三维双轴向间隔纬编复合材料T型梁横向冲击响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种常见的工程结构件,T型梁被广泛运用于航空航天航海等领域。而这些T型梁(T-beam)结构经常遭受鸟撞和冰雹、水中漂浮物和码头撞击。因此,设计并制造具有高弯曲刚强度和抗冲击性能的复合材料T型梁,研究T型梁在冲击加载下的动态响应,表征其动态冲击下的力学性能,极富有实际应用价值。
     本课题主要研究三维双轴向间隔纬编复合材料T型梁的横向准静态弯曲性能和动态冲击性能,比较两种状态下横向加载性质和破坏模式的不同,探讨筋板高度对T型梁冲击响应的影响。基于增强织物细观结构的有限元单胞模型,推导复合材料单胞中各组分刚/柔度矩阵。根据最大应力准则和临界失效面积(CDA)破坏准则,编写材料属性用户子程序VUMAT (Vectorized User-defined Material Subroutine),联合商用有限元程序包ABAQUS,用有限元方法计算复合材料T型梁冲击响应,并对实验和模拟结果进行对比分析,验证用户子程序对于三维双轴向间隔纬编复合材料T型梁结构件的适用性。
     本论文的主要内容有:
     1.三维双轴向间隔纬编针织物的编织和性能测试
     作为一种新型的纺织增强结构,三维双轴向间隔纬编织物不仅实现了轴向增强,而且厚度方向的连接纱增强了T型梁的抗剪切能力。利用自制的特殊针织横机,成功编织出符合质量要求的织物样品,并对其拉伸、撕裂和剥离性能进行测试和分析。测试结果表明:(a)织物经纬向拉伸性能与衬经纱密度和衬纬纱密度密切相关。(b)连接纱改善了结构织物的抗撕裂性能。(c)连接纱的经纬向密度不同是造成织物经纬向剥离曲线的不同的主要原因。
     2.T型梁的制作
     三维双轴向间隔纬编复合材料T字梁的制备,要求T型梁的筋板与腹板垂直,T型梁的厚度均匀,表面光洁平整,玻璃纤维的浸润度良好。采用自制的玻璃板模具和真空辅助转移模塑复合材料生产工艺,成功制得了三种不同筋板高度(Ocm,3cm,5cm)的三维双轴向间隔纬编复合材料T型梁。
     3.T型梁的准静态和动态横向冲击响应
     分别采用了MTS材料试验系统和Hopkinson压杆试验了不同筋板高度的复合材料T型梁准静态横向加载响应和动态横向加载响应。测试结果表明:在准静态下,相对于0cm筋板的T型梁,3cm和5cm筋板高度的T型梁具有更高的最大载荷和能量吸收性能,这是因为筋板有效地提高了材料的弯曲刚度。对于动态试验,结果表明对于同一筋板高度T型梁,最大载荷和吸收能量随着冲击速度的增加而增加,这说明冲击最大载荷、冲击吸收能量对冲击速度是敏感的。在同一冲击速度下,最大载荷和吸收能量随着筋板高度的增加而增加。
     准静态和动态横向加载下的对比结果还表明:T型梁的动态冲击破坏模式除了基体的破坏和纤维断裂、拉伸、压缩外,还包括剪切破坏。相对于平板,3cm筋板和5cm筋板T型梁的腹板压缩破坏和筋板的拉伸破坏程度较轻,这是因为筋板增加了T型梁的抗弯刚度,增加了T型梁的抗冲击损伤容限。
     4.T型梁准静态和动态横向加载性能有限元模拟计算
     基于增强织物细观结构的有限元单胞模型,通过坐标系转换得到了三维双轴向间隔纬编复合材料T型梁中五部分组分(衬经纱、衬纬纱、针织纱、连接纱和基体)的刚/柔度矩阵,同时引入三维塑性势函数,推导出T型梁弹塑性本构方程。利用Fortran语言,编写基于弹塑性本构关系、最大应力准则和临界失效面积准则的单胞模型VUMAT接口程序。材料失效性分析中单胞的基体失效分析采用Octahedral剪切原理和最大应力准则;单胞中纱线失效分析采用最大应力准则和临界失效面积准则。VUMAT与有限元分析软件ABAQUS的结合,模拟了三维双轴向间隔纬编复合材料T型梁在准静态和高应变率下材料的载荷一位移曲线和能量一位移曲线,破坏模式和加载过程。模拟曲线和实验曲线的较好的吻合度表明:建立的单胞模型和编写的用户子程序是正确的,其不仅可以适用于三维双轴向间隔纬编复合材料板材的力学性能模拟,而且也完全适用于三维双轴向间隔纬编复合材料结构件T型梁上。
     本论文的研究工作是对三维纬编间隔纬编复合材料T型梁抗冲击性能的表征,为进一步优化三维双轴向间隔纬编结构提供依据,也为研究其他三维双轴向间隔纬编复合材料结构件提供参考。
T-beams are widely used in aerospace, airplane and navigation fields as one common engineering structure. These T-beams are liable to be impacted by the birds, hails, floating stuff and dock. Therefore, designing and manufacturing the composite T-beams with high flexural stiffness, strength and excellent anti-impact properties, investigating the dynamic response and characterizing the mechanical properties under the impact load, are meaningful for the practical use.
     The quasi-static flexural and dynamic impact properties of 3D biaxial spacer weft knitted composite T-beams with different rib heights were investigated in this paper. The impact response and damage modes under the quasi-static and impact loadings were compared, and rib height influence on the dynamic response was also investigated. Using unit-cell model of the microstructure of the 3D biaxial weft-knitted structure, stiffness/compliance matrices of each component in the unit-cell were deduced through the coordinate transformation. The VUMAT (Vectorized User-defined Material Subroutine) was firstly written basing on the maximum stress failure theory and the critical damage area (CDA) failure theory, and then it was cooperated with commercial finite element analysis software ABAQUS, to calculate the dynamic impact response of 3D biaxial spacer weft-knitted composite T-beam. FEM results and experimental ones were compared to check the validity of unit-cell model and user-defined subroutine VUMAT for the calculation of 3D biaxial spacer weft-knitted composite T-beam.
     The main investigations include the following parts:
     1. Fabrication of 3D biaxial spacer weft-knitted fabric and testing its mechanical behavior
     As one of novel textile reinforcement structures,3D biaxial spacer weft-knitted fabric was not only strengthened in axes due to the insertion of warp and weft yarns, but also improved concerning the anti-delamination ability of reinforced T-beam composite duo to the linking yarns. The modified special knitting machine was employed to produce the required fabric. The reinforcement was tested and analyzed on tensile, tear, peeling properties. The results indicated that:(a) the tensile properties are closely related to the warp yarn and weft yarn densities; (b) the anti-delamination ability is greatly improved by linking yarns; (c) the peeling behavior differences between the weft direction and warp direction are resulted from the difference of linking yarn densities in these two directions.
     2. Fabrication of T-beam
     Manufacturing 3D biaxial spacer weft knitted composite T-beam required rib to be vertical with panel surface, to have uniform thickness and smooth surface. Self-designed glass mould and vacuum assisted resin transferring molding (VARTM) technique were employed to produce the 3D biaxial spacer weft knitted composite T-beam with three different rib heights (Ocm,3cm and 5cm).
     3. Quasi-static and impact dynamic responses
     The quasi-static and dynamic impact loading tests on the composite T-beam with different rib heights were conducted on MTS and modified split Hopkinson bar respectively. The results showed that for the quasi-static loading test, the composite T-beams with 3cm and 5cm rib heights were indicated with higher maximum load and energy absorption ability, because rib improved the flexural stiffness of T-beam effectively. For the dynamic impact loading, it was shown that maximum load and energy absorption ability increased with the increasing of impact velocity for the T-beam with the same rib height, and also increased with increasing of rib height of the T-beam under the same impact velocity.
     The comparison between quasi-static and dynamic impact loadings also showed that the dynamic impact damage mode includes shearing damage besides matrix crack, fiber breakage, tension, compression. Compared with Ocm T-beam(namely panel composite), the T-beam with 3cm and 5cm rib heights were observed with the relatively less damage where compressive failure appeared on the front side and tensile failure on the rib. The reason is that the rib improved the stiffness and anti-impact resistance of T-beam.
     4. FEM simulation calculation of T-beam under quasi-static and dynamic impact loadings
     Based on the microstructure of unit-cell of 3D biaxial spacer weft-knitted fabric, stiffness/compliance matrices of five components (warp yarn, weft yarn, loop yarn, linking yarns and matrix) in unit cell were obtained through the coordination transformation, and 3D plastic potential function was introduced to deduce elasto-plastic constitutive equations of the 3D biaxial spacer weft-knitted composite T-beam. VUMAT was written based on the elasto-plastic constitutive equations, maximum stress failure theory and critical damage area (CDA) failure theory in FORTRAN. The Octahedral shear failure theory and the maximum stress failure theory were used to control matrix failure in unit-cell models. The maximum stress failure theory and the critical damage area (CDA) failure theory were used to control yarns failure in unit-cell models. In cooperating with finite element software ABAQUS, VUMAT was implemented to stimulate the load-displacement curves, energy-displacement curves, damage mode and damage process of 3D biaxial spacer weft-knitted composite T-beam under the quasi-static flexural and dynamic impact loadings. The good agreement between FEM results and experimental ones showed that the unit-cell and VUMAT used not only suitable for the 3D biaxial spacer weft-knitted composite panel, but also appropriate for 3D biaxial spacer weft-knitted composite T-beam.
     The paper has characterized the dynamic impact response of 3D biaxial spacer weft-knitted composite T-beam. The obtained results are beneficial for the further optimization of 3D biaxial spacer knitted fabric, and can also be used as one reference for other kinds of 3D biaxial spacer weft-knitted composite structures.
引文
[1]Lopez-Anido R, GangaRao H V S. Warping solution for shear lag in thin-walled orthotropic composite beams. Journal of Engineering Mechanics-ASCE,1996,122(5): 449-457.
    [2]Pye A, Ledbetter S. The selection of an adhesive for the construction of a glass-adhesive T-beam. International Journal of Adhesion and Adhesives,1998,18(3): 159-165.
    [3]Gendron G, Picard A, Guerin MC. A theoretical study on shear strengthening of reinforced concrete beams using composite plates. Composite Structures,1999,45(4): 303-309.
    [4]Gu H. Comparison between laminated and integrated glass fiber reinforced plastics. Materials & Design,2000,21(5):461-464.
    [5]Hag-Elsafi O, Alampalli S, Kunin J. Application of FRP laminates for strengthening of a reinforced-concrete T-beam bridge structure. Composite Structures, 2001,52(3-4):453-466.
    [6]Shahawy M, Chaallal O, Beitelman T E. Flexural strengthening with carbon fiber-reinforced polymer composites of preloaded full-scale girders. ACI Structural Journal,2001,98(5):735-742.
    [7]Hulatt J, Hollaway L, Thorne A. Short term testing of hybrid T beam made of new prepreg-material. Journal of Composites for Construction,2003,7(2):135-144.
    [8]Wang R H, Luo Q Z, Tang J. A spatial displacement model for skewed multi-rib T-beams. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2003,156(3):227-233.
    [9]Okui Y, Nagai M. Block FEM for time-dependent shear-lag behavior in two I-girder composite bridges. Journal of Bridge Engineering,2007,12(1):72-79.
    [10]Xie Y J, Wang X H, Wang Y Y. Stress intensity factors for cracked homogeneous and composite multi-channel beams. International Journal of Solids and Structures, 2007,44(14-15):4830-4844.
    [11]Wang Y C, Lee M G, Chen B C. Experimental study of FRP-strengthened RC bridge girders subjected to fatigue loading. Composite Structures,2007,81(4): 491-498.
    [12]Huang D, Lyons J. Numerical stress analysis of the bond between a reinforced concrete T-Beam and FRP sheets. Journal of Reinforced Plastics and Composites,2007, 26(12):1225-1237.
    [13]黄故.现代纺织复合材料.中国纺织出版社,2000:4-5.
    [14]Wang Y J, Li J, Do P B. Properties of composite laminates reinforced with E-glass multiaxial non-crimp fabrics. Journal of Composite Materials,1995,29(17): 2317-2333.
    [15]Van Vuure A W, Ko F K, Beevers C. Net-shape knitting for complex composite preforms. Textile Research Journal,2003,73(1):1-10.
    [16]Du G W, Ko F K. Analysis of multiaxial warp-knit preforms for composite reinforcement. Composite Science and Technology,1996,56(3):253-260.
    [17]Ko F K, Hu J L, Jiang Y M. Bending properties of mutiaxial warp knitted fabrics. Textile Asia,1998,29(2):45-48.
    [18]Hu J L, Jiang Y M. Modeling uniaxial tensile properties of multiaxial warp knitted fabrics. Textile Research Journal,1998,68(11):828-834.
    [19]Jiang Y M, Hu J L. Characterizing and modeling bending properties of multiaxial warp knitted fabrics. Textile Research Journal,1999,69(9):691-697.
    [20]Hu J L, Jiang Y M. Modeling formability of multiaxial warp knitted fabrics on a hemisphere. Composite Part A,2002,33(5):725-734.
    [21]张剑寒.博士学位论文.纬编双轴向多层衬纱织物的剪切性能研究及成型计算机模拟.天津工业大学,2002:1-2.
    [22]张艳明.博士学位论文.纬编双轴向多层衬纱织物的成型性研究.天津工业大学,2005:2-3.
    [23]Nal A, Hoffmann G, Cherif C.钱程.用于复合材料的针织间隔织物的开发.国际纺织导报,2006,(8):41-42.
    [24]蒋高明.经编间隔织物的结构与性能.江南大学学报(自然科学版),2003,2(4):395-398.
    [25]张明俊,周罗庆.三维机织间隔织物复合材料的设计和织造.纺织导报,2006,(7):68-69.
    [26]陈振洲.产业用经编间隔织物编织技术研讨.纺织学报,1999,20(5):43-45.
    [27]Lehmann W. Elastic, moulded spacer fabrics(E). Kettenwirk Praxis,1994, (3): 19-20.
    [28]Mayer K. The HDR8SL, An all-round machine for producing spacer fabrics. Kettenwirk Praxis,2002, (1):13-14.
    [29]Mayer K. Functional warp-knitted spacer fabrics(E). Kettenwirk Praxis,2000, (2): 14-15.
    [30]陈惠兰.博士学位论文.双针床拉舍尔间隔织物的开发和性能研究.中国纺织大学,1998:2-3.
    [31]Badawi S. Dissertation. Development of the weaving machine and 3d woven spacer fabric structures for lightweight composites materials. Technique University Dresden,2007:47-48.
    [32]钱程,陈惠兰.经编间隔织物制作的新型纤维增强纺织复合材料.国际纺织导报,2006,(12):34-35.
    [33]宋广礼,梁玉华,包卫斌.纬编间隔织物复合材料的性能分析.纺织学报,2005,26(3):57-59.
    [34]高爱君,李敏,王绍凯,张佐光.三维间隔连体织物复合材料力学性能.复合材料学报,2008,25(2):87-93.
    [35]Yip J, Ng S P. Study of three-dimensional spacer fabrics:Physical and mechanical properties. Journal of materials processing technology,2008,206(1-3):359-364.
    [36]Yip J, Ng S P. Study of three-dimensional spacer fabrics:Molding properties for intimate apparel application. Journal of materials processing technology,2009,209(1): 58-62.
    [37]胡红,周荣星,王文祖等.双轴向增强纬编间隔针织结构及其编织方法和专用装置.中国专利:2004200222381.5,2005-07-13.
    [38]汪福坤.双轴向增强纬编间隔针织物的性能特点.针织工业,2006,(4):9-11.
    [39]邱冠雄.间隔织物在纺织复合材料中的应用.针织工业,1998,(4):28-32.
    [40]宋广礼,韦艳华,吴嘉云.玻璃纤维纬编间隔织物的编织与结构研究.纺织学报,2002,23(4):262-264.
    [41]吕青.硕士学位论文.新型双轴向增强纬编间隔针织物几何结构的研究.东华大学,2006:26-40.
    [42]刘文建.霍普金森杆在复合材料动态测试中的应用.纤维复合材料,2005,(2):44-46.
    [43]Harding J, Wood E D, Campbell J D. Tensile testing of materials at impact rate of strain. Journal of Mechanical Engineering Science,1960, (2):88-96.
    [44]Harding J, Welsh L M. A tensile testing technique for fiber reinforced composites at impact rates of strain. Journal of Materials Science,1983,18(6):1810-1826.
    [45]Baker W E, Yew C H. Strain-rate effects in the propagation of torsional plastic wave. Journal of Applied Mechanics,1996,33(1):917-923.
    [46]Campbell J D, Dowling A R. The behaviour of materials subjected to dynamic incremental shear loading. Journal of the Mechanics and Physics of Solids,1970.18(1): 43-63.
    [47]Duffy J, Campbell J D, Hawley R H. On the use of a torsional split Hopkinson bar to study rate effect s in 11000 aluminium. Journal of Applied Mechanics,1971,38(2): 83-91.
    [48]Yew E H, Chen C S. Experimental study of dispersive waves in beam and rod using FFT. Journal of Applied Mechanics,1978,45(4):940-942.
    [49]Follansbee P S, Franz C. Wave propagation in the split Hopkinson pressure bar. Journal of Engineering Materials and Technology,1983,105(1):61-66.
    [50]Gorham D A. A numerical method for the correction of dispersion in pressure bar signals. Journal of Physics E:Scientific Instruments,1983,16(6):477-479.
    [51]Davies E D H, Hunter S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. Journal of the Mechanics and Physics of Solids,1963,119(3):155-179.
    [52]Bertholf L D, Karnes J. Two-dimensional analysis of the split Hopkinson pressure bar system. Journal of the Mechanics and Physics of Solids,1975,23(1):1-19.
    [53]Malinowski J Z, Klipaczko J R. Dynamic frictional effects as measured form the split Hopkinson bar. International Journal of Mechanical Sciences,1986,28(1): 381-391.
    [54]Wu X, Gilat A. An elastic-plastic analysis of tensile test specimens used in a split Hopkinson bar apparatus. Dynamic Behavior of Materials and Its Applications Journal, 1995,(2):197-206.
    [55]Rodriguez, Navarro C, Sanchez-galvez V. Numerical assessment of the dynamic tension test using the split Hopkinson bar. Journal of Test and Evaluation,1994,22(4): 335-342.
    [56]LI Y L, Ramesh K T. Numerical assessment of a tension Kolsky bar. Key Engineering Materials,2003,243(2):47-152.
    [57]Bussac M N, Collet P, Gary G. An optimization method for separating and rebuilding one-dimensional dispersive waves from multi-point measurements, application to elastic or viscoelastic bars. Journal of the Mechanics and Physics of Solids,2002,50(2):321-349.
    [58]Zhao P J, Lok T S. A new method for separating longitudinal waves in a large diameter Hopkinson bar. Journal of Sound and Vibration,2002,257(1):119-130.
    [59]Casem D T, Fourney W, Chang P. Wave separation in viscoelastic pressure bars using singlepoint measurements of st rain and velocity. Polymer Testing,2003,22(2): 155-164.
    [60]Lindholm U S. Some experiments with the split Hopkinson pressure bar. Journal of the Mechanics and Physics of Solids,1964,12(5):317-335.
    [61]Conn A F. On the use of thin wafers to study dynamic properties of metals. Journal of the Mechanics and Physics of Solids,1965,13(5):311-327.
    [62]Bell J F. An experimental diffraction grating study of quasi-static hypothesis of the SHPB experiments. Journal of the Mechanics and Physics of Solids.1966,14(6): 309-327.
    [63]Jahsman W E. Reexamination of the Kolsky technique for measuring dynamic material behavior. Journal of Applied Mechanics,1971,38(1):77-82.
    [64]Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Experimental Mechanics,2002,42(1): 93-106.
    [65]Zhao H, Gary G, Klepaczko J R. On the use of a viscoelastic split Hopkinson pressure bar. International Journal of Impact Engineering,1997,19(4):319-330.
    [66]Chichili D R, Ramesh KT. Recovery experiments for adiabatic shear localization: A novel experimental technique. Journal of Applied Mechanics,1999,66(1):10-20.
    [67]Staab G H, Gilat A. A direct-tension split Hopkinson bar for high strain rate testing. Experimental Mechanics,1991,31(3):232-235.
    [68]Sun B Z, Liu F, Gu B H. Influence of the strain rate on the uniaxial tensile behavior of 4-step 3D braided composites. Composites Part A,2005,36(11): 1477-1485.
    [69]Rong J, Sun B Z, Hu H, Gu B H. Tensile impact behavior of multiaxial multilayer warp knitted (MMWK.) fabric reinforced composites. Journal of reinforced plastics and composites,2006,25(12):1305-1315.
    [70]Sun B Z, Gu B H, Ding X. Compressive behavior of 3-D angle-interlock woven fabric composites at various strain rates. Polymer testing,2005,24(4):447-454.
    [71]Sun B Z, Yang L, Gu B H. Strain rate effect on four-step three dimensional braided composite compressive behavior. AIAA journal,2005,43(5):994-999.
    [72]Sun B Z, Gu B H. High strain rate behavior of 4-step 3-D braided composites under compressive failure. Journal of materials science,2007,42(7):2463-2470.
    [73]Sun B Z, Hu H, Gu B H. Compressive behavior of multi-axial multi-layer warp knitted (MMWK) fabric composite at various strain rates. Composite structures,2007, 78(1):84-90.
    [74]Liu W J, Sun B Z, Hu H, Gu B H. Compressive behavior of biaxial spacer weft knitted fabric reinforced composite at various strain rates. Polymer composites,2007, 28(2):224-232.
    [75]Sun B Z, Gu B H. Shear behavior of 3D orthogonal woven fabric composites under high strain rates. Journal of reinforced plastics and composites,2006,25(17): 1833-1845.
    [76]Liu Y W, Lv L H, Sun B Z, Hu H, Gu B H. Dynamic Response of 3D Biaxial Spacer Weft-knitted Composite under Transverse Impact. Journal of Reinforced Plastics and Composites,2006,25(15):1629-1641.
    [77]荣先成.有限元法.西南交通大学出版社,2006:9-14.
    [78]Lomov S V, Barburski M, Stoilova Tz. Carbon composites based on multiaxial multiply stitched preforms. Part 3:Biaxial tension, picture frame and compression tests of the preforms. Composites:Part A,2005,36(9):1188-1206.
    [79]Gommers B, Verpoest I, Houtte P V. Analysis of knitted fabric reinforced composites:Part one, fiber orientation distribution. Composites:Part A,1998,29(12): 1579-1588.
    [80]Leong K H, Ramakrishna S, Huang Z M, Bibo G A. The potential of knitting for engineering Composites-a review. Composites:Part A,2000,31(3):197-220.
    [81]张淑洁.管状纺织复合材料力学性能的有限元分析.纺织学报,2008,29(5):51-54.
    [82]石庆华,向锦武.复合材料空间薄壁梁的有限元分析模型.复合材料学报,2006,23(2):169-174.
    [1]宋广礼,梁玉华,包卫斌.纬编间隔织物复合材料的性能分析.纺织学报,2005,26(3):57-59.
    [2]Kunde K,钱程.针织间隔织物的应用及发展方向.国际纺织导报,2005,(1):46-48.
    [3]梁春金.间隔织物的良好应用前景.国外纺织技术,2001,(6):38-40.
    [4]Yip J, Ng S P. Study of three-dimensional spacer fabrics:Physical and mechanical properties Journal of Materials Processing Technology,2008,206(1-3):359-364.
    [5]Yip J, Ng S P. Study of three-dimensional spacer fabrics:Molding properties for intimate apparel application. Journal of Materials Processing Technology,2009, 209(1):58-62.
    [6]Machova K, Klug P, Waldmann M, Hoftmann G, Cherif C. Determining of the bending strength of knitted spacer fabric. Melliand Textilberichte,2006,87(6):92-93.
    [7]Lehmann W. Elastic, moulded spacer fabric. Kettenwirk-praxis,1994, (3):19-20.
    [8]张剑寒.博士学位论文.纬编双轴向多层织物的剪切性能研究及成型性计算机模拟.天津工业大学,2002:1-2.
    [9]张卓,邱冠雄,姜亚明,刘良森.纬编双轴向多层衬纱织物增强防弹板防弹性能的研究.东华大学学报(自然科学版),2003,29(6):1-7.
    [10]王善元,张汝光等.纤维增强复合材料.中国纺织大学出版社,1998:4-5.
    [11]汗福坤.双轴向增强纬编间隔针织物的性能特点.针织工业,2006,(4):9-11.
    [12]邱冠雄.间隔织物在纺织复合材料中的应用.针织工业,1998,(4):28-32.
    [13]宋广礼,韦艳华,吴嘉云.玻璃纤维纬编间隔织物的编织与结构研究.纺织学报,2002,23(4):262-264.
    [14]吕青.硕士学位论文.新型双轴向增强纬编间隔针织物几何结构的研究.东华大学,2006:26-40.
    [15]乔东.硕士学位论文.新型双轴向纬编间隔织物增强复合材料的加工制造及力学性能研究.东华大学,2008:56-75.
    [1]Kelkar A D, Tate J S, Chaphalkar P. Performance evaluation of VARTM manufactured textile composites for the aerospace and defense applications. Materials Science and Engineering:B,2006,132(1-2):126-12.
    [2]Johnson R J, Pitchumani R. Flow control using localized induction heating in a VARTM process. Composites Science and Technology,2007.67(3-4):669-684.
    [3]Bender D, Schuster J, Heider D. Flow rate control during vacuum-assisted resin transfer molding (VARTM) processing. Composites Science and Technology,2006, 66(13):2265-2271.
    [4]Johnson R J, Pitchumani R. Simulation of active flow control based on localized preform heating in a VARTM process. Composites Part A:Applied Science and Manufacturing,2006,37(10):1815-1830.
    [5]王芳,张国利.VARTM用EP体系流变特性及固化工艺的研究.工程塑料应用,2006,34(8):31-33.
    [6]王芳.VARTM用环氧树脂固化工艺的研究.高科技纤维与应用,2006,31(1):41-43.
    [7]齐燕燕,刘亚青,张彦飞.新型树脂传递模塑技术.化工新型材料,2006,(3):36-38.
    [8]汪福坤.硕士学位论文.双轴向纬编间隔针织增强结构编织工艺及其力学性能的研究.东华大学,2006:25-36.
    [1]刘鸿文.材料力学.高等教育出版社,2008:167-199.
    [2]黄海燕,王德禹.加筋板结构的自由振动分析.船舶工程,2008,30(6):1-3.
    [3]梁东平,徐元铭,彭兴林.复合材料格栅加筋板布局优化设计.固体火箭技术,2008.31(5):527-530.
    [4]林智育,许希武.含冲击损伤复合材料加筋层扳压缩剩余强度.航空学报,2009,30(1):56-65.
    [5]朱新阳,吴梵.加筋板在横向撞击下的吸能特性研究.海军工程大学学报,2008,20(1):25-30.
    [6]彭英,杨平.加筋板的大挠度塑性动力响应研究.舰船科学技术,2008.30(1):5]-55.
    [7]Hao A Y, Sun B Z, Qiu Y P. Gu B H. Dynamic properties of 3-D orthogonal woven composite T-beam under transverse impact. Composites:Part A,2008.39(7): 1073-1082.
    [8]Ji K H, Kim S J. Dynamic direct numerical simulation of woven composites for low-velocity impact. Journal of Composite Materials,2007,41(2):175-200.
    [1]龙海如.博十学位论文.纬编针织物增强复合材料力学性能研究.东华大学,2002:55-56.
    [2]易洪雷.博士学位论文.三维机织复合材料的结构设计与力学性能研究.东华大学,2000:71-84.
    [3]张剑寒.博十学位论文.经编多轴向多层衬纱织物的成型性研究机器计算机模拟.天津工业大学,2002:1-2.
    [4]Thiruppukuzhi S V, Sun C T. Testing and modeling high strain rate behavior of polymeric composites. Composites Part B,1998,29(5):535-546.
    [5]Chen J L, Sun C T. A plastic potential function suitable for anisotropic fiber composites. Journal of Composite Materials,1993,27(14):1379-1390.
    [6]Cox B N, Dadkhah M S, Morris W L. Research on the tension failure of 3-D woven composites. Composites Part A,1996,27(6):447-458.
    [7]Hahn H T, Tsai S W. Nonlinear elastic behavior of unidirectional composite laminate. Journal of composite materials,1973,7(1):102-118.
    [8]Hahn H T. Nonlinear behavior of laminated composites. Journal of composite materials,1973,7(2):257-271.
    [9]Rosen B W. Tension failure of fibrous composites. AIAA Journal,1964,2(11): 1985-1991.
    [1]秦跃平,张金峰,王林.岩石损伤力学理论模型初探.岩石力学于工程学报,2003,22(4):646.
    [2]吕丽华.博士学位论文.横向冲击下三维纺织结构复合材料动态响应及有限元计算.东华大学,2007:127-129.
    [3]Hao A Y, Sun B Z, Qiu Y P, Gu B H. Dynamic properties of 3-D orthogonal woven composite T-beam under transverse impact. Composites:Part A,2008,39(7): 1073-1082.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700