in Plant Science, 1999, 4(1): 9~13.
    42. De Zoeten G A. Risk assessment: do we let history repeat itself?. Phytopathology, 1991, 81:585~586.
    43. Delannay X, Lavailee B J, Proksc R K h, et al. Field performance of transgenic tomato plants expressing the Bacillus thuringiensis vat. kurstaki insect control protein. Bio/Technology, 1989, 7: 1265~1269.
    44. Denbolm L, Rowland M W. Tactics for managing resistance in arthropods: theory and practice. Annual Review o f Entomology, 1992, 37: 91~112.
    45. Dogan E B, Berry R E, Reed G L, et al. Biological parameters of convergent lady beetle (Coleoptera. Coccinellidae) feeding on aphids(Homoptera; Aphidae) on transgenic potato. J. Econ. Entomol. 1996,89(5): 1105~1108.
    46. Dommelen A van. Scientific requirements for the assessment of food safety. Biotechnology and Development Monitor, 1999, 38: 2~7.
    47. Donegan K K, Palm C J, Fieland V J, et al. Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki δ-endotoxin. Applied Soil Ecology, 1995, 2: 111~124.
    48. Donegan K K, Seidler R J, Fieland V J, et al. Decomposition of genetically engineered tobacco under field conditions: persistence of the proteinase inhibitor Ⅰ product and effects on soil microbial respiration and protozoa, nematode and microarthropod populations. J. of Applied Ecology, 1997, 34(3): 767~777.
    49. Donegan, K K, Schaller D L, Stone J K, et al. Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var. tenebrionis endotoxin. Transgenic Research, 1996, 5: 25~35.
    50. Down R E, Ford L, Woodhouse S D, et al. Snowdrop lectin(GNA) has no acute toxic effects on a beneficial insect predator, the 2-spot ladybird (Adalia bipunctata L.). Insect Physiol., 2000, 46(4): 379~391.
    51. Ellar D J. pathogenicity determinants of entomapatho-genic bacteria. Proc 5th Int Colloguimon Invertebrate Pathology and Microbial Control.Adelaide, Australia, 1989, August: 20~24.
    52. Estruch J, Warren G W, Mullins M A, et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci., 1996,93: 5389~5394.
    53. Ewen S W B, Pusztai A. Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectine on rat small intestine. The LANECT, 1999, 354: 1353~1354.
    54. Falk B W. Will transgenic crops generate new viruses and new diseases? Science, 1994, 263: 1395~1396.
    55. Fast P G. The crystal toxin of Bacillus thuringiensis. In Microbial Cotrol of Pests and Plant Diseases 1970-1980(Eds. H. D. Burges), Academic Press, London, 1981, pp221~248,
    56. Fenton B, Stanley K, Fenton S, et al. Differential binding of the insecticidal lectin GNA to human blood cells. The LANCET, 1999, 354: 1354~1355.
    57. Finlay B J, Maberly S C, Cooper J I. Microbial diversity and ecological function. Oikos, 1997, 80: 209~213.
    58. Firbank L G, Ewar A M, Hill M O, et al. Farm-scale evaluation of GM crops explained. Nature, 1999, 399: 727~728.
    59. Fischhoff D A, Bowdish K S, Perlak F J, et al. Insect tolerant transgenic tomato plants, Bio/Technology,
    
    1987, 5: 807~813.
    60. Fiu G P, Mares C L, Lewellyn D J. Field evaluation and potential, ecological impact of trangenic cottons(Gossypiwn Hirsutum) in Australia. Biocontrol Science and Technology, 1994, 4: 535~548.
    61. Flint H M, Henneberry T J, Wilson F D, et al. The effects of transgenic cotton, Gossypium hirsutum L., containing Bacillus thuringiensis toxin genes for the control of the pink bollworm, Pectinophora gossypiella(Saunders) and other arthropods. Southwestern Entomologist, 1995, 20(3): 281~291.
    62. Fred Gould. Testing Bt refuge strategies in the field. Nature Biotecnology, 2000, 18: 266~267.
    63. Fuchs R L, Heeren R A, Gustafson M E, et al. Purification and characterization of microbially expressed neomycin phosphotransferase Ⅱ (nptⅡ) protein and its equivalence to the plant expressed protein. Bio/Technol, 1993, 11: 1537~1542.
    64. Fuchs R L, Ream J E, Hammond B G, et al. Safety assessment of the neomycin phosphotransferase Ⅱ(NPTⅡ) protein. Bio/Technol, 1993, 11: 1543~1547.
    65. Fusi P, Ristori G, Calamai L, et al. Adsorption and binding of protein on clean(homoionic) and dirty(coated with Fe oxyhydroides) montmorillonite, illite, and kaolinite. Soil Biology Biochemistry, 1989,21: 911~920.
    66. Gatehouse A M R, Davison G M, Newell C A et al. Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea, growth room trials. Molecular Breeding, 1997, 3: 49~64.
    67. Gatehouse A M R, Down R E, Powell K S, et al. Transgenic potato plants with enhanced resistance to the peach-potato aphid Myzus persicae. Entomologia Experimentalis et Applicata, 1996, 79: 295~307.
    68. Gatehouse J A, Gatehouse A W R. Rechcigl J E, et al, eds. Biological and Biotechnological Control of Insect Pests, MI. London: Lewis Publishers, 1999, pp211~241.
    69. Gilissen L J W, Metz P L J, Stinekema W J, et al. Biosafety of E. coli β-glucuronidase(GUS) in plants. Transgenic Research, 1998, 7: 157~163.
    70. Gill S S, Cowles E A, Pietrantonio P V. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol, 1992, 37: 615~636.
    71. Glandorf D C M, Bakker P A H M, Van Loon L C, et al. Influence of the production of antibacterial and antifungal proteins by transgenic plants on the saprophytic soil microflora. Acta Botanica Neerlandica, 1997, 46(1): 85~104.
    72. Godfray H C J. Parasitoids: Behavioral and Evolutionary Ecology. New Jersey: Princeton University Press, 1994, pp151~210.
    73. Gonsalves D, Provvidenti R, Edwards M C. Tomato white leaf: the relation of an apparent satellite RNA and cucumber mosaic virus. Phytopathology, 1982, 72: 1533~1538.
    74. Gould F, Anderson A, Jones A. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proceedings of the National Academy of Sciences, USA,1997, 94: 3519~3523.
    75. Gould F, Kennedy G G, Johnson M T. Effects of natural enemies on the rate of herbivore adaptation to resistant host plants. Entomological Experimentalis et Applicata, 1991, 58: 1~14.
    76. Gould F. Potential and problems with high-dose strategies for pesticidal engineered crops. Bioscience and Technology, 1994, 4: 451~461.
    77. Graysron SJ, Wang S Q, Campbell C D. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry, 1998, 30(3): 369~378.
    78. Greene A E, Allison R F. Recombination between viral RNA and transgenic plant transcript. Science,1994, 263: 1423~1425.
    79. Groffman P M, Bohlen P J, Soil and sediment bindiversity cross system comparisons and large-scale effects. BioScience, 1999, 49: 139~148.
    
    
    80. Hannay C L, Fitz-James P. The protein crystals of Berliner. Can. J. Microbiol., 1955, 1:674~710.
    81. Hannay C L. Crystalline inclusions in aerobic spore-forming bacteria. Nature, 1953, 172: 1004.
    82. Hardee D D, Bryan W W. Influence of Bacillus thuringiensis-transgenic and nectariless cotton on insect populations with emphasis on the tarnished plant bug(Hereroptera: Miridae). Econ. Entomol, 1997,90(2): 663~668.
    83. Harrison B D, Murant A F. Involvement of virus-coded proteins in transmission of plant viruses by vectors. In: Vectors in virus biology. Mayo M A, Harrap K A, eds. Academic Press, London, 1984,pp1~36.
    84. Hatter R D, Stotzky G. Formation of clay protexes complexes. Soil Science Society of America Proceedings, 1971, 35: 383~389.
    85. Head G, Brown C R, Groth H G, et al. Cry1Ab protein levels in phytophagous insects feeding on transgenic corn: implications for secondary exposure risk assessment. Entomologia Experimentalis et Applicata, 2001, 99(1): 37~45.
    86. Heimpel A M, Angus T A. The taxonomy of insect pathogens related to Bacillus cereus. Can. J. Microbiol, 1958, 1: 694~709.
    87. Hilbeck A, Baumgarmer M, Fried P M, et al. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla camea(Neuroptera: Chrysopidae). Environmental Entomology, 1998, 27(2): 481~487.
    88. Hilbeck A, Moar W J, Pusztai-Carey M, et al. Toxicity of Bacillus thuringiensis Cry1Ab toxin to the predator Chrysoperla carnea(Neuroptera: Chrysopidae). Environmental Entomology, 1998b,27: 1255~1263.
    89. Hilbeck A, Moar W J, Pusztai-Carey, et al. Prey-mediated effects of Cry1Ab toxin and protoxin and Cry2A protoxin on the predator Chrysoperla carnea. Entomologia experimentalis et Applicata, 1999,91: 305~316.
    90. Hilbeck A, Moar W J, Putai-Carey M, et al. oxicity of Bacillus thuringiensis CryIAb toxin to the Predator Chrysoperla carnea (Neuptera: Chrysopidae). Environ. Entomol, 1996, 27(5): 1255~1263.
    91. Hilder V A, Boulter D. Genetic engineering of crop plants for insect resistance a critical review. Crop Protection, 1999, 18: 177~191.
    92. Hilder V A, Gatehouse A M R, Sheerman D E, et al. Anovel mechanism of insect resistance engineered into tobacco. Nature, 1987, 330: 160~163.
    93. Hoffmann T, Golz C, Schieder O. Foreign DNA sequences are received by a wild-type strain of A. niger after co-culture with transgenic higher plants. Curr. Genet., 1994, 27: 70~76.
    94. Hofte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol.Rev., 1989,53: 242~255.
    95. Holben W E, Jansson J K, Chelm B K, et al, DNA probe method for the detection of specific micro-organisms in the soil bacterial cummunity. Appl Environ Microbiol, 1988, 54: 703~711.
    96. Holben W R, Janson J K, Chelm B K, et al. DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbio, 1988, 54(3): 703~711.
    97. Hoy V W, Feldman J, Gould G G, et al. Barlxsa P, ed. Conservation Biological Control. London: Academic 104 Press, 1998, pp185~205.
    98. Hukuhata T, Hayakawa T, Wijonarko A. Increased baculovirus susceptibility of armyworm larvae feeding on transgenic rice plants expressing an entomopoxvirus gene. Nature Biotechnology, 1999,17(11): 1122~1124.
    99. Iannacone R, Grieco P D, Cellini F. Specific sequence modification of a cry3B endotoxin gene result in
    
    high levels of expression and insect resistance. Plant Mol. Biol., 1997, 34: 485~496,
    100. James C. Global review of commercialized transgenic crops: 1998 ISAAA Briefs, No.8, 1998.
    101. James C. Global review of commercialized transgenic crops: 2000. ISAAA Briefs: No.21, 2000.
    102. James C. Global review of field testing and commercialization of transgenic plants, 1986-1995: the first decade of crop biotechnology, ISAAA Briefs No. 1 ISAAA: Ithaca, NY. No.31, 1996
    103. James C. Global status of transgenic crops in 1997. ISAAA Briefs: No.5, 1997.
    104. James C. PREVIEW: Global Status of Commercialized Transgenic Crops: No.5, 2003.
    105. Jansens S, Cornellissen M, Deelerg R, et al. Phthorimea operculella resistance in potato by expression of the Bacillus thuringiensis Cry1Ab insecticidal crystal protein. J. Econ. Entomol, 1995, 88: 1469~1476.
    106. Jepson P C, Croft B A, Pratt G E. Test systems to determine the ecological risks posed by toxin from Bacillus thuringiensis genes in crop plants. Molecular Ecology, 1994, 3(1): 81~89.
    107. Jervis M A, Kidd N A C. Host-feeding strategies in hymenopteran parasitoids. Biological Reviews, 1986,61: 395~434.
    108. Jervis M A, Kidd N A, Jervis M, et al, eds. In.sect Natural Enemies MI. London: Chapman & Hall, 1996,pp375~394.
    109.Jing Sun,Canning Tang.三个转基因陆地棉品系对棉铃虫的抗性.国外作物育种,2003,22(1):58~59.
    110. Johnson M T, Gould F. Interaction of genetically engineered host plant resistance and natural enemies of Heliothis viresoens(Lepidoplera: Noctuidae) in tobacoo Environmental Entomology, 1991, 20:30~38.
    111. Johnson M T. Interaction of resistant plants and wasp parasitoids of tobacco budworm(Lepidoplera: Noctuidae). Environ. Entomol, 1997, 26(2): 207~214.
    112. Jorgensen R B, Andersen B. Spontaneous hybridization between oilseed rape(Brassica napus) and weedy B. campestris(Brassica ceae): a risk of growing genetically modified oilseed rape. American J. of Botany,1994, 81(12): 1620~1626.
    113. Kathen A. The impact of transgenic crop releases on biodiversity in developing countries. Biotec. Developm.Monitor, 1996, 28: 10~15.
    114. Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 1995, 170: 75~86.
    115. Kjellesson G, Simonsson V. Methods for risks assessment of transgenic plants. Ⅱ. pollination, transfer and population impacts. Brikhauser Verlag, 1997, 1~308.
    116. Koskella J, Stotzky G. Microbial utilization of free and clay~bound insecticidal toxins from Bacillus thuringiensis and their retention of insecticidal activity after incubation with microbes. Appl. Enviro. Microbiol, 1997, 63: 3561~3568.
    117. Koskella J, Stotzky G. Resistance of the toxins from Bacillus thruingiensis to biodegradation when bound on clay minerals. In Abstracts of the 94th Generasl Meeting of the American Society jfor Microbiology, American Society for Microbiology, Washington D C, 1994. Q17, pp400.
    118. Koziel M G, Beland G L, Bowman C, et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology, 1993, 11:194~200.
    119. Koziel M G, Beland G L, Bowman C, et al. Field performance of elite transgenic maize plants expressing an insecticidal protein gene derived from Bacillus thuringiensis. Biotechnology, 1993, 11: 1151~1155.
    120. Koziel M G, Carozzi N B, Currier T C, et al. The insecticidal crystal proteins of Bacillus thuringiensis: past, present and further uses. Biotechnol. Genet. Engin. Rev., 1993b, 11: 171~228.
    121. Kratfiger A F. Insect resistance in crops. International series for the acquisition of agri-biotech application, Ithaca, USA, 1997.
    122. Krattiger A F. Insect resistance in crops: A case study of Bacillus thuringiensis(Bt) and its transfer to
    
    developing countries. ISAAA Briefs No. 2~1997. ISAAA: Ithaca, NY. 1997, pp4~11.
    123. Laemmli U K. Cleavage of structural protein during the assembly of the head of bacteriophage T4.Nature, 1970, 227: 680~685.
    124. Lecoq H, Ravelonandro M, Wipf-Scheibel C, et al. Aphid transmission of a non-aphid transmissible strain of zucchini yellow mosaic virus from transgenic plants expressing the capsid protein of plum pox potyvirus. Mol. Plant Microbe Interact, 1993, 6: 403~406.
    125. Leuhrsen K R, Walbot V. Insertion of Mul elements in the first intron of Adhls gene of maize result in novel RNA processing events. The Plant Cell, 1990, 2: 1225~1238.
    126. Li H, Li X, Liu X, et al. Maize transformation of cry1Ac3 Gene and insect resistance of their transgenic plants, 2002, 44(6): 684~688.
    127. Li J, Carroll J, Ellar D J. Crystal structure of insecticidol endotoxin from Bacillus thuringiensis at 2.53,resolution. Nature, 1991, 353: 815~821.
    128. Li X M, Serebrisky D, Lee S Y, et al. A murine model of peanut anaphylaxis: T-and B-cell responsesto a major peanut allergen mimic human responses. J Allergy Clin Immunol, 2000, 106(1): 150~158.
    129. Losey J E, Rayor L S, Carter M E. Transgenic pollen harms monarch larvae. Nature, 1999, 399: 214.
    130. Lozzia G C, Furlanis C, Manachini B, et al. Bollettino di Zoologia Agraria e di Bachicoltura, 1998, 30(2): 153~164.
    131. Lozzia G C. Biodiversity and structure of ground beetle assemblages(Coleoptera Carbidae) in Bt corn and its effects on non target insects. Bolletrino di Zoologia Agraria edi Bachicoltura. 1999, 31(1): 37~50.
    132. Lynch P T, Jones J, Blackball N W, et al. The phenotypic characteristics of R2 generation transgenic rice plants under field and glasshouse condition. Euphytica, 1995, 85: 395~401.
    133. Mani G S. Evolution of resistance in the presece of two insecticides. Genetics, 1985, 109:76I-783.
    134. Manthavan S, Sudha P M, Peehimuthu S M. Effect of Bacillus thuringiensis on the midgut cells of Bombyx mori larvae: a histopathological and histochemical study. J. Inver. Pathol, 1989, 53: 217~227.
    135. Martin M A, Hyde J. Economic considerations for the adoption of transgenic crops: The case of Bt corn. Journal of Nematology, 2001, 33(4): 173~177.
    136. May R M. Resisting resistance. Nature, 1993, 361: 593.
    137. McBride K E, et al. Controlled expression of plastid transgenic in plants Based on a muclear DNA encoded and plastid-targeted RNA polymerase. Proc. Nat. Acad. sci., 1994, 91: 7301~7305.
    138. McBride K E, Svab Z, Schaaf D J, et al. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/technol, 1995, 13: 362~365.
    139. McGanghey W H, Whalon M E. Managing resistance to Bacillu thuringiensis toxins. Science, 1992, 258: 1451~1455.
    140. McGaughey W H, Johnson E E. Indianmeal moth(Lepidoptera: Pyralidae) resistance to different strains and mixtures of Bacigus thuringiensis. Journal of Economic Entomology, 1992, 85: 1594~1600.
    141. McGaughey W H, Whalon M E. Managing insect resistance to Bacillus thuringiensis toxin. Science, 1992,258: 1451~1455.
    142. McGaughey W H. Insect resistance to the biological insecticide Bacillus thuringiensis. Science, 1985,229: 193~195.
    143. McMcaugheg W H. Problems of insect resistance to Bacillus thuringeensis. Agric Econ Envir, 1994, 49: 95~102.
    144. Meier M S, Hilbeck A. In gence of transgenic Bacillus thuringiensis com-fed prey on prey preference of immature Chrysoperla carnea(Neuroptera: Chrysopidae). Basic and Applied Ecology, 2001,2(1): 25~44.
    145. Metcalfe D. The nature and mechanisms of food allergies and related diseases. Food Technology, 1992,
    
    (5): 136~140.
    146. Meyer P. Understanding and controlling transgene expression. Trends in Biotechnology, 1995, 13: 332~337.
    147. Mikkelsen T R, Andersen B, Jorgensen J H. The risk of crop transgene spread. Nature, 1996, 380:31.
    148. Morra, M J. Assessing the impact of transgenic plant products on soil organisms. Mol. Ecol., 1994,3: 53~55.
    149. Murry E E, Rochleau T R, Eberle M, et al. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol. Biol, 1991, 16: 1035~1060.
    150. Murry E E, Rochleau T R, Eberle M, et al. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol. Biol, 1991, 16: 1035~1060.
    151. Ni T, Lin Z P. Assessment of GMO food allergen database on food allergen established in China. International Symposium on Development of Plant Gene Engineering and Its Biosafety. Bei jing: 2000.
    152. Nordlee J A, Taylor S L, Townsed J A, et al. Identification of a brazil nut allergen in transgenic soybeans. The New England Journal of Medicine, 1996, 334: 688~692.
    153. Norris J R. The proterin crystal toxin of Bacillus thuringiensis: biosynthesis and physical structure. In Microbial Control of Insects and Mites(Eds. H. D. Burges and N. W. Hussey). Acadarnic Press, London,1971, pp229~246.
    154. Obukowics M G, Welsch D J, Salsgiver W J, et al. Novel, Selective 6 or 5 Fatty Acid Desaturase Inhibitors as Antiinflammatory Agents in Mice. Pharmacol. Exp. Ther, 1998, 287: 157~166.
    155. Oger P, Petit A, Dessaux Y. Genetically engineered plants producing opines alter their biological environment. Nature Biotech., 1997, 15(4): 369~372.
    156. Ogram A, Sayler G S, Barkay T, et al. The extraction and purification of microbial DNA from sediments. J Microbiol Methods, 1987, 7(1): 57~66.
    157. Orr B G, Landis D A. Oviposition of European corn borer(Lepidoptera: Pyralidae) and impact of natural enemy populations in transgenic versus isogenic corn. Econ. Entomol. 1997, 90(4): 905~909.
    158. Osbourn J K, Sarkar S, Wilson T M A. Complementation of coat protein-defective TMV mutants in transgenic tobacco plants expressing TMV coat protein. Virology, 1990, 179: 921~925.
    159. Paget E, Jocteur Monrozier L, Simonet P. Adsorption of DNA on clay minerals: protection against Dnase I and influence on gene transfer. FEMS Microbiol. Lett, 1992, 97: 31~40.
    160. Paget E, Lebrun M, Freyssinet G, et al. The fate of recombinant plant DNA in soil. Eur. J. Soil Biol.,1998, 34(2): 81~88.
    161. Palm CJ, Schaller D L, Donegan K K, et al. Persistence in soil of transgenic plant produced Bacillus thuringiensisvar, kurstaki δ-endotoxin. Can. J. Microbiol, 1996, 42: 1258~1262.
    162. Pefereon M, Carozzi N, Koziel. Advances in insect control: the role of transgenic plants. Taylor & Francis, 1997, pp21~48.
    163. Peferoen M. Progress and prospects for field use of Bt genes in crops. Trends in Biotechnology, 1997,15: 173~177.
    164. Perlak F J, Deaton R W, Armstrong T A, et al. Insect resistant cotton plants. Bio/Technology, 1990, 8: 939~943.
    165. Perlak F J, Fuchs R L, Dean D A, et al. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci., 1991, 88: 3324~3328.
    166. Perlak F J, Stone T B, Muskopf Y M, et al. Genetically improved potatoes: protection from damage by Colorado potato beetle. Plant Molecular Biology, 1993, 22: 313~321.
    
    
    167. Pilcher C D, Obrycki J J, Rice M E, et al. Preimaginal development, survival, and field abundance of insect predators on transgenic Bacillus thuringiensis com. Environ. Entomol, 1997, 26: 446~454.
    168. Riddick E W, Dively G, Barbosa P J. Season-long abundance of generalist predators in transgenic versus nontransgenic potato fields. Entomol. Sci, 2000, 35(40): 349~359.
    169. Riddick E W, Dively G, Barbosa P. Effect of seed-mix deployment of Cry3A-transgenic and nontransgenic potato on the abundance of Lebia grandis(Coleoptera: Carabidae) and Coleomegilla maculata(Coleoptera: Coccinellidae). Ann. Entomol, Soc. Am, 1998, 91(5): 647~653.
    170. Riddiek E W, Barbosa P J. Cry3A-intoxicated Leptinotar sadecemlineata(Say) are palatable prey for Lebia grandis Hentz. Entomol. Sci., 2000, 35(3): 342~346.
    171. Rissler J, Mellon, M. Perils amidst the promise, Ecological risks of transgenic crops in a global market. Union Concerned Scientists, 1993, pp1~92.
    172. Rogers H J, Parkes I M. Transgenic plants and the environment. Journal of Experimental Biology, 1993,46: 467~488.
    173. Roush R T. Managing pests and their resistance to Bacillus thuringiensis: Can transgenic crops be better than sprays? Biocontrol Science and Technology, 1994, 4: 501~516.
    174. Sahin U, Tureci O, Schmitt H, et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Nail Acad Sci USA, 1995, 92: 11810~11813.
    175. Sambrook J, Fritsch E F, Maniatis T, et al. Molecular cloning: a laboratory manual 2nd Ed. America. Cold Spring Harbor Laboratory Press, 1989, pp: 659~660.
    176. Sampson H A. Food hypersensitivity: manifestation, diagnosis, and natural history. Food Technology,1992, (5): 141~145.
    177. Saxena D, Flores S, Stotzky G. Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events. Soil Biology & Biochemistry, 2002, 34(1): 133~137.
    178. Saxena D, Flores S, Stotzky G. Insecticidal toxin in root exudates from Bt corn. Nature, 1999,402: 445~562.
    179. Saxena D, Stotzky G. Bacillus thuringiensis(Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biology & Biochemistry, 2001, 33(9): 1225~1230.
    180. Saxena D, Stotzky G. Bt toxin is not taken up from soil or hydroponic culture by corn, carrot, radish, or turnip. Plant and Soil, 2002, 239(2): 165~172.
    181. Saxena D, Stotzky G. Bt toxin uptake from soil by plants. Nat. Biotechnol, 2001, 19:199.
    182. Saxena D, Stotzky G. Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiology Ecology, 2000, 33: 35~39.
    183. Schnepf H E, Whiteley H R. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coll. Proc. Natl. Acad. Sci. USA, 1981,78: 2893~2897.
    184. Schnepf H E, Wong H C, Whtely H R. The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence. J. Biol. Chem., 1985, 260: 6264~6272
    185. Schuler T H, Poppy G M, Denholm I. British Crop Protection Council, ed. The BCPC Conference: Proceedings of an International Conference. UK. British Crop Protection Council, 2000, pp1221~1228.
    186. Schuler T H, Poppy G M, Kerry B R, et al. Potential side effects of insect~resistant transgenic plants on arthropod natural enemies. Trend in Biotech, 1999, 17(5): 210~216.
    187. Schuler T H, Poppy G Y, Kerry B R, et al Insect resistant transgenic plants. Trends in Biotechnology, 1998, 16: 168-175.
    188. Shu Q, Ye G, Cui H, et al. Transgenic rice plants with a synthetic crylAb gene from Bacillus
    
    thuringiensis were highly resistant to eight lepidopteran rice pest species. Molecular Breeding, 2000, 6: 433~439.
    189. Sims S R, Holden L R. Insect bioassay for determining soil degradation of Bacillus thuringiensis subsp. kurstaki CryⅠAb protein in corn tissues. Environmental Entomology, 1996, 25:659-664.
    190. Sims S R, Ream J E. Soil inactivation of the Bacillus thuringiensis subsp kurstaki CryⅡA insecticidal protein within transgenic cotton tissue: Laboratory microcosm and field studies. Journal of Agricultural and Food Chemistry, 1997, 45(4): 1502~1505.
    191. Smalla K, Gebhard F, Elsas J D, et al. Bacterial communities influenced by transgenic plants. The biosafety results of field tests of genetically modified plants and microorganisms. Proceedings of the 3rd International Symposium, Monterey, California, USA, November, 1994, pp157~167.
    192. Snow A A, Moran Palma P. Ecological risks of cultivating transgenic plants. Corvallis (OR): US Environmental Protection Agency, 1995.
    193. Somerville C C, Knight I T, Straube W L, et al. Simple rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbio, 1989, 55 (3): 548~554.
    194. Steffan RJ, Gokoyr J, Bej A K, et al. Recovery of DNA from soils and sediment. Appl Environ Microbio, 1988, 54(12): 2908~2915.
    195. Stewart C N, Adang MJ, All J N, et al. Genetic transformation recovery and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiology, 1996, 112:121-129.
    196. Stotzky G, Broder M W, Doyle J D. et al. Selected methods for the detection and assessment of ecological effects resulting from the release of genetically engineered microorganisms to the terrestrial environment. Advances in Applied Microbiology, 1993, 38:1-98.
    197. Stotzky G. Infuluence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. Huang, P M, Schnitzer, M. (Eds.). Interactions of Soil Minerals with Natural Organics and Microbes. Soil Science Society of America, Madison, WI, 1986, pp305~428.
    198. Stotzky G. Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. Journal of Environmental Quality, 2000, 29: 691~705.
    199. Tabashnik B E. Seeking the root of insect resistance to transgenic plants. Proceedings of the National Academy of Sciences, USA, 1997, 94:3488-3490.
    200. Tabashnik B E. Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol, 1994,39:47~79.
    201. Tailor R, Tippett J, Gibb G, et al. Identification and characteization of a novel Bacillus thuringiensis endotoxin entomocidal to coleopreran and lepidopteran larvae. Mol. Microbiol, 1992, 6(9):1211~1217.
    202. Tapp H, Calamai L, Stotzky G. Absorption and binding of the insecticidal proteins of Bacillus thruingiensis subsp, kurstaki and subsp. tenebrionis on clay minerals. Soil Biol. Biochem, 1994, 26: 663-679.
    203. Tapp H, Calamai L, Syotzky G. Adsorption and binding of the insecticidal protein of Bacillus thuringiensis subsp, kurstaki and subsp, tenebrionis on clay minerals. Soil Biol. Biochem., 1994, 26: 663~679.
    204. Tapp H, Stotzky G. Dot blot enzyme-linked immunoabsorbent assay for monitoring the fate of the insecticidal toxins from Bacillus thuringiensis in soil. Appl. Environ. Microbiol, 1995, 61:602~609.
    205. Tapp H, Stotzky G. Insecticidal activity of the toxins from Bacillus thuringiensis subspecies kurstaki and tenebrionis adsorbed and bound on pure and soil clays. Appilied and Environmental Microbiology, 1995, 61(5): 1786~1790.
    
    
    206. Tapp H, Stotzky G. Monitoring the fate of insecticidal toxins from Bacillus thuringiensis in soil with flow cytometry. Can. J. Microbiol, 1997, 43: 1074~1078.
    207. Tapp H, Stotzky G. Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biol. Biochem, 1998, 30(4): 471~476.
    208. Taylor C B. Comprehending cosuppression. The plant cell, 1997, 9: 1245~1249.
    209. Taylor S L, Lehrer S B. Principles and characteristics of food allergens, Critical Reviews In Food Science And Nutrition, 1996, 36: 91~118.
    210. Torsvik V, Goksoyr J, Daae F L. High diversity in DNA of soil bacteria. Appl Environ Microbio, 1990, 56(3): 782~87.
    211. Trevors J T, Kuikman P, Watson B. Transgenic plants and biogeochemical cycles. Molecular Ecology, 1994, 3(1): 57~64.
    212. Tu J, Zhang G, Datta K, et al. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ~endotoxin. Nature Biotechnology, 2000, 18: 1101~1104.
    213. Vaeck M, Reynaerts A, Hoffte H, et al. Transgenic plants protected from insect attack. Nature, 1987,328: 33~37.
    214. Van der Salm T. Insect resistance of transgenic plants that express modified Bacillus thuringiensis cry1Ab and cry1c genes: A resistance management strategy. Plant Molecular Biology, 1994, 26(1):51~59.
    215. Van Lijsebetens M, Vanderhacghen R, Montagu M V. Insertional mutagenesis in Arabidopsis thaliana: isolation of a T-DNA linked mutation that alters leaf morphology. Theor. Appl. Genet, 1991,81: 277~284.
    216. Van Tol N B, lugger P, Richter D. National Cotton Council, ed. Proceedings Beltwide Cotton Conferences. Memphis: National Cotton Council, 1998, pp1052~1054.
    217. Venkateswerlu G, Stotzky G. A simple method for the isolation of the antilepidopteran toxin from Bacillus thuringiensis subsp. Kurstaki Biotechnology and Applied Biochemistry, 1990, 12: 245~251.
    218. Venkateswerlu G, Stotzky G. Binding of the protoxin and toxin protein of Bacillus thuringiensis subsp. kurstakion clay minerals. Curr. Microbiol, 1992, 25: 1~9.
    219. Venkateswerlu G, Stotzky G. Binding of the protoxin and toxin proteins of Bacillus thuringiensis subspecies kurstaki and tenebrionis on clay minerals. Curr. Microbiol, 1992, 25: 225~233.
    220. Vet L E, Dieke M. The ecology of infochemical use by natural enemies of herbivores in a tritrophic context. Ann. Rev. Entomol, 1992, 37: 141~172.
    221. Vettori C, Calamai L, Yoder M, et al. Adsorption and binding of Ampli TaqR DNA polymerase on the clay minerals, montmorillonite and kaolinite. Soil Biology&Biochemistry, 1999, 31: 587~593.
    222. Von Tersch M A, Slatin S L, Kulesza C A, et al. Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin Cry1ⅡB2 and CryⅢB2 domain Ⅰ peptide. Appl. Environ. Microbiol, 1994, 60: 3711~3717.
    223. Warren G W, Carozzi N B, Desal N, et al. Field evaluation of transgenic tobacco containing a Bacillus thuringiesis insecticidal protein gene. J. Econ. Entomol.,ence enhances plant expression of insect control protein genes. Proc. Natl., 1992, 85(5): 1651~1659.
    224. Wearing C H, Hokkanen H M T. Pest resistance Bt: case studies of ecological crop assessment for Bt gene incorporation and strategies of management. Bioscience and Technology, 1994, 4: 573~590.
    225. Weiser J. Impact of Bacillus thuringiensis on applied entomology in eastern Europe and in the Soviet Union. In Miteilungen aus der Biologischen Bundesanstalt fur Land-Und Forstwirtschsft Berlin-Dahlem(Eds. A. Krieg and A.M. Huger), Hett1986, 233, 9937~50, Paul Parey, Berlin, 1986.
    226. WHO. Health aspects of marker genes in genetically modified plants. Report of a WHO Workshop,
    
    WHO/FNU/FOS/93.6.
    227. Wildmer F, Seidler R J, Watrud L S. Sensitive detection of transgenic plant marker gene persistence in soil microcosms. Molecular Ecology, 1996, 5(5): 603~616.
    228. Wilson F D, Flint H M, Deaton W R, et al. Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm and other insect. J. Econ. Entomol, 1992, 85: 1516~1512.
    229. Wilson M, Lindow S E. Relationship of total viable and culturable cells in epiphytic populations of Pseudomonas syringae. Appl. Environ. Microbiol, 1992, 58: 3908~3913.
    230. Wold S J, Burkness E C, Hutchi, son W. www. ent. iastate, edu/entsoc/nbc99/prog/abs/D51.hml.1999.
    231. Wolfenbarger L L, Phifer P R. The elogical risks and benefits of genetically engineered plants. Science,2000, 290: 2088~2093.
    232. Wu S J, Dean D H. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis Cry1ⅡA endotoxin. J. Mol. Biol., 1996, 255: 628~640.
    233. Wu Weixiang, Ye Qingfu, Min Hang et al. Bt transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil. Soil biology and biochemistry, 2003,(36)2: 289-295.
    234. Ye G Y, Shu Q Y, Yao H W, et al. Altosaar. Field evaluation of resistace of transgenic rice containing a synthetic cry1Ab gene from Bacillus thruringiensis Berliner to two stem borers. Entomological Society of Averica, 2001, 94(1): 271~276.
    235. Zhou J Z, Bruns M A, Tiedje A M. DNA recovery from soils of diverse composition. Appl Environ Microbio, 1996, 62(2): 316~322.
    236. Zwahlen C W, Nemtwig F B, Bigier F, et al. Tritrophic interactions of transgenic Bacillus thuringiensis corn, Anaphothrips obscurus(Thysanoptera: Thripidae), and the predator Orius majusculus(Heteroptera: Anthocoridae). Environ. Ep. tomol., 2000, 29(4): 846~850.
    237.陈松,黄骏麒,周宝良等.转Bt基因抗虫棉棉子安全性评价鲤鱼慢性毒性试验.棉花学报,1996,8(5):241~245.
    238.程志强,陈旭君,郭泽建等.转基因植物中抗生素抗性基因的安全性评价.生命科学,2002,14(1):14~16.
    239.崔洪志,郭三堆.Bt毒蛋白抗虫植物基因工程研究(综述).农业生物技术学报,1998,6(2):166~172.
    240.崔洪志,郭三堆.双价杀虫基因植物表达载体的构建及其在烟草中的表达.农业生物技术学报,1998,6(1):7~13.
    241.崔金杰,夏敬源.麦套夏播转Bt基因棉田主要害虫及其天敌的发生规律.棉花学报,1998,10(5):255~262.
    242.崔金杰,夏敬源.转Bt基因棉对棉田主要害虫及其天敌种群消长的影响.河南农业大学学报,1997,31(4):351~356.
    243.崔金杰,夏敬源.转Bt基因棉对天敌种群动态的影响.棉花学报,1999,11(2):84~91.
    244.崔金杰,夏敬源.转Bt基因棉田昆虫群落多样性及其影响因素研究.生态学报,2000,20(6):824~829.
    245.董双林.转Bt基因抗虫性与研究.北京:农业出版社,1996.
    246.郭三维.植物抗虫基因工程进展.中国农业科学,1996,28(5):8~13.
    247.贾士荣.转基因作物的安全性争论及其对策.生物技术通报,1999,(6):1~7.
    248.贾士荣.转基因作物食品中标记基因的安全性评价.中国农业科学,1997,30(2):1~15
    249.乐超银,鲁松清,刘子铎等.转化cry1C基因对苏云金芽胞杆菌杀虫活性的影响.微生物学通报,2002,29(3):17~20.
    250.林良斌,官春云,王国槐等.转基因抗虫油菜对菜青虫抗性的研究.云南农业大学学报,2001,
    
    16(3):203~205.
    251.刘志诚,叶恭银,胡萃等.Bt水稻对主要非靶标害虫和蜘蛛优势种田间种群动态的影响.植物保护学报,2002,29(2):138~144.
    252.闵绍楷,申宗坦,熊振民.水稻育种学.中国农业出版社,1996,pp269~275.
    253.马歇克,门永,布格斯等.蛋白质纯化与鉴定实验指.北京:科学出版社,2000
    254.倪挺,李宏,胡鸢雷等.食物致敏原数据库的建立和使用.科学通报,2000,45(14):1567~1568.
    255.倪万潮,张震林,郭三堆.转基因抗虫棉的培育.中国农业科学,1998,31(2):8~13.
    256.农业部全国农业技术推广服务中心,中国农业年鉴1996~1999.中国农业出版社,北京.
    257.钱迎倩,田彦.转基因植物的生态风险评价.植物生态学报,1998,22(4):289~299.
    258.钱迎倩,马克平,桑卫国等.终止子技术与生物安全.生物多样性,1999,7(2):151~155.
    259.钱迎倩、马克平.经遗传修饰生物体的研究进展及其释放后对环境的影响.生态学报,1998,18(1)1~9.
    260.沈晋良,周威君,吴益东等.棉铃虫对Bt生物农药早期抗性及与转Bt基因抗虫性的关系.昆虫学报,1998,41(1):8~13.
    261.舒庆尧,叶恭银,崔海瑞等.Bt转基因水稻克螟稻选育.浙江农业大学学报,1998,24(6):579~580.
    262.束春娥,柏立新,孙宏武等.棉铃虫多代连续取食转基因抗虫棉的抗性演变.中国生物防治,2001,17(1):1~5.
    263.王关林,方宏筠.植物基因工程原理与技术.科学出版社,1998,pp323~329.
    264.王国英,杜天兵,张宏等.用基因枪将Bt毒蛋白基因转入玉米及转基因植株再生.中国科学B辑,1995,25(1):71~76.
    265.王洪兴,陈欣,唐建军等.转Bt基因水稻秸秆降解及对土壤可培养微生物类群的影响.生态学报,2004,24(1):89~94.
    266.王良录.基因重组变应原研究进展.中华微生物学和免疫学杂志,2001,21(增刊):128~131.
    267.王庆贵.转基因食品概况.中国标准化,2001,(11):12~13.
    268.王兴春,杨长登.转基因植物生物安全标记基因.中国生物工程杂志,2003,23(4):19~22.
    269.王忠华,舒庆尧,叶庆富等.转基因植物外源基因逃逸的途径.植物学通报,2001,18(2):137~142.
    270.王忠华,叶庆富,舒庆尧等.转基因植物根系分泌物对土壤微生态的影响.应用生态学报,2002,13(3):373~375.
    271.王忠华,叶庆富,舒庆尧等.转基因植物中外源基因及其表达产物转移的途径.生态学报,2002,22(9):1521~1526.
    272.闻大中,基因工程生物的生态影响及其评价.应用生态学报,1992,3(4):371~377.
    273.吴刚,崔海瑞,舒庆尧等.cry1Ab基因在“克螟稻”后代中的遗传稳定性及表达.农业生物技术学报,2000,8(3):253~256.
    274.吴刚,崔海瑞,舒庆尧等.5-氮胞苷介导的转基因cry1Ab的阶段复活及其对水稻的生物学效应.中国水稻科学,2001,15(1):63~66.
    275.吴刚.cry1Ab基因在转基因水稻中的遗传、表达与沉默.浙江大学博士学位论文,2000.
    276.吴立成,李啸峰,叶庆富等.转cry1Ab基因水稻中杀虫晶体蛋白的表达、分泌及其在土壤中的残留.环境科学,(2004待刊)
    277.吴伟祥,叶庆富,闵航,等.克螟稻秸秆cry1Ab基因表达产物对土壤生物学活性的影响.土壤学报,2003,40(4):606~612.
    278.吴伟祥,叶庆富,闵航.不同生长期转Bt基因水稻秸秆还土对淹水土壤酶活性的影响.生态学报,2003,23(11):2354~2358.
    279.吴伟祥.Effect of Bt transgenic rice(KMD)on microbial activities and diversity in paddy soil and rhizosphere.浙江大学博士学位论文,2003.
    280.夏敬源,汪若海.文绍贵等.抗虫棉在棉铃虫综合治理中的作用.中国棉花,1995,22(8):8~11.
    
    
    281.项友斌,梁竹青,高明尉等.农杆菌介导的苏云金杆菌抗虫基因crylAb和ctylAc在水稻中的遗传转化及蛋白表达.生物工程学报,1999,15(4):495~500.
    282.项友斌.苏云杆菌杀虫基因ctylAb和crylAc的密码子改良与构建以及菜苔与水稻抗虫转基因植株的培育.浙江农业大学博士学位论文,1998.
    283.叶庆富.同位素示踪技术与转基因植物生态风险性评价研究.核农学报,2003,17(4):313~318.
    284.殷丽君,孔瑾.转基因食品.北京:化学工业出版社,2002.
    285.于晓红,朱祯,徐鸿林等.基因枪法转化小麦及转基因植株的获得.高技术通讯,2000,10(2):13~17.
    286.岳建雄,张慧军,张炼辉.以对潮霉素抗性为筛选标记的棉花遗传转化.棉花学报,2002,14(4):195~199.
    287.张天真,唐灿明.转Bt基因抗虫棉品种的推广利用与棉铃虫抗性的治理.科学通报,2000,45(2):119~127.
    288.张智奇.抗虫基因及其在植物上的应用.吉林农业大学学报,1996,18(1):91~95.
    289.赵荣敏,范云六,石西平等.获得高抗虫转双基因烟草.生物工程学报,1995,11(1):1~5.
    290.周兆谰,朱帧.植物抗虫基因工程研究进展.生物工程进展,1994,14(4):18~24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700