用户名: 密码: 验证码:
转Bt基因棉对节肢动物群落的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用群落生态学原理和统计生态学方法,对转Bt基因棉田节肢动物群落整体结构、目标害虫、非目标昆虫时序变化、节肢动物群落的相似性等影响进行了系统研究,结果表明:
     1.转Bt基因棉对节肢动物群落整体结构的影响
     保铃棉、冀抗668的物种丰富度较常规防治棉田有一定变化(2001年保铃棉下降2.33%、冀抗668下降9.30%、2002年保铃棉增加4.44%、而冀抗668下降4.44%),保铃棉的个体总量2001、2002年较常规防治显著增加依次为60.64%、158.87%。其中植食性亚群落的优势种类组成上有一定改变,保铃棉田的个体总量2001、2002年较常规防治增加57.02%、173.59%。捕食性和寄生性亚群落的个体总量2002年明显增加(30.64%),2001年则降低20.81%。各处理多样性指数和均匀度值的高低次序为:2001年冀抗668(2.0314和0.5545)>保铃棉(1.7624和0.4715)>常规防治(1.7341和0.4610)>常规不防治(1.2741和0.3388),优势集中性指数高低次序为常规不防治(0.3629)>常规防治(0.2635)>保铃棉(0.2606)>冀抗668(0.1834);2002年常规防治(1.6481和0.4329)>保铃棉(1.1546和0.2999)>冀抗668(0.9616和0.2557)>常规不防治(0.8311和0.2196),优势集中性指数高低次序为冀抗668(0.5139)>常规不防治(0.5054)>保铃棉(0.4255)>常规防治(0.2995)。此结果表明,两转Bt基因棉多样性指数和均匀度指数均大于常规不防治,表明转Bt基因棉田节肢动物群落的结构优于常规不防治棉田,显示其结构的合理性,优势集中性指数比较结果则表明:两转Bt基因棉田的节肢动物群落物种均匀性有一定变化,就2002年而言,两转Bt基因棉田节肢动物群落的优势集中性指数较高,某一害虫存在大发生的可能,因此转Bt基因棉田适宜采取IPM策略和方法。
     2.转Bt基因棉对目标昆虫的影响
     (1) 对棉铃虫百株卵量的影响
     调查过程中发现,各处理的棉铃虫百株卵量无太大的差异。在第2代卵期时(6月18日~6月30日),两种抗虫棉(保铃棉和冀抗668)的落卵量明显高于非抗虫棉,由此可知:Bt抗虫棉对棉铃虫产卵无趋避性,有时甚至诱使棉铃虫成虫产卵。
     (2) 对棉铃虫百株幼虫量的影响
     在整个生长期,保铃棉和冀抗668上的棉铃虫小幼虫量显著低于常规棉花品种;而大幼虫量在后期,两种抗虫棉品种上较多,显示其抗虫性具有时效动态特点。
     3.转Bt基因棉对非目标昆虫的影响
     转Bt基因棉田非目标昆虫优势种类变化较大,棉铃虫不再是主要害虫,棉蚜、红蜘蛛、棉蓟马等刺吸性害虫上升为主要害虫;捕食性天敌优势种则无明显变化,仍为瓢甲类,蜘蛛类,革蛉类和捕食性蝽类;而寄生性天敌如棉铃虫侧沟茧蜂(Micoplitis)和棉铃虫齿唇姬蜂(Campoletis chlorideae Uchida)的数量明显减少,优势种变化较大,转Bt基因棉田寄生性天敌优势种为棉蚜茧蜂(Lysiplebia japonica AsHmead)和金小蜂科(Pteromalidae);中性节肢动物类群数量、种类均无明显变化,表明转Bt基因棉对中性节肢动物类群无明显影响。
     4.转Bt基因棉对节肢动物群落整体结构及时序变化的影响
     2001保铃棉与冀抗668的相似系数最高(0.8246),冀抗668、保铃棉与常规防治的相似系
    
    数依次0.6459、0.5829,保铃棉和冀抗668与常规不防治的相似系数为0.5669、0.4485。2002
    年与冀杭668的相似系数最高(0 .6887),保铃棉和冀抗668与常规防治相似系数为0.4739、
    0.3828,保铃棉和冀抗668与常规不防治的相似系数为0.3124、0.3999,此结果表明,两转Bt
    基因棉田节肢动物群落的整体结构一致,相似性较大,与常规防治相比,相似系数有所降低,表
    明常规功治棉田中人为控制因素对节肢动物有一定影响;转Bt基因棉对节肢动物群落有一定影
    响,但并不显著。
     本研究为更好的发挥转Bt基因棉在棉花害虫综合治理中的作用,建立和完善转Bt其因棉田
    害虫综合治理的技术体系提供科学依据。
Based on the methods of ecological community and system investigation, the effect of transgenic Bt cotton on the historical level, the whole structure of arthropod community and the seasonal fluctuation of target pests and non-target insects were evaluated in cotton field in Julu, HeBei during 2001-2002. There were four treatments in the trials: transgetic Bt cotton-Borgard (B), or JiKang 668(JK668) and common cotton - control(C), non-control(CN).The main results were as follows: 1 The effect of transgenic Bt cotton on the whole arthropod community
    Compared with C, the species richness in B, CC30 (or JK668) appeared certain change (in 2001, B reduced by 2.33%, JK668 reduced by 9.30%; in 2002, B increased by 4.44%, JK668 reduced by 4.44%), the number of total individual increased by 60.64% in 2001, 158.87% in 2002. The constitution and order of the dominant species in phytophagous subcommunity changed and the number of total individual in transgenic Bt cotton field increased by 57.02% in 2001, 173.59% in 2002 (compared with the C). The number of total individual of the predatory subcommunity and parasitic subcommunity increased by 30.64% in 2002 but reduced by 20.81% in 2001.The order of diversity and evenness value of four treatments were: in 2001, JK668 (2.0314,0.5545), B (1.7624,0.4715), C (1.7314,0.4610), CN (1.2741,0.3388); in 2002, C (1.6481,0.4329), B (1.1546,0.2999), JK668 (0.9616,0.2557), CN (0.8311,0.2196). The dominant value were: in 2001, CN (0.3629), C (0.2635), B (0.2606), JK668 (0.1834); in 2002, JK668 (0.5139), CN (0.5054), B (0.4255), C
     (0.2995). These results shows: the diversity and evenness of two kinds of transgenic Bt cotton were higher than CN, indicating the structures of arthropod community in transgenic Bt cotton fields were more superior and reasonal than those in CN cotton field; the evenness of the species of arthropod community appeared certain fluctuation and the dominant values were higher, indicating the possibility of disaster occurrence of certain pest. 2. The effect of transgenic Bt cotton on target pests
    (1) The effect on the number of Helicoverpa armigera (Hubner) eggs per 100 plants
    There were no obvious difference in all treatments according to the two-year investigation. In the period of the second generation H. armigera eggs(6.18-6.30), the number of eggs in two kinds of transgenic Bt cotton fields(B and JK668) were more than non-transgenic Bt cotton fields, indicating the transgenic Bt cotton hadn't repellency to the H. armigera oviposition, even traped the adults of H, armigera to lay eggs sometimes.
    (2) The effect on the number of H. armigera larvaes per 100 plants
    In the whole growth period, the number of young larvaes in B and JK668 cotton fields
    
    
    are less than common cotton, the number of older larvaes were also less than common cotton in the initial period but were high or higher than non-resisitance cotton in the occurring peak of the third and fourth generation of H. armigera, indicating the resistance owned more obvious characters of seasonal dynamics. In a word, B had the best resistance for the H. armigera of the second generation and had better resistance for the third generation, but had worse resistance for the fourth generation. 3 .The effect of transgenx Bt cotton on non-target insects
    The kinds of the dominant species of pests in transgenic cotton field had obvious change, in which the H. armigera was no longer the main pest and the piercing-sucking pests such as Aphis gossypii, Tetranychus urticae, Thrips tabaci etc. rose the main pests. The kinds of the dominant species of predatory natural enemies seemed to be no variation, which was still Propylaea japonica Thunberg. Because of the effect of transgenic Bt cotton on H. armigera laevae-the development delay, the weight reduction, which affected the qualities of parasitic enemies, leading to the reduction of the weight of cocoon and the weight of adult, and the reduction of H. armigera laevae number in cotton field, the number of parasitic enemies reduced obviously and the change of dominant species
引文
[1] 崔金杰,夏敬源.转BT基因棉对天敌种群动态的影响[J].棉花学报,1999,11(2):84~91.
    [2] 郭予元.棉铃虫大发生原因和1998年预报[J].植物保护,1998,24(2):25~26.
    [3] 王武刚,戴小枫,梁革梅.棉铃虫特大发生原因和治理对策探讨[J].农业科学集刊,1993,1:35~39.
    [4] Wilson, AGL. Pest and future Heliothis management in Australia, 1982,pp. 343~354.
    [5] 复敬源.棉铃虫抗约性现状及治理对策[J].棉花学报,1993,5(2):1~6.
    [6] 刘艳荷,陈盛禄.转抗虫基因植物对蜜蜂的影响.昆虫知识,2001,38(4):258~262.
    [7] Perlak F.J et.al. Insect resistant cotton plants.Bio/Technology,1990,8:939~943.
    [8] Tenkins J.N et.al. Field and laboratory evaluation of transgenic cotton strains containing a gene from Bacillus thurringiensis strain HD-1.Proc Belt Cotton Conf.1990:635.
    [9] Perlak F.J et.al. Modification of the coding sequence enchances plant express of insect control protain genes. Proc Natl Acad Sci. (USA).1991, 88: 3324~3328.
    [10] Wilson F.D et.al. Yield, yield components and fiber properties of insect resistant cotton lines containing a Bacillus thuring toxin gene. Crop Sci. 1994, 34:38~41.
    [11] Cousins Y.L et.al. Transformation of an Australian cotton Cultivar prospects for cotton improvement through genetic engineering. Australian J Plant Physiol, 1991, 18:481~491.
    [12] 崔洪志,郭三堆.我国抗虫转基因棉花研究取得重大进展.中国农业科学,1996,29(1):93~95.
    [13] 郭三堆.植物BT抗虫基因工程研究进展.中国农业科学,1996,28(5):8~13.
    [14] 赵建周,卢光美,范贤林等.转Bt基因棉对棉铃虫不同铃期的杀虫活性和抑制生长作用[J].昆虫学报,1998,4(4):354~357.
    [15] Halcomb.J.L. Survival and growth of bollworm and tobacco budworm on nontransgenic and transgenic cotton expressing a Cry1A insecticidal protein. Environmental Entomology, 1996,25(2):250~255.
    [16] More genetically engineered cottons.The ICAC Recorder. ⅩⅣ, 1996, (4): 15~17.
    [17] Shelton A.M, Zhao J Z, Roush R T. Economic ecological, food safety, and social consequences of the deployment of Bt transgenic plants [J]. Annual Review of Entomology, 2002, 5(47):845~847.
    [18] 王武刚,郭三堆.转基因棉花对棉铃虫抗性鉴定及利用研究[J].中国农业科学,1997,30(1):7~12.
    [19] J.H.Benedict, D.W. Altman, P.F.Umbeck, et.al. Transgenic Bt Cotton [J]. Journal of economic entomology, 1992, 85(4):1516~1521.
    [20] 赵志模,郭依泉.群落生态学原理与方法[M].重庆:科学技术文献出版社,1990.
    [21] Andow.D.A. community response to transgenic plant release:using mathematical theory to predict effects of transgenic plants[J].Molecular-Ecology (United-kingdom), 1994,3 (1):65~70.
    [22] 崔金杰,夏敬源.不同种植方式下转Bt基因棉对昆虫群落的影响[J].中国花,1999,26(5):8~9.
    [23] 崔金杰,夏敬源.Bt基因棉93-4对昆虫群落的影响[J].西南农业大学报,1999,21(4):358~363.
    
    
    [24] 崔金杰,夏敬源.一熟转Bt基因棉田昆虫群落研究[J].西北农业大学报,1999,27(6):28~32.
    [25] 崔金杰.复敬源.转Bt基因棉对昆虫群落结构与组成的影响[J].河南农业大学学报,1999,33(4):342~345.
    [26] 魏国树,张青文,崔龙.转基因棉田节肢动物群落结构特征研究[J].应用生态学报,2001,12(4):576~580.
    [27] 夏敬源,王春义,马艳等.不同类型棉田棉铃虫及其优势天敌种群动态研究初报[J].中国棉花,1996(60):26~32.
    [28] 崔金杰,夏敬源.转Bt基因棉对天敌种群动态的影响[J].棉花学报,1999,11(2):84~91.
    [29] 许立瑞,李洪刚,徐春明等.转Bt基因抗虫棉田昆虫群落结构的研究[J].山东农业科学,2002(3):13~17.
    [30] 崔金杰,夏敬源.转Bt基因棉田昆虫群落多样性及其影响因素研究[J].生态学报,2000,20(5):824~829.
    [31] 杨益众,余月书,任璐等.转基因棉花对棉铃虫天敌寄生蜂的影响[J].昆虫知识,2001,38(6):435~437.
    [32] 张少燕,谢宝瑜.转基因棉花Bt毒蛋白的表达及其生态学效应[J].昆虫知识,2002,39(5):328~335.
    [33] 崔金杰,夏敬源.夏套夏播转Bt基因棉田主要害虫及天敌的发生规律[J].棉花学报,1998,10(5):255~262.
    [34] 崔金杰,夏敬源.一熟转Bt基因棉田主要害虫及天敌的发生规律[J].植物保护学报,2000,27(2):141~145.
    [35] 崔金杰,夏敬源.转Bt基因棉对棉田主要害虫及其天敌种群消长的影响[J].河南农业大学学报,1997,31(4):351~356.
    [36] 王春义,夏敬源.Bt抗虫棉与常规棉棉铃虫及其主要天敌种群动态差异[J].中国棉花,1997,24(6):13~15.
    [37] Veiders R M,崔金杰,夏敬源等.中国北方棉区转基因抗虫棉对棉苗蚜及其两种天敌的影响(英文).棉花学报,2002,14(3):175~179.
    [38] 邓曙东,徐静,张青文等.转Bt基因对非靶标害虫及害虫天敌种群动态的影响[J].昆虫学报,2003,46(1):1~5.
    [39] 吴孔明.Bt抗虫棉田棉花害虫的发生规律及控制技术[M].转基因棉花.北京:科学出版社2001;218~224.
    [40] 秦秋菊,李国平,杨向东等.转Bt基因对棉铃虫及其天敌发生的影响[J].河北农业大学学报,2002,25(4):57~60.
    [41] 夏敬源,王春义,马艳等.不同类型棉田节肢动物群落结构研究[J].棉花学报,1998,10(1):26~32.
    [42] 崔金杰,夏敬源.夏套夏播转Bt基因棉R93-6对昆虫群落的影响[J].昆虫学报,2000,43(1):43~51.
    [43] Wu J C, Lu Z Q, Yang J S,et.al. Habitat niche and predation effect of natural enemies of insect pests in paddy field [J]. Acta Entomologica Sinica (in Chinese), 1993,36(3):323~331.
    [44] Adans J. The definition and interpretation of guild structure in ecological communities [J]. Animal.Ecol. 1985(54):43~59.
    [45] Gao W, Xiang G Q, Shang J C.Bird guilds and their interaction in mountain secondary
    
    forest[C].In:Mathematics ecological progress(in Chinese).Chengdu: Chengdu Scientific and Technological University Press, 1994,242~247.
    [46] 万方浩,刘万学,郭建英.不同类型棉田棉铃虫天敌功能团的组成及时空动态[J].生态学报,2002,22(6):936~942.
    [47] 崔金杰,夏敬源.转Bt基因棉对天敌种群动态的影响.棉花学报,1999,11(20:84~91.
    [48] 郝树广,张孝羲,程避年等.稻田节肢动物群落营养层及优势功能基团的组成与多样性动态[J].昆虫学报,1998,41(4):343~352.
    [49] 万方浩,刘万学,郭建英.转Bt基因棉节肢动物群落营养层及优势功能团的组成与变化[J].生态学报,22(5):729~735.
    [50] 万方浩,刘万学,郭建英.不同类型棉田棉铃虫天敌功能团的组成及时空动态[J].生态学报,2002,22(6):936~942.
    [51] 郑王义,尹青云,李生才.晋南麦田昆虫群落组成、结构及生态位的分析[J].山西农业科技.1992,(4):21~23.
    [52] 郭玉人.沈阳地区稻田节肢动物群落结构及群落生态研究[J].生态学报,2001,21(11):1854~1862.
    [53] 赵建周,赵奎军,卢美光华北地区棉铃虫与转Bt杀虫蛋白基因棉花间的工作研究.中国农业科学,1998,31(5):1~6.
    [54] Pardosa T-insignita (boes.et Ser) The fate of recombinant plant Dna in soil.Eur[J] , 1996,14:1070.
    [55] 崔金杰,夏敬源.夏套播转Bt基因棉R93-6对昆虫群落的影响.昆虫学报,2000,43(1):43~51.
    [56] Cui J-J, Xia J-Y.2000b Effect of Transgenic Bt Cotton R93-6 on the insect community. Acta Entomol Sin:43~51.
    [57] 刘万学,万方浩.棉铃虫捕食性天敌控制作用评价.中国生物防治,2000,16(3):97~101.
    [58] 刘万学,万方浩.人工释放赤眼蜂对棉铃虫的防治作用及相关生态效应[J].昆虫学报,2003,46(3):311~317.
    [59] 马骏,高必达.转Bt基因棉的生态风险及治理对策.应用生态学报,2003,14(3):443~446.
    [60] 马艳.转基因抗虫棉生物安全研究进展.棉花学报,2003,5(1):59~64.
    [61] 邢朝柱,靖深蓉等.转Bt基因棉杀虫蛋白含量时空分布及对棉铃虫产生抗性的影响.棉花学报,2001,13(1):11~15.
    [62] 杨益众,余月书.转基因棉花对棉铃虫天敌寄生率的影响.昆虫知识,2001,38(6):435~440.
    [63] Donegan K.K, Palm CJ,Fieland VJ, et al. Changes in levels,species and DNA fingerprints of soil microorganisms associated with cotton excpressing the Bacillus thuringgiensis var, kurstaki endotoxin[J].Appl Soil Ecol,1995,2:111~124.
    [64] Donegan K.K, Seidiler RJ,DOYLE JD, et al. A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meiloti: Effects on the soil ecosystem[J]. Appl Ecol, 1999, 36:920~936.
    [65] Donegan K.K, Seidler RJ, Fielland VJ, et al. Decomposition ofgenetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti:Effects on the soil ecosystem[J]. Appl Ecol, 1997, 34: 767~777.
    [66] Grayston S.J,Wang S, Campbell CD, et al. Selective influence of plant species on microbial
    
    diversity in the rhizosphere [J]. Soil Biol Biochem, 1998, 30: 369~378.
    [67] Saxena D, Flores S, Stotzky G. Insecticidal toxin in root exudates from Bt corn[J]. Nature, 1999, 402:480.
    [68] Sims S.R, Holden LR..Insect bioassay or determining soil degradation of Bacillus thuringiensis ssp.kurstaki CryⅠA(b) protein in corn tissue[J]. Environ Entomol, 1996, 25: 659~664.
    [69] Sims S.R, Ream JE.Soil inactivation of the Bacillus thuringiensis ssp..kurstaki CryⅡA insecticidal protein within transgenic cotton tissue: laboratory microcosm and field studies[J].Agrc Food Che, 1997,45:1502~1505.
    [70] Stotzky G.Persisitence and bacterical DNA bound on clays and humic acids[J].Environ Qual,2000,29:602~609.
    [71] Tapp H, Stotzky G. Persistence of the insecticidal toxin from Bacillus thuringiensis subsp.kurstaki in soil[J].Soil Biol Biochem,1998,30(4):471~476.
    [72] Yu I, Berry RE,Coroft BA.Effects of Bacillus thuringiensis toxin in transgenic cotton and potato on Folsomia candida (Collembda:Isotomodae) and Oppia nitens (Acavi:Orbatidae) [J]. Mol.Ecol, 1994(3): 45~50.
    [73] Ding Zhi-Yong, Xu Chong-Ren, Wang Rong-Jiang. Comparison of sevsral important isoenzymes between Bt cotton and regular cotton[J]. Acta Ecol Sin,2001,21(2):332~336.
    [74] Morra M.J. Assessing the impect of ransgenic plant products on soil organisms[J]. Mo.Ecol,1994,(3):53-55.[57] Fox JL.Bt cotton infestations renew resistance concerns[J].Nat Biotech. 1996,14:1070.
    [75] 丁志勇,许崇任,王戊疆等.转Bt基因棉与常规棉中几种同工酶的比较—转基因植物安全性评价生理指标初探[J].生态学报,2001,21(2):332~336.
    [76] 张永军,吴孔明,彭于发等.转基因植物的生态风险[J].生态学报,2002,22(11):1951~1959.
    [77] Mayene A. N, Gleich G L.Eosinophilia-myalgia syndrome and tryptophan production:a cautionary tale[J].Trends in Biotechnology, 1994,12:346~352.
    [78] James R.R.. Utilizing a social ethic toward the environment in assessing genetically i8nsect-resistance in trees[J].Agriculture and Human Values. 1997,14:237~249.
    [79] Saxen D, Florest S, Stotzky G. Insecticidal toxin in root exudates from Bt corn [J]. Nature, 1999, 402: 480.
    [80] Saxen D,Stotzky G. Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ[J]. FEMS Microbiol Ecology, 2000, 33:35~39.
    [81] Paget E,Lebbrun M,Freyssinet G, et al.The fate of recombinant plant Dna in soil.Eur[J].Soil Biol. 1998, 34(2): 81~88.
    [82] Oger P, Petit A, Dessaux Y. Genetically engineered plants producing opines alter their biological enviroment. Nature Biotech. 1997, 15(4): 369~372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700