Sema3A诱导少突胶质细胞祖细胞迁移及其信号转导机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中枢神经系统(central nervous system, CNS)髓鞘的形成是由少突胶质细胞(oligodendrocytes, OLs)完成的,是维持正常神经冲动传导的重要物质基础。但是,由于少突胶质细胞对损伤因子很敏感,当CNS损伤时,少突胶质细胞很容易受到损害而死亡或凋亡,导致脱髓鞘或再生的轴突不能髓鞘化。伴随CNS创伤出现的一种特征性病理变化就是轴突脱髓鞘,且多不能自发再髓鞘修复,其中一个重要原因,可能就是与OLs减少和不能及时得到补充有关。室管膜下区的少突胶质细胞祖细胞(oligodendrocyte progenitor cells, OPCs)定向迁移可能对OLs的补充具有重要意义。
     虽然目前对与少突胶质细胞系的发育有关的细胞因子(如GGF、PDGF、bFGF等)有了较深入了解,但是却对如何诱导OPCs迁移及其迁移机制知之甚少。由于神经元和少突胶质细胞之间存在密切的相互作用关系,因此,调控神经元轴突塌陷和定向的分子也可能对OPCs迁移产生影响。
     近年来发现的诱导分子Semaphorin3A(Sema3A)及其受体就是对轴突生长和神经元定向迁移发挥着重要作用。那么Sema3A是否对OPCs细胞迁移过程产生调控作用呢?在此过程中其信号传导机制如何呢?目前还不清楚。本文通过对传统的培养、纯化方法进行改良,从新生大鼠室管膜下区分离出高纯度的OPCs,转染增强型绿色荧光蛋白(EGFP)基因,使其携带绿色荧光;并利用DNA重组技术制备表达Sema3A-Fc融合蛋白的COS-7细胞,用millicell-PCF细胞迁移小室(孔径8um)进行细胞迁移试验,观察Sema3A-Fc对OPCs迁移的影响及并探讨可能的信号传导机制。
     研究目的:
     1、观察Sema3A-Fc对少突胶质细胞祖细胞迁移的影响;
     2、探讨cAMP-PKA、cGMP-PKG和RhoA-ROCK信号通路在Sema3A-Fc诱导少突胶质细胞祖细胞迁移中的作用;
     3、试图阐明Sema3A诱导少突胶质细胞祖细胞迁移中可能的信号机制。
     实验方法
     1、少突胶质细胞祖细胞的分离培养与鉴定
     在解剖显微镜下切取新生SD大鼠室管膜下区脑组织进行细胞培养,培养基为含10%小牛血清和10%胎牛血清的DMEM。细胞分层时由于OPCs生长在星形胶质细胞层上面,根据贴壁能力差异,采用差速振荡法分离上层的OPCs。OPCs采用DMEM/F12培养基(含2%B27,20ng/L bFGF和20ng/L PDGF-AA)进行扩增培养。分别用无血清培养基和血清培养基对OPCs进行促分化培养。分别选取少突胶质细胞系不同发育期标志性抗原(A2B5、GFAP和CNPase),采用间接免疫荧光染色技术对所培养的细胞进行类型鉴定。EGFP质粒转染体外培养的少突胶质细胞祖细胞,挑选成功转染GFP的少突胶质细胞祖细胞扩增培养备用。
     2、表达Sema3A-Fc的COS-7细胞的制备
     利用基因重组技术,构建Sema3A-Fc重组质粒,利用双酶切、基因测序进行重组质粒鉴定;脂质体法转染COS-7细胞,G418筛选抗性克隆,扩增培养,免疫组化和免疫印迹法鉴定重组蛋白表达情况,获得稳定表达Sema3A的COS-7细胞。用含有sema3A-Fc培养上清加入体外培养的OPCs培养瓶中,通过对比观察构建表达的sema3A-Fc是否具有生物学活性。并对细胞膜上NP-1受体进行了检测。
     3、Sema3A-Fc诱导少突胶质细胞祖细胞迁移信号机制的实验研究
     1)用millicell-PCF细胞迁移小室(孔径8um)进行细胞迁移试验。将稳定表达Sema3A-Fc的COS-7细胞培养在迁移仓下层,待细胞融合达70%以上后,将纯化培养的少突胶质细胞祖细胞按2×104/孔接种在迁移仓的上层,共培养12h后,固定细胞,甲苯胺蓝染色,计数迁移细胞数。设对照组:单纯培养基对照和转染pIG的COS-7对照组。
     2)PKA和PKG的激活实验:分别加入cAMP类似物8-溴-cAMP(浓度50μM),cGMP类似物8-溴-cGMP(浓度500μM)于分层迁移实验舱下层中,观察少突胶质细胞祖细胞的迁移情况,计数并比较迁移结果。
     3)PKA和PKG抑制实验:分别加入PKA的特异性抑制物KT5720(浓度10μM)和PKG的特异性抑制物KT5823(浓度1μM)于分层迁移实验舱下层中,观察少突胶质细胞祖细胞的迁移情况,计数并比较迁移结果。
     4)抑制Rock激酶试验:分别在上述实验组中加入有Rho活性的ROCK激酶抑制物Y27632(浓度10μM),分别观察少突胶质细胞祖细胞的迁移情况,计数并比较迁移结果。
     5)免疫荧光法检测PKA催化亚基和PKG1含量:分别用小鼠抗PKA催化亚基抗体和兔抗PKG1抗体做为一抗,PBS替代一抗作阴性对照,在相同条件下进行免疫荧光染色和照相。用Image-Pro Plus 5.1图像分析软件,对图像进行分析处理。
     6)观察PKG,PKA和ROCK活性对OPCs细胞迁移的直接作用。在没有sema3A-Fc存在的情况下,用8-Br-cAMP, 8-Br-cGMP, KT5720、KT5823和Y 27632直接作用于OPCs细胞(浓度同前),观察PKG,PKA和ROCK活性改变是否对体外培养的OPCs细胞迁移的产生直接影响。
     4、统计
     定量数据以均数±标准差( x±s)表示,用SPSS10.0统计软件对数据进行分析,使用独立样本t检验分析两个组间的差异,使用单因素方差分析比较多个组间统计学差异。以P < 0.05为有统计学差异,以P < 0.01为有显著差异。
     主要结果
     1、体外成功分离培养出少突胶质细胞祖细胞,A2B5标记阳性,纯度达到95%以上。并能进一步分化为CNPase标记阳性的少突胶质细胞和GFAP标记阳性Ⅱ型星形胶质细胞。
     2、成功构建了pIGsema3A-Fc重组质粒,经双酶切(HindⅢ和BamHⅠ)和基因测序鉴定正确,转染COS-7细胞后,经免疫组化和Western-blot检测到重组蛋白的表达。表达Sema3A-Fc的COS-7细胞的培养上清能够促使体外培养的OPCs细胞突起回缩,胞体变圆。用抗Fc抗体和抗NP-1抗体免疫荧光染色均呈膜性染色。
     3、sema3A-Fc诱导细胞迁移实验结果:Sema3A-Fc实验组OPCs迁移数为(24.3±6.7),单纯培养基对照组为(38.4±7.9),转染pIG的COS-7对照组为(37.7±8.3),实验组与两个对照组均存在明显差异(n=15, P <0.01)。
     4、OPCs细胞内PKG、PKA免疫组化检测:通过针对催化亚基的抗体用免疫荧光法对细胞内PKA和PKG进行检测,发现OPCs细胞内的PKA和PKG均有基础量的表达,主要分布在胞浆和突起内。当加入含sema3A-Fc的培养上清时,细胞内PKA催化亚基染色强度没有明显变化,而PKG1的染色强度则较对照组明显增高(P <0.01),表明PKG含量增加,活性增强。表明含sema3A-Fc激活了cGMP-PKG信号通路。
     5、PKA和PKG激活/抑制实验:OPCs迁移数分别为:8-溴-cAMP组OPCs迁移数为(32.6±7.3)较对照组(24.3±6.7)明显增加(P <0.01),8-溴-cGMP组为(19.3±5.5)较对照组(24.3±6.7)有减少明显(P <0.05)。PKA和PKG抑制实验:OPCs迁移数分别为:KT5720组(17.5±5.3)较对照组(24.3±6.7)明显减少(P <0.01)。KT5823组(29.9±6.2)较对照组(24.3±6.7)有明显增加(P <0.05)。表明PKG通路对sema3A信号具有正向调节作用,而PKA通路则具有负向调节作用。
     6、抑制ROCK激酶试验:Y27632干预前后的成对数据的统计结果为,对照组(37.7±8.3)对(38.4±8.2),sema3A-Fc组(24.3±6.7)对(35.3±8.7),8-溴-cAMP组(32.6±7.3)对(32.4±7.6) , 8-溴-cGMP组(19.3±5.5)对(29.9±6.2) , KT5720组(17.5±5.3)对(26.5±5.7),KT5823组(29.9±6.2)对(36.9±7.7)。单因素方差分析示组间有明显差异(P =0.012)。表明ROCK激酶抑制剂Y27632能明显抑制sema3A-Fc对OPCs细胞迁移的作用,间接证明Sema3A激活了OPCs细胞内的Rho-ROCK信号通路。
     7、在去除Sema3A-Fc情况,单独应用8-Br-cGMP、8-Br-cAMP、KT5720、KT5823和Y27632并不能改变OPCs原有的迁移能力。结果为:8-溴-cAMP组(36.8±7.1),8-溴-cGMP组(35.1±7.4),KT5720组(37.5±8.1),KT5823组(34.9±7.6),均与对照组(37.7±8.3)无明显差异(n=15, P>0.05)。但与sema3A-Fc存在时的数据进行配对比较则有明显差异(P<0.05)。
     全文结论
     1、通过二次接种和差速振荡法,成功分离出高纯度少突胶质细胞祖细胞,传代及分化培养,通过免疫组化法鉴定了细胞类型。脂质体法成功导入EGFP基因,成为可示踪的少突胶质细胞祖细胞。
     2、成功构建了pIGsema3A-Fc真核表达载体,通过脂质体法成功转染COS-7细胞,表达出具有生物活性的sema3A融合蛋白。
     3、Sema3A-Fc对体外培养的OPCs细胞迁移具有排斥作用;Sema3A-Fc对OPCs的排斥作用可能是通过激活cGMP-PKG和Rho-ROCK信号通路介导的,而cAMP-PKA信号通路没有直接参于该效应,但对该效应具有明显的负向调节作用。
     4、Sema3A-Fc诱导OPCs细胞迁移的信号转导机制是非常复杂的,cGMP-PKG和Rho-ROCK信号通路只是其中的一小部分,可能还存在其它的作用机制,尚需要更深入的研究。
BACKGROUND
     Oligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS) that ensheath axonal projections, thereby facilitating saltatory conduction. However, OLs are particularly susceptible to damage factors resulting in dying apoptotic or necrotic deaths and decreased myelination and attenuated regenerative fiber tracts. Axonal demyelination is a consistent pathological characteristic of the traumatically injured spinal cord. Unfortunately, extensive remyelination does not occur spontaneously. This may be caused, at least in part, by loss of oligodendrocytes and a subsequent lack of oligodendrocyte progenitor cells migration to replace the lost cells.
     Growth factors and cytokines controlling OL development are well documented [e.g. glial growth factor (GGF), plateletderived growth factor(PDGF), basic fibroblast growth factor(bFGF), but much less is known about factors influencing the migration of progenitors into discrete regions of the brain and spinal cord. Because neurons and OLs interact intimately throughout their development, molecules controlling neural guidance and process collapse could possibly also affect OLs.
     One such candidate system is the Semaphorin3A(Sema3A) defined by an amino terminal‘sema’domain and its interacting partners, the neuropilin-1 (NP-1)/plexin receptors. Recently, several protien kinases (e.g. PKA, PKG, ROCK) were found to regulate the migration and process elongation of developing neural cells. Still, little is known about the role that these moleculars play in the process of OPCs migration guidanced by Sema3A .
     In this study, the OPCs were separated by improved agitation method and purified by differential adhesion. We construct an eukaryotic expression recombinant plasmid named pIGsema3A-Fc which were transfected to COS-7 cells in order to gain Sema3A-Fc fusion protein. Then, use millicell-PCF cell chamber to observe influence of sema3A-Fc moleculars on the migration of OPCs and to study its signal transduction pathway.
     OBJECTIVE
     1. To observe influence of sema3A-Fc moleculars on the migration of oligodendrocyte progenitor cells.
     2. To study the role of cAMP-PKA, cGMP-PKG and RhoA-ROCK signal pathway play in the process of OPCs migration guidanced by Sema3A-Fc.
     3. To explore the effects of Sema3A-Fc molecule on guiding oligodendrocyte progenitor cells migration and its signal transduction pathway.
     METHODS
     1. Culture and identification of Oligodendrocyte progenitor cells.
     The tissue of subventricular zone( SVZ) was disconnected from neonatal rats under anatomical microscope and was culture in high-glucose DMEM medium(with 10% calf serum and 10% fetal bovine serum). The OPCs which grew on the surface of astrocytes monolayer, were isolated by a technique of differential revolutions shaking skill. Then the OPCs were further purified by differential adhesion and cultured in the DMEM/F12 medium adding growth factors (bFGF, B27 and PDGF-AA). In order to promote the cells differentiate, the OPCs were moved into serum medium or serum-free medium, respectively. The oligodendrocyte lineage cells were identified by indirect immunofluorescent staining with different cell surface markers (A2B5, GFAP or CNPase). The gene of enhanced green fluorescent protein(EGFP) was transfected into the OPCs with lipofectamine reagent.
     2. Prepare COS-7 cells expressing sema3A-Fc fusion proten
     The pIGsema3A-Fc recombinant vector was constructed by gene cloning technique And transfected into COS-7cells with lipofectamine reagent. The plasmids were identified by incision enzyme HindⅢand BamHⅠand DNA sequencing. The expression of Sema3A-Fc fusion proten was assessed by immunohistochemistry and Western blotting with the anti-IgG1Fc antibody. Then, detect NP-1 on the OPCs by Immunofluorescent staining.
     3. To study the effects of Sema3A-Fc on OPCs migration
     Use millicell-PCF cell culture chamber to observe influence of sema3A-Fc moleculars on the migration of oligodendrocyte progenitor cells. First, we cultured COS-7 cells which secreting sema3A-Fc fusion proten on the underlayer of the chamber in high-glucose DMEM medium(with 10% calf serum and 10% fetal bovine serum). Then, the OPCs(2×10~4/well)were inoculated culture on the up-layer of the chamber for 12 hours. Finally, the cells had migrated through the PCF membrane were fixed, stained and counted. The pure medium and COS-7 culture supernatant served as control groups.
     4. Detect the Catalytic subunit of PKA and PKG: use anti-PKA alpha Catalytic subunit antibody and anti-PKG1 beta antibody to assay the contents of PKA and PKG by indirect immunofluorescent staining in the same condition. The photos to be analysised with Image-Pro Plus 5.1 software system.
     5. Activation essay of PKA and PKG: The OPCs were treated with 8-Br-cAMP (final concentration: 50μM) or 8-Br-cGMP (final concentration: 500μM) in the above migration chamber system (step 3) alternatively, to observe the variance of OPCs migration status.
     6. Inhibition essay of PKA and PKG: The OPCs were treated with KT5823 (final concentration:1μM) or KT5720 (final concentration:10μM) in the above migration chamber system (step 3) alternatively, to observe the variance of OPCs migration status.
     7. Inhibition essay of ROCK: The OPCs were treated with the ROCK inhibitor Y27632 (final concentration: 10μM) in the above migration chamber system (step 3) alternatively, to observe the variance of OPCs migration status.
     RESULTS
     1. OPCs were successfully isolated and cultured in vitro. The purified OPCs were identified by immunofluorescence of A2B5 and the purity quotient was up to 99%. These cells could differentiated into GFAP and CNPase marker positive cells.The reproduction active of OPCs keep over one month later in serial subcultivation. The cells modified by EGFP gene showed green fluorescence and reproductive activity.
     2. The pIGsema3A-Fc recombinant vector was successfully constructed by gene cloning technique. The outcome of DNA sequencing indicated that the open-reading frame of Sema3A-Fc gene was coincident with what we had expected. And transfected into COS-7 cells with lipofectamine reagent. The Sema3A-Fc fusion protein expression in COS-7 cells was confirmed by immunohistochemistry and Western blotting and the fusion protein--Sema3A-Fc was proved to have the biologic activity and could combinate to the membrane receptor (NP-1) on the OPCs.
     3. Effects of Sema3A-Fc on OPCs migration
     The cell number of Sema3A-Fc guiding OPCs migration was (24.3±6.7). Contrasting with the two control groups: pure medium control group (38.4±7.9) and COS-7 cells’culture supernatant control group(37.7±8.3), the outcome indicated that Sema3A-Fc significantly reduced the OPCs migration number (n=15, p<0.01) .
     4. Activation essay of PKA and PKG: The migrated cell number of 8-Br-cAMP group was (32.6±7.2), that of 8-Br-cGMP group was (19.3±5.5). (n=15, p<0.05 vs control).
     5. Inhibition essay of PKA and PKG: The migrated cell number of KT5823 group was (36.9±7.7), that of KT5720 group was (17.5±5.3). (n=15, p<0.05 vs control).
     6. Inhibition essay of ROCK: Under the interference of ROCK inhibitor Y27632, the migrated cell number of 8-Br-cAMP group was (32.4±7.6), that of 8-Br-cGMP group, KT5823 group and KT5720 was (29.9±6.2, 36.9±7.7, 26.5±5.7) respectively.
     7. assay the contents of PKA and PKG: The sema3A-Fc could significantly promote the PKG contents in the kytoplasm and growth cone of OPCs (p<0.05 vs control); but there was no significant change of PKA activity when sema3A-Fc was administered to OPCs compared with the control group.
     CONCLUSIONS
     1. The high purified OPC line can be successfully isolated, cultured and identified by immunofluorescence in vitro, then be successfully modified by EGFP gene showed green fluorescence.
     2. The pIGsema3A-Fc recombinant vector was successfully constructed by gene cloning technique. After it was transfected into COS-7cells, the Sema3A-Fc fusion protein expression was confirmed by immunohistochemistry and Western blotting and the fusion Sema3A-Fc protein has shown the biologic activity.
     3. The Sema3A-Fc moleculars acts as a repellent for oligodendrocyte progenitor cells (OPCs) in vitro. Not the cAMP-PKA but the cGMP-PKG and Rho-ROCK signal transduction pathway in OPCs acts as a mediator of semaphorin signals.
     4. As a guidance clue for OPCs migration, the Sema3A-Fc signal transduction pathway is very complicated. It is relative specificity that Sema3A-Fc moleculars repel oligodendrocyte progenitor cells (OPCs) in vitro. The cGMP-PKG and Rho-ROCK signal pathway maybe is a small part of it. Thus further research would be demanded.
引文
1. De FC, Bribian A. The molecular orchestra of the migration of oligodendrocyte precursors during development. Brain Res Rev. 2005(49): 227–241.
    2. Kessaris N, Forgarty M, Iannarelli P, et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci, 2006(9): 173–179.
    3. Baumann N, Phamdinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev, 2001(81):871–927.
    4. Woodruff RH, Tekki KN, Stiles CD, et al. Oligodendrocyte development in the spinal cord and telencephalon: common themes and new perspectives. Int J Dev Neurosci, 2001(19):379–385.
    5. Miller RH. Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol, 2002(67):451–467.
    6. Rowitch DH. Glial specification in the vertebrate neural tube. Nat Rev Neurosci, 2004(5): 409–419.
    7. Jarjour AA, Kennedy TE, et al. Oligodendrocyte precursors on the move: mechanisms directing migration. Neuroscientist 2004(10): 99–105.
    8. Le BB, Chatzopoulou E, Heydon K, et al. Oligodendrocyte development in the embryonic brain: the contribution of the plp lineage. Int J Dev Biol, 2005 (49): 209–220.
    9. Sugimoto Y, Taniguchi M, Yagi T, et al. Guidance of glial precursor cell migration by secreted cues in the developing optic nerve. Development 2001, 128, 3321-3330.
    10. Cohen RI, Rottkamp DM, Maric D, et al.A role for semaphorins and neuropilins in oligodendrocyte guidance. J Neurochem, 2003, 85:1262–1278.
    11. Spassky N,Castro F,Le Bras B,et al. Directional Guidance of Oligodendroglial Migration by Class 3 Semaphorins and Netrin-1. The Journal of Neuroscience, July 15, 2002, 22(14):5992–6004
    12.蔡文琴,李海标.发育神经生物学[M].北京:科学出版社,1999, 142-171.
    13. Cohen RI, Rottkamp DM, Maric D, et al.A role for semaphorins and neuropilins in oligodendrocyte guidance[J]. J Neurochem, 2003, 85:1262–1278.
    14. Goldman S. Stem and progenitor cell-based therapy of the human central nervous system[J].Nat Biotechnol. 2005, 23(7):862-71.
    15. Jingyi S, Adrian M, Ben AB.Purification and Characterization of Adult Oligodendrocyte Precursor Cells from the Rat Optic Nerve. Journal Neurosci,1998, 18(12):4627-4636
    16.孙燕,夏春林,孙茂民,等.新生大鼠大脑O-2A细胞系的分离纯化和双向分化培养[J].苏州大学学报(医学版), 2003,23 (3):307
    17.殷红兵,丁爱石,吴卫平等.新生大鼠高纯度少突胶质前体细胞系细胞的培养与鉴定:改良振荡分离纯化法的特点[J].中国临床康复,2005, 9(17):36
    18. Jarjour AA, Manitt C, Moore SW, et al. Netrin-1 Is a Chemorepellent for Oligodendrocyte Precursor Cells in the Embryonic Spinal Cord[J]. J Neurosci, 2003, 23(9):3735–3744.
    19. Joel M L, Richard R, James W. The oligodendrocyte precursor cell in health and disease. TRENDS Neurosciences. 2001;24 (1):39-47
    20. Armstrong RC. Isolation and Characterization of Immature Oligodendrocyte Lineage Cells. Methods, 1998, 16:282–292.
    21. Armstrong RC, Dorn HH, Kufta CV, et al. Preoligodendrocytes from adult human CNS [J]. J Neurosci, 1992(12):1538~1547.
    22. Levison S W, Druckman S K, Young G M, et al. Neural stem cells in the subventricular zone are a source of astrocytes and oligodendrocytes, but not microglia[J]. Dev-Neurosci. 2003; 25(2-4): 184-196.
    23. Dean GT, Yasuhito MT, Martin CR. Long-Term Culture of Purified Postnatal Oligodendrocyte Precursor Cells: Evidence for an Intrinsic Maturation Program that Plays out over Months. Journal of Cell Biology, 2000 , 148 (5): 971-984
    24. Allen RE, Rankin LL. Regulation of satellite cells during skeletal muscle growth and development [J]. Proc SocExp Biol Med, 1990(194):81~86.
    25. Yang Z, Watanabe M, Nishiyama A.Optimization of oligodendrocyte progenitor cell culture method for enhanced survival. J Neurosci Methods. 2005 Jun 20
    26. Dean GT, Yasuhito M. Long-Term Culture of Purified Postnatal Oligodendrocyte Precursor Cells:Evidence for an Intrinsic Maturation Program that Plays out over Months. J Cell Biology, 2000,148(5):971–984
    27. Noble M, Murray K, Stroobant P. Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell [J] . Nature, 1988(333):560~562.
    28. Yasuda T, Grinspan J, Stern J, et al. Apoptosis occurs in the oligodendroglial lineage and is prevented by basic fibroblast growth factor [J]. J Neurosci Res,1995(40):306~317.
    29. Yang Z, Watanabe M, Nishiyama A.Optimization of oligodendrocyte progenitor cell culture method for enhanced survival. J Neurosci Methods. 2005 Jun 20
    30. Louis JC, Magal E, Muir D, et al. CG-4, a new bipotential glial cell line from rat brain is capable of differentiating in vitro into either mature oligodendrocytes or type-2 astrocytes [J] . J Neurosci Res, 1992(31):193~204.
    31. Lee KH, Yoon do H, Park YG, et al. Effects of glial transplantation on functional recovery following acute spinal cord injury[J]. J Neurotrauma. 2005;22(5):575-589.
    1. Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones[J]. Cell, 1993, 75 (2): 217 -227.
    2. Spassky N, de Castro F, Le Bras B,et al. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1[J]. J Neurosci. 2002,22(14):5992-6004
    3. Spassky N, de Castro F, Le Bras B,et al. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1[J]. J Neurosci. 2002,22(14):5992-6004
    4. Vieira JM, Schwarz Q, Ruhrberg C.Role of the neuropilin ligands VEGF164 and SEMA3A in neuronal and vascular patterning in the mouse. Novartis Found Symp. 2007;283:230-5
    5. An Horiuchi M, Tomooka Y.oligodendroglial progenitor cell line FBD-102b possibly secretes a radial glia-inducing factor. Neurosci Res. 2006,56(2):213-9.
    6. Lepelletier Y, Smaniotto S, Hadj-Slimane R, Control of human thymocyte migration by Neuropilin-1/Semaphorin-3A-mediated interactions[J]. Proc Natl Acad Sci U S A. 2007,104(13): 5545-5550.
    7. Williams A, Piaton G, Aigrot MS, et al. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? [J]. Brain. 2007, 30(Pt 10):2554-2565.
    8. Hashimoto M, Ino H, Koda M, et al. Regulation of semaphorin 3A expression in neurons of the rat spinal cord and cerebral cortex after transection injury[J]. Acta Neuropathol (Berl). 2004, 7(3): 250-256.
    9.萨姆布鲁克,拉塞尔.黄培堂,等译.分子克隆实验指南.2002北京:科学出版社.
    10.姜泊,张亚历,周殿元.分子生物学常用实验方法.1996北京:人民军医出版社.
    11. Britta J. Eickholt, Rachel Morrow, Frank SWalsh, et al. Structural Features of Collapsin Required for Biological Activity and Distribution of Binding Sites in the Developing Chick[J]. Molecular and Cellular Neuroscience.1997, 9:358–371
    12. (美)奥斯伯等主编,马学军,舒跃龙,等译校.精编分子生物学实验指南.2005北京:科学出版社.
    13. Isaka Y, Akagi Y, Ando Y, et al . Gene therapy by transforming growth factor-βreceptor-IgGFc chimera suppressed extracellular matrix allumulation in experimental glomerulonephritis. Kidney International, 1999, 55(2):465-475.
    14.李圣青,李焕章,杨乔欣,等.TGF-βRⅡ/Fc融合蛋白的纯化及其生物学活性鉴定.细胞与分子免疫学杂志.2003,19(4):400-405.
    15.孙凯,金伯泉,孙忱,等.人血小板/T细胞活化抗原PT1/Ig融合蛋白表达载体的构建、表达及鉴定.细胞与分子免疫学杂志,1998,18(1):1-5.
    16. Damien R, Ve′ronique R, Emmanuelle C,et al. Isolation and Expression Pattern of Human Unc-33-Like Phosphoprotein 6/Collapsin Response Mediator Protein 5 (Ulip6/CRMP5): Coexistence with Ulip2/CRMP2 in Sema3A Sensitive Oligodendrocytes. Journal Neuroscience, 2001, 21(18):7203–7214
    17. Püschel AW.GTPases in semaphorin signaling. Adv Exp Med Biol.2007;600:12-23.
    18. Britta J. Eickholt, Rachel Morrow, Frank SWalsh, et al. Structural Features of Collapsin Required for Biological Activity and Distribution of Binding Sites in the Developing Chick[J]. Molecular and Cellular Neuroscience.1997, 9:358–371.
    19. Nakamura H, Isaka Y, Tsujie M, et al.Electroporation-mediated PDGF receptor-IgG chimera gene transfer ameliorates experimental glomerulonephritis.Kidney Int. 2001;59(6):2134-2145.
    20. Okada A, Tominaga M, Horiuchi M, et al. Plexin-A4 is expressed in oligodendrocyte precursor cells and acts as a mediator of semaphorin signals. Biochem Biophys Res Commun. 2007;352(1):158-63.
    21. Suto F, Ito K, Uemura M, et al. Plexin-A4 mediates axon-repulsive activities of both secreted and transmembrane semaphorins and plays roles in nerve fiber guidance. J Neurosci. 2005( 25):3628–3637.
    22.王艳艳,白云,李茂全,等.人OX402Fc分子的构建、真核表达及活性研究.免疫学杂志.2005,21(1):13-16
    23.马震宇,周迎会,陈永井,等.人4IgB7-H3-Fc融合蛋白的表达及其生物学活性的研究.现代免疫学. 2007, 7(2):109~114
    1. Rowitch DH. Glial specification in the vertebrate neural tube. Nat Rev Neurosci, 2004(5): 409–419.
    2. Jarjour AA, Kennedy TE, et al. Oligodendrocyte precursors on the move: mechanisms directing migration. Neuroscientist 2004(10): 99–105.
    3. Le BB, Chatzopoulou E, Heydon K, et al. Oligodendrocyte development in the embryonic brain: the contribution of the plp lineage. Int J Dev Biol, 2005 (49): 209–220.
    4.蔡文琴,李海标.发育神经生物学[M].北京:科学出版社,1999, 142-171.
    5. Ivanova A, Nakahira E, Kagawa T, et al. Evidence for a second wave of oligodendrogenesis in the postnatal cerebral cortex of the mouse. J Neurosci Res.2003, 73:581–592.
    6. Dontchev VD, Letourneau PC. Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility. J Neurosci,2002, 22:6659-6669
    7. Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones[J]. Cell, 1993, 75 (2): 217 -227.
    8. Spassky N, de Castro F, Le Bras B,et al. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1[J]. J Neurosci. 2002,22(14):5992-6004
    9. Vieira JM, Schwarz Q, Ruhrberg C.Role of the neuropilin ligands VEGF164 and SEMA3A in neuronal and vascular patterning in the mouse. Novartis Found Symp. 2007;283:230-5
    10. Luca T, Paolo MC. To move or not to move? EMBO reports,2004, 5: 356-361.
    11. Muller BK (1999) Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 22:351-388
    12. Cahoon–Metzger AM, Wang G, Scott SA (2001) Contribution of BDNF-mediated inhibition in patterning avian skin innervation. Dev Biol 232:246-254
    13. Song H-j, Ming G-l, He Z, Lehmann M, McKerracher L, Tessier–Lavigne M, Poo M-m (1998) Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281:1515-1518
    14. Song H-j, Poo M-m (1999) Signal transduction underlying growth cone guidance bydiffusible factors. Curr Opin Neurobiol 9:355-363
    15. Knipper M, Beck A, Rylett J, Breer H (1993) Neurotrophin-induced cAMP and IP3 responses in PC12 cells. FEBS Lett 14:147-152
    16. Cai D, Shen Y, De Bellard M, Tang S, Filbin MT (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22:89-101
    17. Zhang Hl, Singer RH, Bassell GJ (1999) Neurotrophin regulation of beta-actin mRNA and protein localization within growth cones. J Cell Biol 147:59-70
    18. Dontchev VD, Letourneau PC. Growth cones integrate signaling from multiple guidance cues.J Histochem Cytochem. 2003,51(4):435-44.
    19. Silveira LA, Smith JL, Tan JL, Spudich JA (1998) MLCK-A, an unconventional myosin light chain kinase from Dictyostelium is activated by a cGMP-dependent pathway. Proc Natl Acad Sci USA 95:13000-13005
    20. Vo NK, Gettemy JM, Coghlan VM (1998) Identification of cGMP-dependent protein kinase anchoring proteins (GKAPs). Biochem Biophys Res Commun 246:831-835
    21. Hoffmann F (2000) Rising behind NO: cGMP-dependent protein kinases. J Cell Sci 113:1671-1676
    22. Hidaka H, Kobayashi R (1992) Pharmacology of protein kinase inhibitors. Annu Rev Pharmacol Toxicol 32:377-397
    23. Firestein BL, Bredt DS (1998) Regulation of sensory neuron precursor proliferation by cyclic GMP-dependent protein kinase. J Neurochem 71:1846-1853
    24. Atsumasa O, Mitsutoshi T, Makoto H, et al. Plexin-A4 is expressed in oligodendrocyte precursor cells and acts as a mediator of semaphorin signals. Biochemical and Biophysical Research Communications. 2007,352(1):158-163
    25. Suto F, Ito K, Uemura M, et al. Plexin-A4 mediates axon-repulsive activities of both secreted and transmembrane semaphorins and plays roles in nerve fiber guidance. J Neurosci. 2005( 25):3628–3637.
    26. Takahashi T, Strittmater SM. Plexin-A1 auto inhibition by the plexin Sema domain[J]. Neuron,2001,29 (2):429-439.
    27. Dickson BJ. Rho GTPases in growth cone guidance[ J ]. Curr Opin Neurobiol,2001,11 (1):103-110.
    28. Linseman DA, Loucks FA.Diverse roles of Rho family GTPases in neuronal development, survival, and death.Front Biosci. 2008;13:657-676.
    29. Kozma R, Sarner S, Ahmed S, Lim L (1997) Rho family GTPases and neuronal growth cone remodeling: relationship between increased complexity induced by CDC42Hs, Rac1 and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 17:1201-1211
    30. Kranenburg O, Poland M, van Horck FP, Dreschel D, Hall A, Moolenaar WH (1999) Activation of RhoA by lysophosphatidic acid and galpha 12/13 subunits in neuronal cells: induction of neurite retraction. Mol Biol Cell 10:1851-1857.
    31. Nakamura F, Kalb RG, Strittmatter SM (2000) Molecular basis of semaphorin-mediated axon guidance. J Neurobiol 44:219-229
    32. Wahl S, Barth H, Ciossek T, Aktories K, Muller BK (2000) Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol 149:263-270
    33. Jones NP, Katan M. Role of phospholipase Cgamma1 in cell spreading requires association with a beta-Pix/GIT1-containing complex, leading to activation of Cdc42 and Rac1. Mol Cell Biol. 2007;27(16):5790-5805.
    34. Castellani V, Rougon G. Control of semaphorin signaling[J]. Curr Opin Neurobiol, 2002,12 (5):532-541.
    35. Katoh K, Kano Y, Amamo M, Onishi H, Kaibuchi K, Fujiwara K (2001) Rho-kinase-mediated contraction of isolated stress fibers. J Cell Biol 153:569-583
    36. Turner LJ, Nicholls S, Hall A. The activity of the plexin-A1 receptor is regulated by Rac. J Biol Chem. 2004;279(32):33199-205.
    37. Hu H, Marton TF, Goodman CS. Plexin B mediates axon guidance enhancing RhoA signaling[J]. Neuron, 2001,32 (1):39 -51.
    38. Aizawa H, Wakatsuki S, Ishii A, et al. Phosphorylation of cofilin by lim-kinase is necessary for semaphorin 3A-induced growth cone collapse[J]. Nat Neurosci,2001,4 (4):367-373.
    39. Yamashita N, Morita A, Uchida Y, et al. Regulation of spine development by semaphorin3A through cyclin-dependent kinase 5 phosphorylation of collapsin response mediator protein 1. J Neurosci. 2007;27(46):12546-54.
    40. Fukada M, Watakabe I, Yuasa-Kawada J, et al. Molecular characterization of CRMP5, a novel member of the collapsin response mediator protein family[J]. J Biol Chem, 2000, 275 (48 ): 37957 -37965.
    41. TamuraM, Nakao H, Yoshizaki H, et al. Development of specific Rho-kinase inhibitorsand their clinical application. Biochim Biophys Acta, 2005, 1754:245 - 252.
    42. Davies SR, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95-105
    43. Giger RJ, Wolfer DP, De Wit GMJ, Verhaagen J (1996) Anatomy of rat semaphorin III/collapsin-1 mRNA expression and relationship to developing nerve tracts during neuroembryogenesis. J Comp Neurol 375:378-392
    44. Shepherd I, Luo Y, Raper JA, Chang S (1996) The distribution of collapsin-1 mRNA in the developing chick nervous system. Dev Biol 173:185-199
    45. Spencer T.Fibin MT.A role for cAMP in regeneration of the adult mammalian CNS.J Anat,2004,204(1):49-55
    46. Filbrin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS.Nature Rev.Neurosoi,2003,4(9):703-713.
    47. Neumann S,Bradke F,Tessier-LaviEne M,et al.Regeneration of Sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation.Neuron,2002,34(6):885-893
    48. Spassky N, de Castro F, Le Bras B,et al. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1[J]. J Neurosci. 2002,22(14):5992-6004
    49. Hashimoto M, Ino H, Koda M, et al. Regulation of semaphorin 3A expression in neurons of the rat spinal cord and cerebral cortex after transection injury[J]. Acta Neuropathol (Berl). 2004, 7(3): 250-6.
    50. Williams A, Piaton G, Aigrot MS, et al. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? [J]. Brain. 2007, 30(Pt 10):2554-2565.
    51. Anderson RB, Bergner AJ, Taniguchi M, et al. Effects of different regions of the developing gut on the migration of enteric neural crest-derived cells: a role for Sema3A, but not Sema3F. Dev Biol. 2007; 305(1):287-99.
    52. Turney SG, Bridgman PC. Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity. Nat Neurosci. 2005,8(6):717-9.
    53. Chen G, Jian, Ming J,et al. Semaphorin-3A guides radial migration of cortical neurons during development. Nature neuroscience, 2008, 11(1):36-44
    54. Okada A, Tominaga M, Horiuchi M, et al. Plexin-A4 is expressed in oligodendrocyte precursor cells and acts as a mediator of semaphorin signals. Biochem Biophys ResCommun. 2007;352(1):158-63.
    55. Cohen RI, Rottkamp DM, Maric D, et al. A role for semaphorins and neuropilins in oligodendrocyte guidance. J Neurochem. 2003; 85(5):1262-78.
    56. Schwarz Q, Vieira JM, Howard B, et al. Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells. Development. 2008; 135(9):1605-13.
    57. Wen Z, Zheng JQ.. Directional guidance of nerve growth cones. Curr Opin Neurobiol. 2006;16(1):52-58.
    1. de Wit J, Verhaagen J. Role of semaphorins in the adult nervous system[J]. Prog Neurobiol, 2003, 71 (2-3):249-267.
    2. Kolodkin AL, Matthes DJ, O’Connor TP, et al. FasciclinⅣ: sequence, expression, and function during growth cone guidance in the grass hopper embryo[J]. Neuron,1992, 9(5):831-845.
    3. Semophorin Nomenclature Committee. Unified nomenclature for the semophorins/ collapsins[J]. Cell, 1999, 97 (5):551 -552.
    4. Kolodkin AL, Matthes DJ, Goodman CS. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules[J]. Cell,1993,75 (7):1389-1399.
    5. Puschel AW, Adams RH, Betz H. The sensory intervation of the mouse spinal cord may be patterned by differential expression of and differential responsiveness to semaphorins[J]. Mol Cell Neurosci, 1996, 7 (5) : 419 -431.
    6. Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones[J]. Cell, 1993, 75 (2): 217 -227.
    7. Nakamura F, Kalb RG, Strittmatter SM. Molecular basis of semaphoring-mediated axon guidance[J]. JNeurobiol, 2000,44 (2):219 -229.
    8. Song H, Ming G, He Z, et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides [J ]. Science, 1998, 281 (5382) : 1515 -1518.
    9. Hall KT, Boumsell L, Schultze JL, et al. Human CD 100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation [ J ]. Proc Natl Acad Sci USA, 1996, 93 ( 21 ) : 11780 -11785.
    10. Goshima Y, Ito T, Sasaki Y, et al. Semaphorins as signals for cell repulsion and invasion[J]. J Clin Invest,2002,109 (8):993-998.
    11. Raper JA. Semaphorins and their receptors in vertebrates and invertebrates[J]. Curr Opin Neurobiol, 2000,10 (1):88 -94.
    12. Pasterkamp RJ, Kolodkin AL. Semaphorins junction: making tracks Toward neural connectivity[J]. Curr Opin Neurobiol,2003,13 (1): 79-89.
    13. He Z, Tessier-LavigneM. Neuropilin is a receptor for the axonal chemorepellent semaphorinⅢ[J]. Cell, 1997, 90 (4):739-751.
    14. Chen H, He Z, Bagri A, et al. Semaphorin-neuropilin interactions underlying sympathetic axon responses to classⅢsemaphorins[J]. Neuron,1998,21 (6):1283-1290.
    15. Takahashi T, Fournier A, Nakamura F, et al. Plexin-neuropilin-1 complexes form functional semaphoring-3A receptors[J]. Cell, 1999, 99 (1): 59 -69.
    16. Nakamura F, Tanaka M, Takahashi T, et al. Neuropilin-1 extracellular domains mediate semaphorin D /Ⅲinduced growth cone collapse[J ]. Neuron,1998,21 (5):1093-1100.
    17. Tamagnone L,Comoglio PM. Signalling by semaphorin receptor cell guidance and beyond[J]. Trends Cell Biol,2000,10 (9): 377 -383.
    18. Grunwald IC, Klein R. Axon guidance: receptor complexes and signaling mechanisms[J]. Curr Opin Neurobiol,2002,12 (3): 250 -259.
    19. Tamagnone L, Artigiani S, Chen H, et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates[J]. Cell,1999,99 (1):71-80.
    20. Rohm B, Ottemeyer A, Lohrum M, et al. Plexin/neuropilin complexes mediate repulsion by the signal semaphorin3A [ J ]. Mech Dev, 2000,93 (1 -2):95 -104.
    21. Winberg ML, Tamagnone L, Bai J, et al. The transmembrane protein Off-track associates with Plexins and functions downstream of Semaphorin signaling during axon guidance. Neuron. 2001; 32(1):53-62.
    22. Castellani V. The function of neuropilin/L1 complex. Adv Exp Med Biol. 2002;515:91-102. Review.
    23. Castellani V, Falk J, Rougon G. Semaphorin3A-induced receptor endocytosis during axon guidance responses is mediated by L1 CAM. Mol Cell Neurosci. 2004;26(1):89-100.
    24. Mire E, Thomasset N, Jakeman LB,et al. Modulating Sema3A signal with a L1 mimetic peptide is not sufficient to promote motor recovery and axon regeneration after spinalcord injury. Mol Cell Neurosci. 2008 ;37(2):222-235.
    25. Conrotto P, Valdembri D, Corso S, et al. Epub 2005 Jan 4.Sema4D inducesangiogenesis through Met recruitment by PlexinB1. Blood. 2005;105(11):4321-4329.
    26. Kumanogoh A, Kikutani H. Biological functions and signaling of a transmembranesemaphorin, CD100/Sema4D. Cell Mol Life Sci. 2004;61(3):292-300. Review.
    27. Moretti S, Procopio A, Boemi M, et al. Neuronal semaphorins regulate a primaryimmune response. Curr Neurovasc Res. 2006;3(4):295-305. Review.
    28. Kumanogoh A, Marukawa S, Suzuki K, et al. Class IV semaphorin Sema4A enhancesT-cell activation and interacts with Tim-2.Nature. 2002; 419(6907):629-633.
    29. Liu BP, Strittmatter SM. Semaphorin-mediated axonal guidance via Rho-related Gproteins[J]. Curr Opin Neurobiol,2001,13 (5) : 619 -626.
    30. Takahashi T, Strittmater SM. Plexin-A1 auto inhibition by the plexin Sema domain[J]Neuron,2001,29 (2):429-439.
    31. Dickson BJ. Rho GTPases in growth cone guidance[ J ]. Curr Opin Neurobiol,2001,11(1):103-110.
    32. Linseman DA, Loucks FA.Diverse roles of Rho family GTPases in neuronadevelopment, survival, and death.Front Biosci. 2008;13:657-676.
    33. Jones NP, Katan M. Role of phospholipase Cgamma1 in cell spreading requiresassociation with a beta-Pix/GIT1-containing complex, leading to activation of Cdc42and Rac1. Mol Cell Biol. 2007;27(16):5790-5805.
    34. Castellani V, Rougon G. Control of semaphorin signaling[J]. Curr Opin Neurobiol2002,12 (5):532-541.
    35. Hu H, Marton TF, Goodman CS. Plexin B mediates axon guidance enhancing RhoAsignaling[J]. Neuron, 2001,32 (1):39 -51.
    36. Dong JM, Leung T, Manser E, Lim L (1998) CAMP-induced morphological changesare counteracted by the activated RhoA small GTPase and the Rho kinase ROKinase. JBiol Chem 273:22554-22562
    37. Essler M, Staddon JM, Weber PC, Aepfelbacher M (2000) Cyclic AMP blocks bacerialipopolysaccharide-induced myosin light chain phosphorylation in endothelial cellsthrough inhibition of Rho/Rho kinase signaling. J Immunol 164:6543-6549
    38. Lang P, Gesbert F, Delespine–Carmagnat M, Stancou R, Pouchelet M, Bertoglio J(1996) Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J 15:510-519
    39. Aspenstr?m P, Fransson A, Saras J. Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J. 2004;377(2):327-337.
    40. Gallo G, Letourneau PC (1998) Localized sources of neurotrophins initiate axon collateral sprouting. J Neurosci 18:5403-5414
    41. Dickson BJ (2001) Rho GTPases in growth cone guidance. Curr Opin Neurobiol 11:103-110
    42. Aizawa H, Wakatsuki S, Ishii A, et al. Phosphorylation of cofilin by lim-kinase is necessary for semaphorin 3A-induced growth cone collapse[J]. Nat Neurosci,2001,4 (4):367-373.
    43. Fukada M, Watakabe I, Yuasa-Kawada J, et al. Molecular characterization of CRMP5, a novel member of the collapsin response mediator protein family[J]. J Biol Chem, 2000, 275 (48 ): 37957 -37965.
    44. Arimura N, Inagaki N, Chihara K, et al. Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for separate signaling pathways for growth cone collapse[J]. J Biol Chem, 2000, 275 (31) : 23973 -23980.
    45. Knipper M, Beck A, Rylett J, Breer H (1993) Neurotrophin-induced cAMP and IP3 responses in PC12 cells. FEBS Lett 14:147-152
    46. Cai D, Shen Y, De Bellard M, Tang S, Filbin MT (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22:89-101
    47. Zhang Hl, Singer RH, Bassell GJ (1999) Neurotrophin regulation of beta-actin mRNA and protein localization within growth cones. J Cell Biol 147:59-70
    48. Taniguchi M, Nagao H, Takahashi YK, et al. Distorted odor maps in the olfactory bulb of semaphorin 3A-deficient mice[J].J Neurosci. 2003, 23(4):1390-1397.
    49. Leighton PA, Mitchell KJ, Goodrich LV, et al. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature, 2001,410(6825):174-179.
    50. Pasterkamp RJ, Peschon JJ, Spriggs MK, et al. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature. 2003,424(6947):398-405.
    51. Liu Y, Berndt J, Su F, et al. Semaphorin3D guides retinal axons along the dorsoventral axis of the tectum. J Neurosci,2004, 24(2):310-318.
    52. Sakai JA, Halloran MC. Semaphorin3D guides laterality of retinal ganglion cell projections in zebrafish. Development,2006, 133(6):1035-1044.
    53. An Horiuchi M, Tomooka Y.oligodendroglial progenitor cell line FBD-102b possibly secretes a radial glia-inducing factor. Neurosci Res. 2006,56(2):213-9.
    54. Marín O, Yaron A, Bagri A, et al. Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science. 2001;293(5531):872-875.
    55. Kerjan G, Dolan J, Haumaitre C, et al. The transmembrane semaphorin Sema6A controls cerebellar granule cell migration. Nat Neurosci, 2005, 8(11): 1516-1524.
    56. Novgorodov AS, El-Alwani M, Bielawski J,et al. Activation of sphingosine-1 phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. FASEB J. 2007;21(7):1503-14.
    57. Luca T, Paolo MC. To move or not to move? EMBO reports,2004, 5: 356-361.
    58. Miron VE, Rajasekharan S, Jarjour AA, et al. Simvastatin regulates oligodendroglial process dynamics and survival. Glia. 2007 Jan 15;55(2):130-43
    59. Turner LJ, Nicholls S, Hall A. The activity of the plexin-A1 receptor is regulated by Rac. J Biol Chem. 2004;279(32):33199-205.
    60. Holtmaat AJ, Gorter JA, De Wit J, et al. Transient downregulation of Sema3A mRNA in a rat model for temporal lobe epilepsy. A novel molecular event potentially contributing to mossy fiber sprouting. Exp Neurol. 2003,182(1):142-150.
    61. Shetty AK. Entorhinal axons exhibit sprouting in CA1 subfield of the adult hippocampus in a rat model of temporal lobe epilepsy. Hippocampus. 2002;12(4): 534-542.
    62. Burkhardt C, Müller M, Badde A, et al. Semaphorin4B interacts with the post-synaptic density protein PSD295 /SAP90 and is recruited to synapses through a C-terminal PDZ binding motif. FEBS Letters, 2005, 579(17):3821-3828.
    63. Patel TD, Jackman A, Rice FL, Kucera J, Snider WD (2000) Development of sensory neurons in the absence of NGF/trkA signaling in vivo. Neuron 25:347-357
    64. Tucker KL, Meyer M, Barde YA (2001) Neurotrophins are required for nerve growth during development. Nature Neurosci 4:29-37
    65. de Wit J, Verhaagen J. Role of semaphorins in the adult nervous system. Prog Neurobiol, 2003, 71(2-3): 249-267.
    66. Niclou SP, Franssen EH, Ehlert EM, et al. Meningeal cell-derived semaphorin 3A inhibits neurite outgrowth. Mol Cell Neurosci. 2003;24(4):902-912.
    67. Miron VE, Rajasekharan S, Jarjour AA, et al. Simvastatin regulates oligodendroglial process dynamics and survival. Glia. 2007,55(2):130-43
    68. MoreauFauvarque C, Kumanogoh A, Camand E, et al. The transmembrane Semaphorin Sema4D /CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and up regulated after CNS lesion. J Neurosci, 2003, 23(27) : 9229-9239.
    69. Goldberg JL, Vargas ME, Wang JT, et al. An oligodendrocyte lineage specific Semaphorin, Sema5A, inhibits axon growth by retinal ganglion cells. J Neurosci, 2004, 24(21):4989~4999.
    70. Shirvan A, Shina R, Ziv I, et al. Induction of neuronal apoptosis by Semaphorin3A derived peptide. Brain Res Mol Brain Res. 2000;83(1-2):81-93.
    71. Shirvan A, Kimron M, Holdengreber V, et al. Anti-semaphorin 3A antibodies rescue retinal ganglion cells from cell death following optic nerve axotomy. J Biol Chem. 2002;277(51):49799-49807.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700