胃食管反流病患者食管粘膜claudin4的表达变化及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃食管反流病(Gastroesophageal reflux disease,GERD)包括非糜烂性反流病(non-erosive esophageal reflux disease,NERD)、反流性食管炎(reflux esophagitis,RE)和Barrett食管(Barrett Esophagus ,BE),是危害人们健康的常见疾病,严重者可发展成为食管腺癌。因GERD及其并发Barrett食管和食管腺癌的发病机制尚不明确,从一定程度上影响了对它们的诊断和治疗。Claudin蛋白家族是近年来被发现的穿膜蛋白,是紧密连接最重要的组成部分,维持着紧密连接的特有的屏障功能和栅栏功能。在正常食管粘膜,claudin 3和claudin 4蛋白基本不表达;而在肠化的BE食管上皮细胞和食管腺癌组织中,二者表达明显增高。NERD和RE是我国GERD最主要的2个亚型,然而迄今对claudin 3、4在NERD和RE患者食管粘膜中的表达变化规律及其影响因素尚不清楚,在BE表达增高的信号机制也未见报导。为此,本课题重点进行4方面的研究:1.采用RT-PCR、western blot和免疫组织化学等方法,分别对claudin 3、4在正常食管、NERD、RE和BE粘膜上皮的表达情况进行检测,以此初步探讨其在GERD临床诊断和治疗中的意义;2.采用便携式24h pH监测仪及便携式24 h胆红素监测仪,对NERD和RE患者食管内pH及胆红素实行24h双监测,并用RT-PCR法检测被测食管粘膜内claudin 4 mRNA的表达变化,以此探讨胃酸和胆汁酸反流与食管粘膜claudin 4表达的联系;3.采用MTT法检测胃酸、胆汁酸和TNF-α对小肠癌上皮细胞株活力的影响,以此选定合适的实验条件,再分别采用实时-PCR和激光共聚焦的方法,观察胃酸、胆汁酸和TNF-α对小肠癌上皮细胞株claudin 4mRNA和蛋白表达水平及细胞内分布的直接影响。4.采用p38激酶特异性拮抗剂(SB203580),通过阻断p38激酶活化前后,western blot法检测胃酸、胆汁酸诱导的claudin 4蛋白表达的变化,以此研究p38激酶信号在胃酸和胆汁酸诱导的小肠上皮细胞claudin 4表达变化中的作用。主要结果如下:
     1.对80例GERD患者食管粘膜进行检测,发现claudin 3在正常食管,在NERD和RE的上皮,无论是mRNA,还是蛋白水平,不表达或微弱局灶表达;在肠化型BE上皮,claudin 3明显高表达。claudin 4在正常食管上皮微弱或不表达,而在NERD、RE和BE表达在mRNA和蛋白水平逐渐增强。免疫组化还发现claudin 3、4的着色在NERD和RE粘膜上皮主要在细胞膜;对于BE,二者不仅胞膜,胞浆内也出现阳性着色。
     2.对其中的48例GERD患者进行食管胃酸和胆红素监测,结果发现NERD组以无反流为主, RE组以混合反流为主,二者构成比相差显著;NERD组和RE组在pH<4总时间%、pH<4卧位时间%、酸反流次数、DeMeester积分、abs>0.14卧位时间%和胆汁反流次数等6个参数上存在明显差别(P<0.05);RE组食管粘膜claudin 4 mRNA的含量显著高于NERD。单独酸反流、单独胆汁反流和混合反流组claudin 4 mRNA均显著高于无反流组(P<0.05),单独酸反流和单独胆汁反流之间相差不显著(P>0.005),混合反流组含量最高,显著高于其他各组(P<0.05);GERD患者食管粘膜claudin 4 mRNA的含量与pH<4卧位时间%、酸反流次数,DeMeester积分,以及abs>0.14卧位时间%和胆汁反流次数等5个参数明显相关。
     3. MTT法结果显示pH选取的范围在pH 5.5~7.4,鹅脱氧胆酸(CDCA)50μM~200μM对小肠癌细胞株活力无明显毒性,可以作为合适的研究条件。激光共聚焦结果显示CDCA或盐酸随着作用时间增加和浓度增大, claudin 4 mRNA和蛋白的表达逐步增加;在刺激因素下蛋白表达的增强在HIC细胞内弥漫分布;在表达量和升高的速度上胆汁酸强于胃酸的作用;胆汁酸在pH 6.0的酸性培养基内的作用更高于单独胆汁酸的作用。TNF-α不同时间刺激后,claudin 4 mRNA和蛋白表达无显著变化。
     4.盐酸、CDCA单独或者混合刺激HIC细胞均可引起p38激酶活化,混合刺激活化p38激酶的程度明显高于单独刺激,同时伴有claudin 4蛋白表达的增高,使用p38激酶信号途径特异性拮抗剂SB203580,可以抑制p38激酶活化,同时可以抑制盐酸或胆汁酸单独刺激引起的claudin 4表达的增高,也可以部分抑制盐酸和胆汁酸混合刺激引起的表达增高。
     由上述结果得出以下结论:
     1.提示claudin 4表达的水平和粘膜病变程度密切相关,它表达增高有可能是食管粘膜上皮细胞紧密连接受损伤的标志,易引起粘膜损害的进一步加重;claudin 3是BE理想的诊断标志物和治疗的新靶点,claudin 3作为BE食管标志物的特异性要高于claudin 4。
     2.卧位酸、胆汁反流时间延长,反流的次数增多更易诱发RE,联合反流的效果更加明显。胆汁酸可能和胃酸一样,引起claudin 4的高表达,因而也是独立的食管粘膜损伤因子;胃酸、胆汁酸协同作用,更有致病性。卧位酸、胆汁反流时间和反流次数的增加是引起食管claudin 4表达增高的重要因素。
     3.胆汁酸或/和胃酸可能从基因转录和蛋白表达水平上直接影响barrett食管claudin4的表达,并具有时间和浓度效应。胆汁酸的作用强于胃酸,混合反流效果更加明显。尽管TNF-α未影响claudin 4的表达,但它在barrett食管的作用还需要进一步研究。
     4.胃酸、胆汁酸可能直接引起barrett食管的p38激酶活化,进而正向调节claudin 4蛋白的表达,除了p38激酶信号外,可能还存有其他调控机制参与claudin 4蛋白表达的增高。
Gastro-esophageal reflux disease (GERD), including non-erosive esophageal reflux disease (NERD), reflux esophagitis (RE) and Barrett Esophagus (BE) is a prevalent chronic disease, and could develop into lethal esophageal adenocarcinoma. As the pathogenesis remains unclear, which , to some extent, affects its diagnosis and therapy. Claudins (CLDNs), the recently identified multigene transmembrane protein family, are thought to be the major constituents of tight junctions (TJ), the most apical components of cell sealing complexes responsible for cell–cell adhesion, cell polarity, and control of paracellular ion transport. The expression of claudin 3 and 4 protein were not observed in the esophageal mucosal layers, but signifcantly increased in the epithelial cell of BE and tissue of esophageal adenocarcinoma. Although NERD and RE are the two main sub-types in our country, the changes of their expression and their impacting factors remain unclear, as well as the signal mechanism. Therefore, the following experiments were performed in this study.
     1. By the methods of RT-PCR, western blot and immunohistrochemistry, the expression of claudin 3 and 4 in normal esophageal, NERD, RE and BE were detected , by which we could explore their significance in the diagnosis and therapy of GERD.
     2. With the simultaneous ambulatory 24 hour oesophageal pH monitoring meter and 24h bilirubin monitor meter, pH value and bilirubin concentration in lumina of NERD and RE patients were mornitored. In the meanwhile, by the methods of RT-PCR, the mRNA expression of claudin 4 in the mucous membrane of esophageal was detected.
     3. By the method of MTT, the proliferation of human small intestine carcinoma cell line(HIC) was analyzed. The effects of hydrochloric acid, chenodeoxycholic acid(CDCA) and TNF-αon the cell line were evalued. Based on the above results, the suitable experimental parameters were chosen. The mRNA and protein expression of were investigated by the methods of real time PCR and Laser scanning confocal microscop(LSCM). By which, the effects of the injury factors such as gastric acid, CDCA and TNF-αon claudin 4 expression were investigated.
     4. With the drug tool of p38 kinase specificity antagonist--SB203580, the expression of claudin 4 protein was detected before and after p38 kinase signal activated, which could explore the role of p38 kinase signal in the gastric and bile acid induced claudin 4 protein expression.
     The main results were as followings:
     1. Results of 80 cases of GERD patients showed that claudin 3 did not or mildly express in the mucous membrane of normal esophagus, NERD and RE, but increased signifcantly in BE group.The mRNA and protein expression of claudin 4 was weak in normal esophageal group. While in NERD, RE and BE group, they increased gradually. The results of immunohistochemistry showed that both claudin 3 and claudin 4 positive stain was mainly in the cellular membrane of epithelial cells in NERD and RE group, while in the BE group, the positive stain both in the cellular membrane and cytoplasm.
     2. Results of monitoring gastric acid and bilirubin in 48 cases of GERD patients showed that there were no reflux in most NERD patients, while in RE group was mainly mixture reflux, and the percent of constitutent differed significantly. Significant differences were also observed between NERD and RE groups in the six parameters such as percent of total time the pH<4, percent supine time pH<4, No. of acid reflux episodes, DeMeester score, percent supine time the bilirubin absorbance level≥0.14 and number of bilirubin reflux episodes (p<0.05). The mRNA expression of claudin 4 in RE group was significantly higher than that in NERD group (p<0.05). The mRNA expressions of claudin 4 in the gastric acid reflux alone, bilirubin reflux alone and mixture reflux group were significantly higher than that in no reflux group, respectively (p<0.05), no difference between in the gastric acid reflux alone and in bilirubin reflux alone group. The expression was highest in the mixture reflux group, significantly higher than that in other group (p<0.05). The mRNA expression of claudin 4 in GERD patients was in correlation to percent supine time pH<4,No. of acid reflux episodes,DeMeester score, percent supine time the bilirubin absorbance level≥0.14 and number of bilirubin reflux episodes.
     3. Results of MTT experiments showed that pH value ranged 5.5~7.4 and concertration of CDCA ranged between 50μM~200μM had no significant toxicity on the proliferation of HIC cells, which could be chosen as the suitable experimental parameters. Results of confocal showed that the mRNA and protein expression of claudin 4 increased with the time and concentrations of CDCA and hydrochloric acid. The increasing expression of claudin 4 protein distributed diffusely in the HIC cells in the presence of stimulation. No difference was observed in the mRNA and protein expression of claudin 4 after stimulation of TNF-αin different stimulus duration.
     4. P38 kinase could be actived by either acid hydroc, CDCA alone or the two combination in the HIC cell line. And the amount actived by CDCA with acid hydroc was significant higher than that actived by acid hydroc or CDCA alone. Meanwhile, the expression of claudin 4 inreased significantly. SB203580, as the p38 kinase signal specificity antagonist, inhibited the activation of p38 kinase and the expressions of claudin 4 induced by hydrochloric acid and bile acid alone or both.
     We could draw conclusions from the above results.
     1.The level of claudin 4 expression was closely associated with the severity of pathological changes in the mucous membranes. The high level of claudin 4 expression could be the new marker of the injury of tight conjunction in the mucous membrane. Be the new targets of diagnosis and therapy of BE, The specificity of claudin 4 in the diagnosing BE was lower than that of claudin 3.
     2. With the increasing of supine time and nubmer of reflux of acid and bilirubin ,RE would be more easily induced. And the effect of the combined stimulation was more obvious. Bile acid alone could induce high expression of claudin 4, therefore, which could be the independent factor of injurying esophageal mucous membrane. The synergism effect of gastric acid and bile acid on the claudin 4 expression and pathopoiesis was more obvious.
     3. With time and dose-dependent, bile acid and/or gastric acid could affect the expression of claudin 4 from the level of gene transcription and protein expression. And the effect of bile acid was more stronger than that of gastric acid, the combined reflux the strongest. Although TNF-αhad no effect on the expression of claudin 4, its role on the pathegensis of barrett esophageal need be further studied.
     4. Gastric acid and bile acid could induce the activation of p38 kinase of BE directly and then positively regulate the expression of claudin 4. Besides of p38 kinase signal, there would be other regulatory mechanisms involved in the increasing expression of claudin 4 protein.
引文
1. Kiljander TO,Laitinen JO.The prevalence of gastroesophageal reflux disease in adult asth- matics.Chest,2004 ,126 : 1490-1494.
    2. Chen MH ,Xiong LS,Chen HX ,et al . Prevalence risk factors and impact of gastroeso- phageal reflux disease symptoms:a population based study in South China. Scand J Gastroenterol,2005,40 :759-767.
    3. Catalano F,Terminella C,Grillo C,et al.Prevalence of oesophagitis in patients with persis- tent upper respiratory symptom.J Laryg Ot ,2004,118 :857-861.
    4. Fass R. Epidemiology and pathophysiology of symptomatic gastroesophageal reflux disease.Am J Gastroenterol ,2003,98 :S2-S7.
    5. Bretagne J F, Richard-Molard B, Honnorat C, et al. Gastroesophageal reflux in the French general population:national survey of 8000 adults.Presse Med ,2006,35 (1 Pt 1) :23-31.
    6.潘国宗,许国铭,郭慧平,等.北京上海胃食管反流症状的流行病学调查.中华消化杂志,1999,19 :223-226.
    7. Maley CC, Rustgi AK. Barrett's esophagus and its progression to adenocar- cinoma.J Natl Compr Canc Netw, 2006,4(4):367-74.
    8. Mueller J, Werner M, Stolte M .Barrett’s esophagus:histopathologic definitions and diagnostic criteria.World J Surg, 2004,28:148-154.
    9. Kubo A, Corley DA. Marked multi-ethnic variation of esophageal and gastric cardia carcinomas within the United States. Am J Gastroenterol, 2004,99:582-558.
    10. Parfitt JR, Miladinovic Z, Driman DK. Increasing incidence of adenocarcinoma of the gastroesophageal junction and distal stomach in Canada-an epidemio- logical study from 1964-2002. Can J Gastroenterol,2006,20:271-276.
    11. Noguchi T, Takeno S, Sato T, Coexistent multiple adenocarcinomas arising in Barrett's esophagus 23 years after total gastrectomy and esophageal small cell carcinoma. Jpn J Thorac Cardiovasc Surg,2003,51:259-262.
    12. Sawada N, Murata M, Kikuchi K, et al. Tight junctions and human diseases. Med Electron Microsc,2003,36:147-156.
    13. Matsuda M, Kubo A, Furuse M, et al. A peculiar internalization of claudins, tight junction-specific adhesion molecules, during the intercellular movement of epithelial cells.J Cell Sci. 2004,117:1247-1257.
    14. Furuse M, Tsukita S. Claudins in occluding junctions of humans and flies.Trends Cell Biol,2006,16(4):181-188.
    15. Tsukita S, Furuse M.The structure and function of claudins, cell adhesion molecules at tight junctions.Ann N Y Acad Sci, 2000,915:129-35.
    16. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions.Nat Rev Mol Cell Biol, 2001,2(4):285-293.
    17. Sakisaka S, Kawaguchi T, Taniguchi E, Hanada S, Sasatomi K, Koga H et al. Alterations in tight junctions differ between primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology, 2001,33:1460–8.
    18. Burgel N, Bojarski C, Mankertz J, Zeitz M, Fromm M, Schulzke JD. Mechanisms of diarrhea in collagenous colitis. Gastroenterology ,2002,123:433–43.
    19. Kucharzik T, Walsh SV, Chen J, Parkos CA, Nusrat A. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol ,2001,159:2001–9.
    20. Miwa N, Furuse M, Tsukita S, et al. Involvement of claudin-1 in theβ-catenin/ Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res,2001,12:469-476.
    21. Nichols LS, Ashfaq R, Iacobuzio-Donahue CA. Claudin 4 protein expression in primary and metastatic pancreatic cancer:support for use as a therapeutic target. Am J Clin Pathol,2004,121:226-230.
    22. Oliveira SS, Morgado-Díaz JA. Claudins: multifunctional players in epithelial tight junctions and their role in cancer.Cell Mol Life Sci,2007,64(1):17-28.
    23. Montgomery E, Mamelak AJ, Gibson M, et al. Overexpression of claudin proteins in esophageal adenocarcinoma and its precursor lesions.Appl Immunohistochem Mol Morphol,2006 ,14(1):24-30.
    24. Gy?rffy H, Holczbauer A, Nagy P, et al. Claudin expression in Barrett's esophagus and adenocarcinoma.Virchows Arch,2005 ,447(6):961-968.
    25. Katahira J, Inoue N, Horiguchi Y, et al. Molecular cloning and functional characteriza- tion of the receptor for Clostridium perfringens enterotoxin. J Cell Biol,1997, 136:1239-1247.
    26. Atsumi T, Kato K, Uno K, et al. Pathophysiological role of the activation of p38 mitogen-activated protein kinases in poorly differentiated gastric cancer.Pathol Int,2007,57:635-644.
    27. Yamamoto T, Kojima T, Murata M, et al. p38 MAP-kinase regulates function of gap and tight junctions during regeneration of rat hepatocytes.J Hepatol, 2005,42:707 -718.
    28. Yamamoto T, Kojima T, Murata M, et al.IL-1beta regulates expression of Cx32, occludin, and claudin-2 of rat hepatocytes via distinct signal transduction pathways.Exp Cell Res, 2004,299:427-441.
    29. Kojima T, Yamamoto T, Murata M, et al. Role of the p38 MAP-kinase signaling pathway for Cx32 and claudin-1 in the ratliver.Cell Commun Adhes,2003 ,10:437-443.
    30. Hao Y, Sood S, Triadafilopoulos G, et al. Gene expression changes associated with Barrett's esophagus and Barrett's-associated adenocarcinoma cell lines after acid or bile salt exposure.BMC Gastroenterol,2007,7:24.
    31. Jaiswal K, Lopez-Guzman C, Souza RF, et al.Bile salt exposure increases proliferation through p38 and ERK MAPK pathways in a non-neoplastic Barrett's cell line. Am J Physiol Gastrointest Liver Physiol,2006 ,290:G335 -342.
    32. Jiang ZR, Gong J, Zhang ZN, Qiao Z. Influence of acid and bile acid on ERK activity, PPARgamma expression and cell proliferation in normal human esophageal epithelial cells.World J Gastroenterol,2006 ,12:2445 -2449.
    33. Hills BA. Oesophageal surfactant: evidence for a possible mucosal barrier on oesophageal epithelium. Aust N Z J Med ,1994, 24:41–6.
    34. Hopwood D, Logan KR, Coghill G, et al. Histochemical studies of mucosubstances and lipids in normal human oesophageal epithelium. Histochem J,1977,9:153-61.
    35. Diaz-Del Consuelo I, Jacques Y, Pizzolato GP, et al. Comparison of the lipid composition of porcine buccal and esophageal permeability barriers. Arch Oral Biol,2005,50:981-987.
    36. S?derholm JD. Stress-related changes in oesophageal permeability: filling the gaps of GORD? Gut,2007,56:1177-80.
    37. Abdulnour-Nakhoul S, Nakhoul NL, Wheeler SA, et al.Characterization of esophageal submucosal glands in pig tissue and cultures.Dig Dis Sci, 2007 ,52:3054-65.
    38.胡伏莲,周殿元主编。幽门螺杆菌感染的基础与临床。第1版,北京:中国科学技术出版社,2002,257
    39. Fedwick JP, Lapointe TK, Meddings JB, et al. Helicobacter pylori activates myosin light-chain kinase to disrupt claudin-4 and claudin-5 and increase epithelial permeability. Infect Immun, 2005, 73 (12): 7844– 52.
    40. Breese EJ, Michie CA, Nicholls SW, et al. Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterology, 1994, 106: 1455– 1466.
    41. Ip YC, Cheung ST, Lee YT, et al. Inhibition of hepatocellular carcinoma invasion by suppression of claudin-10 in HLE cells. Mol Cancer Ther, 2007, 6 (11): 2858 - 67.
    42. Zeissig S, Bürgel N, Günzel D, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut, 2007, 56(1): 61 - 72
    43. Prasad S, Mingrino R, Kaukinen K,et al. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest, 2005, 85 : 1139– 62.
    44. Katoh M, Katoh M. CLDN23 gene, frequently down-regulated in intestinal-type gastric cancer, is a novel member of CLAUDIN gene family. Int J Mol Med, 2003,11 (6): 683 - 689.
    45. Miwa N, Furuse M, Tsukita S, et al . Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res, 2001, 12(11-12): 469 - 76.
    46. Resnick MB, Konkin T, Routhier J, et al. Claudin-1 is a strong prognostic indicator in stage II colonic cancer: a tissue microarray study. Mod Pathol,2005, 18 (4): 511 - 8.
    47. Dhawan P, Singh AB, Deane NG, et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest, 2005, 115 (7): 1765 - 76.
    48. Gy?rffy H, Holczbauer A, Nagy P, et al. Claudin expression in Barrett's esophagus and adenocarcinoma. Virchows Arch, 2005, 447(6): 961– 968.
    49. Rendon-Huerta E, Valenzano MC, Mullin JM, et al. Comparison of Three Integral Tight Junction Barrier Proteins in Barrett’s Epithelium Versus Normal Esophageal Epithelium, 2003, 98 (8): 1901 - 1903.
    50. Van IC, Rahner C, and Anderson JM. Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest, 2001, 107: 1319 -1327.
    51. Assimakopoulos SF, Vagianos CE, Charonis AS, et al.Experimental obstructive jaundice alters claudin-4 expression in intestinal mucosa: effect of bombesin and neurotensin. World J Gastroenterol,2006,12:3410-5.
    52. Gotley DC, Ball DE, Owen RW, et al. Evaluation and surgical correction of esophagitis after partial gastrectomy. Surgery,1992,111 :29–36.
    53. Kauer WK, Peters JH, DeMeester TR,et al.Mixed reflux of gastric and duodenal juices if more harmful to the esophagus than gastric juice alone. Ann. Surg, 1995,222:525–533.
    54. Nehra D, Howell P, Williams CP,et al. Toxic bile acids in gastroesophageal reflux disease: Influence of gastric acidity .Toxic bile acids in gastroesophageal reflux disease: influence of gastric acidity. Gut ,44:598–602.
    55. Vaezi MF, Richter JE. Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology, 1996, 111: 1192–1199.
    56. Jenkins GJ, Doak SH, Parry JM, et al. Genetic pathways involved in the progression of Barrett’s metaplasia to adenocarcinoma. Br J Surg, 2002,89:824-837.
    57. Wijnhoven BP, Tilanus HW, Dinjens WN. Molecular biology of Barrett’s adenocarcinoma. Ann Surg,2001,233:322-337.
    58. Gatenby RA, Vincent TL. An evolutionary model of carcinogenesis. Cancer Res,2003,63:6212-6220.
    59. Hamoui N, Peters JH, Schneider S,et al .Increased Acid Exposure in Patients With Gastroesophageal Reflux Disease Influences. Arch Surg. 2004 Jul;139(7):712-6;
    60. Bechi P, Pucciani F, Baldini F, et al. Long-term ambulatory enterogastric reflux monitoring. Validation of a new fiberoptic technique. Dig Dis Sci, 1993,l38:1297-306.
    61. Vaezi MF, Lacamera RG, Richter JE. et al. Validation studies of Bilitec 2000: an ambulatory duodenogastric reflux monitoring system. Am J Physiol,1994,267(6 Pt 1):G1050-7.
    62. Stein HJ, Kauer WK, Feussner H, et al. Bile acids as components of the duodenogastric refluxate:detection, relationship to bilirubin, mechanism of injury, and clinical relevance . Hepatogastroenterology, 1999, 46(25):66-73.
    63.林金坤,胡品津,李初俊等.食管pH和胆汁监测用于十二指肠胃食管反流的诊断及对治疗的评价.中华消化杂志,2001,21:602~604.
    64. Martinez SD, Malagon IB, Garewal HS, et al. Non-erosive reflux disease (NERD)-acid reflux and symptom patterns. Aliment Pharmacol Ther, 2003, 17: 537–45.
    65. Shapiro M, Green C, Faybush E,. et al.The Extent of Oesophageal Acid Exposure Overlap Among the Different Gastro-oesophageal Reflux Disease Groups. Aliment Pharmacol Ther, 2006,23:321-329.
    66. Sears RJ, Champion GL, Richter JE.Characteristics of distal partial gastrectomy patients with esophageal symptoms of duodenogastric reflux. Am J Gastroenterol, 1995,90:211-5.
    67. Osugi H, Higashino M, Kaseno S, et al.Ambulatory intraesophageal bilirubin monitoring in Japanese patients with gastroesophageal reflux. J Gastroenterol, 2002,37(9):697-702.
    68. Kauer WK, Peters JH, DeMeester TR, et al.Composition and concentration of bile acid reflux into the esophagus of patients with gastroesophageal reflux disease Surgery,1997,122(5):874-81.
    69. Marshall RE, Anggiansah A, Owen WA, Owen WJ. The temporal relationship between oesophageal bile reflux and pH in gastro-oesophageal reflux disease. Eur J Gastroenterol Hepatol, 1998,10(5):385-92.
    70. Asaoka1 D, Miwa H, Hirai S, et al. Altered localization and expression of tight-junction proteins in a rat model with chronic acid reflux esophagitis. J Gastroenterol, 2005, 40 (8): 781– 790.
    71. Hughes R, Kurth MJ, McGilligan V, et al. Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro.Nutr Cancer, 2008 60(2):259-66.
    72. Raimondi F, Santoro P, Barone MV, et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation. Am J Physiol Gastrointest Liver Physiol, 2008 ,294(4):G906-13.
    73. McGilligan VE, Wallace JM, Heavey PM, et al. The effect of nicotine in vitro on theintegrity of tight junctions in Caco-2 cell monolayers. Food Chem Toxicol, 2007,45(9):1593-8.
    74. Münch A, Str?m M, S?derholm JD. Dihydroxy bile acids increase mucosal permeability and bacterial uptake in human colon biopsies. Scand J Gastroenterol,2007,42:1167-7.
    75. Eksteen JA, Scott PA, Perry I, Jankowski JA. Inflammation promotes Barrett's metaplasia and cancer: a unique role for TNFalpha. Eur J Cancer Prev, 2001 ,10:163-6.
    76. Gough MD, Ackroyd R, Majeed AW, Bird NC. Prediction of malignant potential in reflux disease: are cytokine polymorphisms important? Am J Gastroenterol, 2005 ,100:1012-8.
    77. Wong NA, Wilding J, Bartlett S, et al. CDX1 is an important molecular mediator of Barrett's metaplasia. Proc Natl Acad Sci, 2005 ,102:7565-70.
    78. Prasad S, Mingrino R, Kaukinen K,et al. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest, 2005, 85: 1139 - 62.
    79. Perng DW, Chang KT, Su KC,et al. Exposure of airway epithelium to bile acids associated with gastroesophageal reflux symptoms: a relation to transforming growth factor-beta1 production and fibroblast proliferation. Chest, 2007,132:1548-56.
    80. Song S, Guha S, Liu K, et al.COX-2 induction by unconjugated bile acids involves reactive oxygen species-mediated signalling pathways in Barrett's oesophagus and oesophageal adenocarcinoma Gut, 2007 ,56:1512-21.
    81. Sung MW, Roh JL, Park BJ, et al. Bile acid induces cyclo-oxygenase-2 expression in cultured human pharyngeal cells: a possible mechanism of carcinogenesis in the upper aerodigestive tract by laryngopharyngeal reflux. Laryngoscope,2003 ,113:1059-63.
    82. Jaiswal K, Tello V, Lopez-Guzman C, et al. Bile salt exposure causes phosphatidyl- inositol-3-kinase-mediated proliferation in a Barrett's adenocarcinoma cell line. Surgery, 2004 ,136(2):160-8.
    83. Kivilaakso E, Fromm D, Silen W. Effect of bile salts and related compounds on isolated esophageal mucosa. Surgery,1980 ,87:280-5.
    84. Harmon JW, Johnson LF, Maydonovitch CL. Effects of acid and bile salts on the rabbit esophageal mucosa. Dig Dis Sci,1981 ,26:65-72.
    85. Mullin JM, Valenzano MC, Trembeth S, et al. Transepithelial Leak in Barrett’s Esophagus. Dig Dis Sci, 2006, 51 (12): 2326 - 2336.
    86. Tselepis C, Morris CD, Wakelin D, et al. Upregulation of the oncogene c-myc in Barrett'sadenocarcinoma: induction of c-myc by acidified bile acid in vitro. Gut,2003, 52:174-80
    87. Matikainen M, Laatikainen T, Kalima T, Kivilaakso E.Bile acid composition and esophagitis after total gastrectomy. Am J Surg. 1982 Feb;143(2):196-8.
    88. Souza RF, Shewmake K, Terada LS, Spechler SJ. Acid exposure activates the mitogen-activated protein kinase pathways in Barrett's esophagus. Gastroenterology, 2002,122:299–307.
    89. Souza RF, Shewmake K, Pearson S, Sarosi GA Jr, et al.Acid increases proliferation via ERK and p38 MAPK-mediated increases in cyclooxygenase-2 in Barrett's adenocarcinoma cells. Am J Physiol Gastrointest Liver Physiol, 2004,287:G743–748.
    90. Fitzgerald RC, Omary MB, Triadafilopoulos G. Dynamic effects of acid on Barrett's esophagus. An ex vivo proliferation and differentiation model. J Clin Invest,1996,98:2120–2128.
    91. Fujita-Yoshigaki J, Matsuki-Fukushima M, Sugiya H.Inhibition of Src and p38 MAP kinases suppresses the change of claudin expression induced upon dedifferentiation of primary cultured parotid acinar cells. Am J Physiol Cell Physiol,2008,294:C774-85.
    92. Kojima T,Yamamoto T, Murata M, et al. Role of the p38 MAP-kinase signaling pathway for Cx32 and claudin-1 in the rat liver. Cell Commun Adhes. 2003,10:437-43.
    93. Chang L,Karin M.Mammalian MAP kinase signaling cascades.Nature,2001,410:37- 40.
    94. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta,2007 ,1773:1358-75.
    95. Qin P, Tang X, Elloso MM, Harnish DC.Bile acids induce adhesion molecule expression in endothelial cells through activation of reactive oxygen species, NF-kappaB, and p38. Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H741-7.
    96. Schoemaker MH, Conde de la Rosa L, Buist-Homan M, et al.Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways.Hepatology. 2004 Jun;39(6):1563-73.
    97. Ohkubo T, Ozawa M. Regulation of tight junctions during the epithelium- mesenchyme transition:direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci, 2003, 116 (10): l959 - 1967.
    98. Martinez-Estrada OM ,Culleres A, Soriano FX, et a1. The transcription factors Slug and Snail act as repressors of Claudin 1 expression in epithelial cells. Biochem J, 2006, 394(Pt 2): 449 - 457.
    99. Carrozzino F, Soulie P, Huber D, et a1. Inducible expression of Snail selectively increases paracellular ion permeability and diferentialy modulates tight junction proteins. Am J Physiol Cell Physiol, 2005, 289(4): C1002 - 1014.
    100. Fujibe M, Chiba H, Kojima T, et a1. Thr203 of claudin-1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions. Exp CellRes, 2004, 295 (1): 36– 47.
    101. Tan X, Egami H, Ishikawa S, et a1. Arrangement of expression and distribution of tight junction protein claudin-1 in cell dissociation of pancreatic cancer cells. Int J Oncol, 2004, 25 (6): 1567 - 1574.
    1. Staehelin LA. Further observations on the fine structure of freezecleaved tight junctions. J Cell Sci, 1973, 13: 763– 786.
    2. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol, 2001, 2 (4): 285– 293.
    3. Mitic LL, Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol, 1998, 60 (10) : 121– 142.
    4. Balda MS, Flores MC, Cereij IM, et al. Multiple domains of occludin are Involved in the regulation of paracellular permeability. J Cell Biochem, 2000, 78 (1) : 85- 96.
    5. Saitou M, Fujimoto K, Doi Y, et al. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol, 1998, 141 (2): 397– 408.
    6. Furuse M,Fujita K,Hiiragi T,et a1.Claudin-1 and -2:Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol, 1998, 141 (7):l539– 1550.
    7. Mitic LL, Van Itallie CM. Occludin and claudins: transmembrane proteins of the tight junction. In: Tight Junctions (2nd ed), edited by Cereijido M and Anderson JM. Boca Raton, FL: CRC, 2001, 213– 230.
    8. Tsukita S, Furuse M, and Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol, 2001, 2: 285– 293.
    9. Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol, 2007, 7 (6): 467 - 477.
    10. Eveline E. Schneeberger, Robert D. Lynch. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol, 2004, 286 (6) : 1213 - 1228.
    11. Mikio F, Hiroyuki S, Shoichiro T. Manner of Interaction of Heterogeneous Claudin Species Within and Between Tight Junction Strands. J Cell Biol, 1999, 147 ( 4 ) : 8912-90.
    12. Furuse M, Furuse K, Sasaki H, et al. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Bio,. 2001, 153: 263–272.
    13. Oscar RC, Christina VI, Christoph R, et al. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol, 2003,284 (6) : 1346 - 1354.
    14. Van IC, Rahner C, and Anderson JM. Regulated expression of claudin4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest, 2001, 107: 1319– 1327.
    15. Colegio OR, Van Itallie CM, McCrea HJ, et al. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol, 2002, 283: C142– C147.
    16. Simon D B, Lu Y, Choate K A, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science, 1999, 285: 103 - 106.
    17. Weber S, Schneider L, Peters M, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesaemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol, 2001, 12: 1872 - 1881.
    18. Hirano T, Kobayashi N, Itoh T, et al. Null mutation of PCLN-1/claudin-16 results in bovine chronic interstitial nephritis. Genome Res, 2000, 10: 659 - 663.
    19. Furuse M, Sasaki H, Tsukita S.Manner of interaction of heterogeneous claudin species within and between tight junction strands.J Cell Biol, 1999,147 (4):891 - 903.
    20. Kyle JH, Rachana A,Patrice JM.The claudin gene family:expression in normal and neoplastic tissues.BMC Canccr, 2006, 6: 186.
    21. Rahner C, Mitic LL, Anderson JM. Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology, 2001, 20 (2): 411 - 22.
    22. Fujita H, Chiba H, Yokozaki H,et al. Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. J Histochem Cytochem, 2006 ,54 (8): 933 - 44.
    23. Li WY, Huey CL, Yu AS. Expression of claudin-7 and -8 along the mouse nephron. Am J Physiol Renal. 2004, 286 (6): F1063 - 71.
    24. Van Itallie CM, Anderson JM. The Molecular Physiology of Tight Junction Pores. Physiology, 2004, 19 (6): 331 - 338.
    25. Rendon-Huerta E, Valenzano MC, Mullin JM, et al. Comparison of Three Integral TightJunction Barrier Proteins in Barrett’s Epithelium Versus Normal Esophageal Epithelium, 2003, 98 (8): 1901 - 1903.
    26. Mullin JM, Valenzano MC, Trembeth S, et al. Transepithelial Leak in Barrett’s Esophagus. Dig Dis Sci, 2006, 51 (12): 2326 - 2336.
    27. Gy?rffy H, Holczbauer A, Nagy P, et al. Claudin expression in Barrett's esophagus and adenocarcinoma. Virchows Arch, 2005, 447(6): 961– 968.
    28. Montgomery E, Mamelak AJ, Gibson M, et al. Overexpression of claudin proteins in esophageal adenocarcinoma and its precursor lesions. Appl Immunohistochem Mol Morphol, 2006, 14 (1): 24 - 30
    29. Takala H, Saarnio J, Wiik H, et al. Claudins 1, 3, 4, 5 and 7 in esophageal cancer: loss of claudin 3 and 4 expression is associated with metastatic behavior. Apmis, 2007, 115 (7): 838– 847.
    30. Asaoka1 D, Miwa H, Hirai S, et al. Altered localization and expression of tight-junction proteins in a rat model with chronic acid reflux esophagitis. J Gastroenterol, 2005, 40 (8): 781– 790.
    31. Cover TL, and Blaser MJ. Helicobacter pylori factors associated with disease. Gastroenterology, 1999, 17: 257– 260.
    32. Warren JR, and B Marshall. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet, 1983, 4 (1) : 1273– 1275.
    33. Ohkusa T, Yamamoto M, Kataoka K, et al. Electron microscopic study of intercellular junctions in human gastric mucosa with special reference to their relationship to gastric ulcer. Gut, 1993, 34 (1): 86– 89.
    34. Noach LA, Rolf TM, and Tytgat GN. Electron microscopic study of association between Helicobacter pylori and gastric and duodenal mucosa. J Clin Pathol, 1994, 47 (8): 699– 704.
    35. Papini E, Satin B, Norais N, et al. Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J Clin Invest, 1998, 102 (4): 813 - 820.
    36. Pelicic V, Reyrat JM, Sartori L, et al. Helicobacter pylori VacA cytotoxin associated with the bacteria increases epithelial permeability independently of its vacuolating activity. Microbiology, 1999, 145: 2043 - 2050.
    37. Amieva MR, Vogelmann R, Covacci A, et al. Disruption of the epithelial apical junctional complex by Helicobacter pylori CagA. Science, 2003, 30, 300 (5624): 1430 - 4.
    38. Decrease in gastric permeability to sucrose following cure of Helicobacter pylori infection. Helicobacter, 1997, 2 (1): 44– 47.
    39. Nash S, Stafford J, Madara JL. Effects of polymorphonuclear leukocyte transmigration on the barrier function of cultured intestinal epithelial monolayers. J Clin Invest, 1987, 80 (4): 1104 - 13.
    40. Fedwick JP, Lapointe TK, Meddings JB, et al. Helicobacter pylori activates myosin light-chain kinase to disrupt claudin4 and claudin-5 and increase epithelial permeability. Infect Immun, 2005, 73 (12): 7844 - 52
    41. Katoh M, Katoh M. claudin23 gene, frequently down-regulated in intestinal-type gastric cancer, is a novel member of claudin gene family. Int J Mol Med, 2003,11 (6): 683 - 689.
    42. Lee SK, Moon J, Park SW, et al. Loss of the tight junction protein claudin 4 correlates with histological growth-pattern and differentiation in advanced gastric adenocarcinoma. Oncol Rep. 2005,13 (2): 193 - 9.
    43. Johnson AH, Frierson HF, Zaika A, et al. Expression of tight-junction protein claudin-7 is an early event in gastric tumorigenesis. Am J Pathol, 2005, 167 (2): 577 - 84.
    44. Resnick MB, Gavilanez M, Newton E, et al. Claudin expression in gastric adenocarcinomas: a tissue microarray study with prognostic correlation. Hum Pathol, 2005, 36 (8): 886 - 92.
    45. Soini Y, Tommola S, Helin H, et al. Claudins 1, 3, 4 and 5 in gastric carcinoma, loss of claudin expression associates with the diffuse subtype. Virchows Arch, 2006, 448 (1): 52 - 8.
    46. Kuo WL, Lee LY, Wu CM, et al. Differential expression of claudin4 between intestinal and diffuse-type gastric cancer. Oncol Rep, 2006, 16 (4): 729 - 34.
    47. Matsuda Y, Semba S, Ueda J, et al. Gastric and intestinal claudin expression at the invasive front of gastric carcinoma. Cancer Sci, 2007, 98 (7): 1014 - 9.
    48. Satake S, Semba S, Matsuda Y ,et al. Cdx2 transcription factor regulates claudin3 and claudin4 expression during intestinal differentiation of gastric carcinoma. Pathol Int,2008, 58 (3): 156-63.
    49. Rendtorff RC. The experimental transmission of human intestinal protozoan parasites: II. Giardia lamblia cysts given in capsules. Am J Trop Med Hyg, 1954, 59: 209.
    50. Adam RD. The biology of Giardia spp. Microbiol Rev, 1991,55: 706– 32.
    51. Taylor DN, Houston R, Shlim DR. Etiology of diarrhea among travelers and foreign residents in Nepal. JAMA, 1988, 260: 1245– 8.
    52. Troeger H, Epple HJ, Schneider T, et al. Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut, 2007, 56 (3): 328 - 35.
    53. Dickman KG, Hempson SJ, Anderson J, et al. Rotavirus alters paracellular permeability and energy metabolism in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol, 2000,279 (4): G757-66.
    54. Muza-Moons MM, Schneeberger EE, Hecht GA. Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell Microbiol, 2004, 6 (8): 783 - 93.
    55. Karmali MA, Steele BT, Petric M, et al. Sporadic cases of haemolyticuraemic syndrome associated with faecal cytotoxin and cytotoxinproducing Escherichia coli in stools. Lancet, 1983, 1: 619– 620.
    56. Vallance BA, Finlay BB. Exploitation of host cells by enteropathogenic Escherichia coli. Proc Natl Acad Sci USA, 2000, 97: 8799– 8806.
    57. Howe KL, Reardon C, Wang A, et al. Transforming growth factor-beta regulation of epithelial tight junction proteins enhances barrier function and blocks enterohemorrhagic Escherichia coli O157:H7-induced increased permeability. Am J Pathol, 2005, 167 (6): 1587 - 97.
    58. Meddings JB. Review article: intestinal permeability in Crohn’s disease. Aliment Pharmacol Ther, 1997; 11(Suppl 3):47–53; discussion 53–56: 47–53.
    59. Hollander D. Intestinal permeability, leaky gut, and intestinal disorders. Curr Gastroenterol Rep, 1999, 1: 410– 416.
    60. Soderholm JD, Peterson KH, Olaison G, et al. Epithelial permeability to proteins in the noninflamed ileum of Crohn’s disease? Gastroenterology, 1999, 117: 65–72.
    61. Wyatt J, Vogelsang H, Hubl W, et al. Intestinal permeability and the prediction ofrelapse in Crohn’s disease. Lancet, 1993, 341: 1437– 1439.
    62. Arnott ID, Kingstone K, Ghosh S. Abnormal intestinal permeability predicts relapse in inactive Crohn disease. Scand J Gastroenterol, 2000, 35: 1163– 1169.
    63. D’Inca R, Di Leo V, Corrao G, et al. Intestinal permeability test as a predictor of clinical course in Crohn’s disease. Am J Gastroenterol, 1999, 94: 2956– 2960.
    64. Schmitz H, Barmeyer C, Fromm M, et al. Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology, 1999, 116: 301– 309.
    65. Walsh SV, Hopkins AM, Nusrat A. Modulation of tight junction structure and function by cytokines. Adv Drug Deliv Rev, 2000, 41: 303– 313.
    66. Fuss IJ, Heller F, Boirivant M, et al. Nonclassical CD1drestricted NK Tcells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest, 2004, 113: 1490– 1497.
    67. Prasad S, Mingrino R, Kaukinen K,et al. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest, 2005, 85 (9): 1139 - 62.
    68. Romagnani S. Human TH1 and TH2 subsets: doubt no more. Immunol Today, 1991, 12 (8): 256 - 7
    69. Del Prete GF, De Carli M, Ricci M, et,al. Helper activity for immunoglobulin synthesis of T helper type 1 (Th1) and Th2 human T cell clones: the help of Th1 clones is limited by their cytolytic capacity. J Exp Med, 1991, 174 (4): 809 - 13.
    70. MacDonald TT, Monteleone G. IL-12 and Th1 immune responses in human Peyer’s patches. Trends Immunol, 2001, 22: 244– 247.
    71. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol, 2003, 3: 521– 533.
    72. Breese EJ, Michie CA, Nicholls SW, et al. Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterology, 1994, 106: 1455– 1466.
    73. Fuss IJ, Neurath M, Boirivant M, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifestincreased secretion of IL-5. J Immunol, 1996, 157: 1261– 1270.
    74. Fuss IJ, Heller F, Boirivant M, et al. Nonclassical CD1drestricted NK Tcells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest, 2004, 113: 1490– 1497.
    75. Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol, 2006, 68: 403– 29.
    76. Van Itallie CM, Fanning AS, Anderson JM. Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am J Physiol Renal Physiol, 2003, 285: F1078– 84.
    77. Zeissig S, Bürgel N, Günzel D, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut, 2007, 56(1): 61 - 72.
    78. Miwa N, Furuse M, Tsukita S, et al . Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res, 2001, 12(11-12): 469 - 76.
    79. Van Noort M, Meeldi jk J, van der Zee R, et al. Wnt signaling controls the phosphorylation status of betacatenin. J Biol Chem, 2002, 277 (20): 17901– 17905.
    80. Resnick MB, Konkin T, Routhier J, et al. Claudin-1 is a strong prognostic indicator in stage II colonic cancer: a tissue microarray study. Mod Pathol. 2005, 18 (4): 511 - 8.
    81. Dhawan P, Singh AB, Deane NG, et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest. 2005, 115 (7): 1765 - 76.
    82. Shiou SR, Singh AB, Moorthy K, et al. Smad4 regulates claudin-1 expression in a transforming growth factor-beta-independent manner in colon cancer cells. Cancer Res, 2007, 67 (4): 1571 - 9.
    83. Hoofnagle J H. Course and outcome of hepatitis C. Hepatology, 2002, 36: S21– S29.
    84. Lauer GM, Walker BD. Hepatitis C virus infection. N Engl J Med, 2001, 345: 41– 52.
    85. Seeff LB. Natural history of viral hepatitis type C. Semin Gastrointest Dis, 1995, 6: 20– 27.
    86. De Beeck A, Cocquerel L, Dubuisson J. Biogenesis of hepatitis C virus envelope glycoproteins. J Gen Virol, 2001, 82: 2589 - 2595.
    87. Amoroso P, Rapicetta M, Tosti ME, et al. Correlation between virus genotype and chronicity rate in acute hepatitis C. J Hepatol, 1998, 28: 939 - 944.
    88. Bartosch B,Dubuisson J, Cosset FL. Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J Exp Med, 2003, 197: 633– 642.
    89. Hsu M, Zhang J, Flint M, et al. Hepatitis C virus glycoproteins mediate pH- dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci, 2003, 100 (12): 7271– 6.
    90. Cormier EG, Tsamis F, Kajumo F, et al. CD81 is an entry coreceptor for hepatitis C virus. Proc Natl Acad Sci, 2004, 101(19): 7270 - 4.
    91. Bartosch B, Verney G, Dreux M, et al. An interplay between hypervariable region 1 of the hepatitis C virus E2 glycoprotein, the scavenger receptor BI, and high-density lipoprotein promotes both enhancement of infection and protection against neutralizing antibodies. J Virol, 79: 8217– 8229.
    92. Lavillette D, Tarr AW, Voisset C, et al. Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology, 2005, 41(2): 265 - 74.
    93. Voisset C, Callens N, Blanchard E, et al. High density lipoproteins facilitate hepatitis C virus entry through the scavenger receptor class B type I. J Biol Chem, 2005, 280 (9): 7793 - 7799.
    94. Evans MJ, von Hahn T, Tscherne DM, et al.Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature, 2007, 446 (7137): 801 - 805.
    95. Zheng A, Yuan F, Li Y, et al. Claudin-6 and claudin-9 function as additional coreceptors for hepatitis C virus. J Virol, 2007, 81 (22): 12465 - 12471.
    96. Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer, 1999, 83: 18– 29.
    97. Tang ZY. Hepatocellular carcinoma. J Gastroenterol Hepatol, 2000, 15 Suppl: G1– 7.
    98. Vauthey JN, Lauwers GY, Esnaola NF, et al. Simplified staging for hepatocellular carcinoma. J Clin Oncol, 2002, 20: 1527– 1536.
    99. Villa E, Colantoni A, Camma C, et al. Estrogen receptor classification for hepatocellular carcinoma: comparison with clinical staging systems. J Clin Oncol, 2003,21: 441– 446.
    100. Cheung ST, Leung KL, Ip YC, et al. Claudin-10 expression level is associated with recurrence of primary hepatocellular carcinoma. Clin Cancer Res, 2005, 11: 551 - 556.
    101. Ip YC, Cheung ST, Lee YT, et al. Inhibition of hepatocellular carcinoma invasion by suppression of claudin-10 in HLE cells. Mol Cancer Ther, 2007, 6 (11): 2858 - 67.
    102. Sakaguchi T, Suzuki S, Higashi H, et al. Expression of Tight Junction Protein Claudin-5 in Tumor Vessels and Sinusoidal Endothelium in Patients with Hepatocellular Carcinoma. J Surg Res, 2007,
    103. Higashi Y, Suzuki S, Sakaguchi T, et al. Loss of claudin-1 expression correlates with malignancy of hepatocellular carcinoma. J Surg Res, 2007, 139 (1): 68 - 76.
    104. Lódi C, SzabóE, Holczbauer A, et al. Claudin4 differentiates biliary tract cancers from hepatocellular carcinomas. Mod Pathol, 2006, 19 (3): 460 - 469.
    105. Hadj-Rabia S, Baala L, Vabres P, et al. claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology, 2004, 127 (5) : 1386 - 1390.
    106. Michl P, Barth C, Buchholz M, et al. Claudin4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res, 2003, 63 (19): 6265 - 71.
    107. Nichols LS, Ashfaq R, Iacobuzio-Donahue CA. Claudin 4 protein expression in primary and metastatic pancreatic cancer: support for use as a therapeutic target. Am J Clin Pathol, 2004, 121 (2): 226 - 30.
    108. Borka K, Kaliszky P, SzabóE, et al. Claudin expression in pancreatic endocrine tumors as compared with ductal adenocarcinomas. Virchows Arch, 2007,450 (5): 549 - 57.
    109. Karanjawala ZE, Illei PB, Ashfaq R, et al. New markers of pancreatic cancer identified through differential gene expression analyses: claudin 18 and annexin A8. Am J Surg Pathol, 2008, 32 (2): 188 - 96.
    110. Kominsky SL, Argani P, Korz D, et a1.Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductsl carcinoma of the breast. Oncogenc, 2003, 22 (13): 2021- 2033.
    111. Kramer F, White K, Kubbies M, et a1. Genomic organization of claudin-1 and its asssment in hereditary and sporadic breast cancer. Hum Genet, 2000, 107 (3): 249 - 256.
    112. Ohkubo T, Ozawa M. Regulation of tight junctions during the epithelium- mesenchyme transition:direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci, 2003, 116 (10): l959 - 1967.
    113. Martinez-Estrada OM ,Culleres A, Soriano FX, et a1. The transcription factors Slug and Snail act as repressors of Claudin 1 expression in epithelial cells. Biochem J, 2006, 394 (Pt 2): 449 - 457.
    114. Carrozzino F, Soulie P, Huber D, et a1. Inducible expression of Snail selectively increases paracellular ion permeability and diferentialy modulates tight junction proteins. Am J Physiol Cell Physiol, 2005, 289(4): C1002 - 1014.
    115. Fujibe M, Chiba H, Kojima T, et a1. Thr203 of claudin-1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions. Exp CellRes, 2004, 295 (1): 36– 47.
    116. Tan X, Egami H, Ishikawa S, et a1. Arrangement of expression and distribution of tight junction protein claudin-1 in cell dissociation of pancreatic cancer cells. Int J Oncol, 2004, 25 (6): 1567 - 1574.
    117. Michl P, Gress TM. Bacteria and bacterial toxins as therapeutic agents for solid tumors. Curr Cancer Drug Targets, 2004, 4: 689 - 702.
    118. Michl P, BuchholzM, RolkeM, et a1. Claudin4: a new target for pancreatic cancer treatment using clostridiurn perfringens enterotoxin. Gastroenterology, 2001, 121: 678 - 684.
    119. Kominsky SL, Vali M, Korz D, et a1. Clostridium perfringens enterotox in elicits rapid and specific cytolysis of breast carcinoma cells mediated through tightjunction proteins claudin 3 and 4. Am J Pathol, 2004, 164: l627 - 1633.
    120. Offer S, Hekele A, Teichmann U, et a1. Epithelial tight junction proteins as potential antibody targets for pancarcinoma therapy. Cancer Immunol Immunother, 2005, 54: 431– 445.
    1. Nouraie M, Razjouyan H, Assady M, et al. Epidemiology of Gastroesophageal Reflux Symptoms in Tehran, Iran: A Population-based Telephone Survey. Arch Iranian Med. 2007;10 (3):289-294.
    2. Eisen G. The epidemiology of gastroesophageal reflux disease: What we know and what we need to know. Am J Gastroenterol. 2001; 96 (supp):S16-S18.
    3. Pellicano R, Astegiano M, Rizzetto M. The epidemiology of gastro-oesophageal reflux disease: A brief review. Minerva Gastroenterol Dietol. 2003 Dec; 49(4): 231-4.
    4. Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med. 1999; 340: 825–31.
    5. Louis E, DeLooze D, Deprez P, et al. Heartburn in Belgium: prevalence, impact on daily life, and utilization of medical resources. Eur J Gastroenterol Hepatol. 2002 Mar; 14(3): 279-84.
    6. McDougall NI, Johnston BT, Kee F, et al. Natural history of reflux oesophagitis: a 10 year follow up of its effect on patient’s symptomatology and quality of life. Gut. 1996; 38: 481–6.
    7. Nouraie M, Radmard AR, Zaer-Rezaii H, et al. Hygiene could affect GERD prevalenceindependently: a population-based study in Tehran. Am J Gastroenterol. 2007 Jul; 102(7):1353-60.
    8. Locke GR 3rd, Talley NJ, Fett SL, et al. Risk factors associated with symptoms of gastroesophageal reflux. Am J Med. 1999 Jun; 106(6):642-9.
    9. Nandurkar S, Talley NJ. Epidemiology and natural history of reflux disease. Clin Gastroenterol. 2000 Oct; 14(5):743-57.
    10. Mohammed I, Nightingale P, Trudgill NJ. Risk factors for gastro-oesophageal reflux disease symptoms: a community study. Aliment Pharmacol Ther. 2005 Apr 1; 21(7):821-7.
    11. Mahadeva S, Raman MC, Ford AC, et al. Gastro-oesophageal reflux is more prevalent in Western dyspeptics: a prospective comparison of British and South-East Asian patients
    12. with dyspepsia. Aliment Pharmacol Ther. 2005 Jun 15; 21(12):1483-90.
    13. Cho YS, Choi MG, Jeong JJ, et al. Prevalence and clinical spectrum of gastroesophageal reflux: a population-based study in Asan-si, Korea. Am J Gastroenterol. 2005 Apr; 100(4):747 -53.
    14. Fujimoto K. Review article: prevalence and epidemiology of gastro-oesophageal reflux disease in Japan. Aliment Pharmacol Ther. 2004 Dec; 20 (Suppl 8): 5-8.
    15. Goh KL, Chang CS, Fock KM, et al. Gastro-oesophageal reflux disease in Asia. J Gastroenterol Hepatol. 2000 Mar; 15(3):230-8.
    16. Ho KY, Lim LS, Goh WT, Lee JMJ. The prevalence of gastrooesophageal reflux has increased in Asia: a longitudinal study in the community. J. Gastro. Hepatol. 2001; 16: A132.
    17. Goh KL. Changing epidemiology of gastroesophageal reflux disease in the Asian-Pacific region: an overview.J Gastroenterol Hepatol. 2004 Sep; 19 (Suppl 3):S22-5.
    18. Blot WJ, Devesa SS, Kneller RW, Fraumeni JF Jr (1991) Rising incidence of adeno-carcinoma of the esophagus and gastric cardia. JAMA 265:1287–1289
    19. Cameron AJ (2002) Epidemiology of Barrett’s esophagus and adenocarcinoma. Dis Esophagus 15:106–108.
    20. Hamilton SR, Smith RR (1987) The relationship between columnar epithelial dysplasia and invasive adenocarcinoma arising in Barrett’s esophagus. Am J Clin Pathol 87:301–312
    21. Mueller J, Werner M, Stolte M (2004) Barrett’s esophagus: histopathologic definitionsand diagnostic criteria. World J Surg 28:148–154
    22. Hirohashi S, Kanal Y (2003) Cell adhesion system and human cancer morphogenesis. Cancer Sci 94:575–581.
    23. Offner S, Hekele A, Teichmann U, Weinberger S, Gross S, Kufer P, Itin C, Baeuerle PA, Kohleisen B (2004) Epithelial tight junction proteins as potential antibody targets for pancarcinoma therapy. Cancer Immunol Immunother 54:431–45.
    24. Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147:891–903
    25. Matsuda M, Kubo A, Furuse M, Tsukita S (2004) A peculiar internalization of claudins, tight junction-specific adhesion molecules, during the intercellular movement of epithelial cells. J Cell Sci 117:1247–1257.
    26. Gy?rffy H, Holczbauer A, Nagy P, et al. Claudin expression in Barrett's esophagus and adenocarcinoma. Virchows Arch, 2005, 447(6): 961– 968.
    27. Montgomery E, Mamelak AJ, Gibson M, et al. Overexpression of claudin proteins in esophageal adenocarcinoma and its precursor lesions. Appl Immunohistochem Mol Morphol, 2006, 14 (1): 24 - 30
    28. Winters C, Spurling TJ, Chobanian SJ, et al. Barrett’s esophagus: a prevalent, occult complication of gastroesophageal reflux disease. Gastroenterology 1987;92:118–24.
    29. Chow WH, Finkle WD,McLaughlin JK, et al. The relationship of gastroesophageal reflux disease and its treatment to adenocarcinoma of the esophagus and gastric cardia. JAMA 1995;274:474–7.
    30. Tobey NA, Hosseini SS, Argote CM, Dobrucali AM, Awayda MS, Orlando RC. Dilated intercellular spaces and shunt permeability in nonerosive acid-damaged esophageal epithelium. Am J Gastroenterol 2004;99:13–22
    31. Tobey NA, Carson JL, Alkiek RA, Orlando RC. Dilated intercellular spaces: a morphological feature of acid reflux-damaged human esophageal epithelium. Gastroenterology 1996;111:1200– 5.
    32. Calabrese C, Fabbri A, Bortolotti M, Cenacchi G, Areni A, Scialpi C et al. Dilated intercellular spaces as a marker of oesophageal damage: comparative results in gastro-oesophageal reflux disease with or without bile reflux. Aliment Pharmacol Ther2003;18:525–32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700