高应力下脆性岩石的力学模型与工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂应力状态下岩石的强度特征及其破坏行为一直以来是土木水利工程及相关领域中非常重要且异常复杂的研究课题之一。随着岩石工程不断向深部发展,其所处的地质和应力环境变得更为复杂,高地应力下的岩石力学问题的研究已经提上日程,特别是建立高应力下岩石的强度准则和本构模型,描述其强度特点和变形破坏规律已成为地下岩石工程的关键问题之一。鉴于此,为满足工程建设需求以及学科理论发展需要,本文通过对深部脆性岩石进行多角度力学和流变试验研究,运用岩石强度理论、弹塑性力学、流变力学和渗流力学等理论系统地研究并提出了适用于高应力下的强度准则及其本构模型,并将这一研究成果结合智能反演理论,应用于重大水利水电岩石工程建设中,来解决工程建设中遇到的实际工程问题。故,本文的研究工作主要集中在如下几个方面:
     1.基于锦屏深埋段大理岩单轴、三轴压缩试验、损伤控制加卸载试验、真三轴试验以及声发射试验等多角度试验的结果,从变形、强度、能量和破坏等不同角度对不同环境下脆性岩石在不同应力状态下的变形和强度特征以及能量耗散特征进行了较为系统的分析,获得了脆性岩石瞬时的基本力学特性和变形破坏规律。然后采用裂纹应变理论,明确了深部脆性岩石内部裂纹发展演化的规律以及强度破坏机理。
     2.基于两种强度和破坏控制机制转化的物理基础,利用Griffith理论和Weibols的有效应变能原理,提出了广义多轴应变能强度准则(GPSE),多组脆性岩石多轴试验结果证明了该强度准则的合理性以及适用性。基于该准则,分别推导了Mohr参数和Hoek参数表示的GPSE准则,为工程应用奠定了基础。
     3.在Mohr参数表示的GPSE准则的基础上,依据室内试验结果,分别提出了强度参数和扩容参数损伤演化公式,建立了适用于高应力下脆性岩石考虑扩容效应的硬化-软化本构模型(GPSEdshs),详细推导了该本构模型的有限差分格式,并实现了数值计算功能。基于GPSE准则,从理论和试验的角度,推导了地下岩石工程围岩体考虑扩容效应的安全评价指标即扩容安全度指标,给出了基于扩容安全度指标的围岩体开挖扰动的扩容安全分区。
     4.通过室内脆性岩石常规压缩试验的模拟、加拿大Mineby试验洞破坏区的模拟、考虑扩容软化本构与不考虑扩容软化本构计算结果对比以及锦屏II级水电站辅助洞横通道松动圈的模拟分析,均表明了GPSEdshs本构模型和扩容安全度指标可以较好地模拟高地应力条件下地下岩石工程脆性围岩体开挖后变形破损特征以及围岩体扩容损伤的空间分区特点。另外,算例分析表明,Mohr-Coulomb模型比GPSEdshs模型偏于保守。
     5.采用全自动岩石三轴蠕变伺服仪,进行了水压和应力耦合作用下锦屏深部大理岩的三轴蠕变试验,从轴向、侧向和体积变形等三个方面分析了不同围压、不同应力水平以及有无水压作用下脆性岩石的变形时效特征和演化规律,讨论了脆性岩石的等时曲线特征、变形速率特征、蠕变对变形、强度以及破坏的影响,初步掌握了复杂环境下锦屏大理岩流变特性的基本规律,明确了脆性岩石的时效破裂机理。
     6.在脆性岩石的流变试验认识以及前人研究的基础上,提出了考虑应力状态影响的脆性岩石非定常黏弹塑流变模型(NRM),推导了相应的蠕变方程和松弛方程,从理论上讨论了该模型的蠕变特性和松弛特性。在此基础上,结合渗流理论,提出了HM作用下脆性岩石的非定常黏弹塑流变本构计算模型,推导了它的有限差分格式,并在Flac3D中实现了数值计算功能,而数值试验表明了所研制的流变数值计算程序的合理性和正确性。然后对所提出的非定常黏弹塑流变模型进行辨识,识别出了水压和应力耦合作用下大理岩的蠕变试验参数。
     7.最后,将脆性岩石的力学试验以及提出的模型和安全性评价方法结合智能反演理论应用于锦屏II级引水隧洞辅助洞深埋段围岩体的稳定性研究中,采用二维和三维相结合的数值计算模型,系统地对位移矢量场、主应力矢量场、主应力路径、塑性屈服区以及扩容损伤区分布及其深度和大小等等广角度信息进行综合分析,总结了围岩体力学响应的时空演化规律和特征,并对比了有无水压时围岩体开挖引起的力学响应特征和规律,合理解释了深埋高应力下硬脆性围岩体的变形破坏滞后等问题。这些问题的研究为下一步引水隧洞的顺利施工提供了基础信息和理论依据。
Strength characteristics of rock under the complex stress conditions and its fail behaviors have been one of the most important and very complex research topic in the area of civil and related projects for a long time ago. As the deep development has been into a trend in the rock projects around the world, where the geological and stress environment has become more complex, the study of rock mechanics under the condition of high stress in deep engineering has been put on the agenda, in particular, the establishment of rock strength criteria and its constitutive model, which has been one of th key issuses describing its strength characteristics and its rules of deformation and damage in underground rock engineering.
     In view of this, in order to meet the construction needs and the development demand of rock mechanics subject, based on the deep brittle rock multi-point mechanical and rheological experimental investigation, the strength criteria and its constitutive model which is applicable to the conditons of high stress have been systematically investigated and proposed using mechanical theory such as rock strength theory, elastoplastic mechanics, rheological mechanics and seepage mechanics. In the end, with intelligent inversion theory, the above investigation results are applied to the practice of great hydropower rock project, wich solves the practical problems encountered in the construction of the actual engineering. In sum, the main investigation works and results are listed as follows:
     1. Based on the multi-angle expertimental results of Jinping marble from the deep site, such as single and triaxial test, damage-control loading-unloading test, true triaxial test and acoustic emission test, a more systematic analysis on the deformation and strength characteristics,energy dissipation characteristics of the brittle rocks under different circumstances in different states of stress is carried out from the deformation, strength, energy and failure view,which has access to the brittle rock characteristics and the instantaneous basic mechanics of deformation and damage. And then using crack strain theory, the internal crack evolution and failure mechanism of the deep brittle rock are made in a detailed analysis.
     2. Based on the physical basis of two failure-control mechanism, a Generalized Polyaxial Strain Energy Strength Criterion(GPSE) is created using Griffith theory and Weibols’s principle of effective strain energy. The GPSE strength criterrion for rock is verified by polyaxial test data of brittle rocks that have been published. And then the GPSE criteria expressed by Mohr’s and Hoek’s parameters respectively are derived on the basis of the criteria,which laid the foundation for application of actual projects.
     3. On the basis of GPSE criteria expressed by Mohr’s parameters and laboratory test results, the damage evolution formulas on strength parameters and expansion parameters are proposed, and the strain hardening-softening constitutive model considered dilate effect (GPSEdshs )which is applied to the brittle rock under high stress condition is established. Then the finite difference format of the constitutive model is derivated in detail, and its numerical computing capabilities are achieved. Based on GPSE criteria, a safety evaluation named by dilate safty factor of wall rock of underground rock project is derived to make the security disturbance district of wall rock excavation from the perspective of theoretical and experimental.
     4. The results including fitting of triaxial compression test stress-strain curves of marble,simulation of EDZ of Canada Mineby test tunnel,comparison of analog results both dilate strain-softening constitutive and non-dilate constitutive,simulation of EDZ of testing tunnel in JinPing II diversion tunnel and so on prove that the model and the dilate safty factor are suitable for numerical calculation of underground brittle wall rockmass and suitable for space district characteristics of dilate damage of wall rockmass under high geo-stress condition. In addition, the analysis result shows that the Mohr-Coulomb model is conservative than the GPSEdshs model.
     5. In order to know about the rheological properties of marble of the deep site in Jinping II diversion tunnel, triaxial compression rheological experiments with water pressure coupled stress were carried out on the rock servo-controlling rheology testing machine. The aging deformation characteristics and evolution rule of the brittle rock under different confining pressure, stress level and whether water pressure or not are investigated from the axial deformation,lateral deformation and volumetric deformation, and the characteristics such as tautochrone,deformation rate, creep deformation,creep strength,creep failure and so on are discussed in detail which make us preliminary master the basic law of rheological behavior on Jinping marble under the complex environment,and illustrate aging failure mechanics of the brittle rocks.
     6. On the basis of previous studies and rheological experiments of brittle rock, non-stationary visco-elastop-plastic rheological model considering the effect of stress state is put forward.And then the corresponding creep equation and the relaxation equation are deduced, and the model of the creep and relaxation properties of the model are theoretically discussed. On this basis and the combination of seepage theory, the numeratical model of non-stationary visco-elastop-plastic rheological constitutive under the role of H-M is proposed, and its finite difference format is derived which is to achieve the numerical calculations in Flac3D. The numerical results show that the numerical procedure of rheological model is reasonable and correct. And then by the identification of the non-stationary visco-elastop-plastic rheological model, the creep test parameters of Jinping II marble under the water pressure coupled stress are successfully identified.
     7. Finally, with intelligent inversion theory, experimental and theoretical investigation results on mechanical properties of brittle rock are applied to .the study of wall rock stability in deep site of assisted tunnel of Jinping II diversion tunnel. Using numerical models of 2D and 3D, space-time evolutionary process and law of mechanical response of wall rockmass are systematically analysed and summaried from the views of the displacement vector field, the principal stress vector field, the principal stress path, as well as size and depth of plastic zone anddilate damage zone,and so is whether water pressure or not.The problems including the nature of deformation lag, the nature of failure lag and so on in the hard rockmass under high stress in the deep field are reasonably interpreted.Research on these issues provides the basis of information and theory for the smooth construction of Jinping II diversion tunnel.
引文
1 姚香.关于深部开采技术的探讨[J].黄金,1998,2(19):17-20.
    2 Malan D F, Basson F R P. Ultra-deep mining: the increased potential for squeezing conditions[J]. Journal of South African Institute of Mining and Metallurgy, 1998, 98(11): 353-363.
    3 杨春和,王贵宾,王驹.甘肃北山预选区岩体力学与渗流特性研究[J].岩石力学与工程学报,2006,25(4):825-832.
    4 何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2812.
    5 潘家铮.中国的能源问题和出路[J].自然杂志,1997,19(5):249-54.
    6 杨强.超大规模水利水电工程中的深部岩石力学问题[C].香山科学会议第
    230次学术讨论会.深部地下空间开发的基础研究关键技术问题,2004:134-144.
    7 王学潮,马国彦.南水北调西线工程及其主要工程地质问题[J].工程地质学报,2002,10(1):38_45.
    8 电力工业部水利部西北勘测设计研究院.高地应力地区大型地下厂房洞群围岩稳定性研究[R].1993.
    9 冯夏庭,周辉等.拉西瓦水电站高地应力下大型地下洞室群围岩开挖顺序与支护参数的全局优化[R].武汉:中国科学院武汉岩土力学研究所,2006.
    10徐林生,王兰生,李天斌.国内外岩爆研究现状综述[J].长江科学院报,1999,16(4):24-27.
    11徐林生,王兰生.岩爆形成机理研究[J].重庆大学学报(自然科学版),2001,24(2):115-117.
    12徐林生,王兰生,李永林.岩爆形成机制与判据研究[J].岩土力学,2002,23(3):300-302.
    13彭家寿.二滩水电站地下工程岩爆及其防护[J].水力发电,1998,(7):39-40.
    14景茂贵.拉西瓦水电站地下厂房洞群监测资料反演分析与稳定性评价研究[D].西安理工大学博士论文,2007.
    15王湘锋.锦屏二级水电站深埋特长引水隧洞岩爆模拟及预测研究[D].成都理工大学硕士论文,2006.
    16谢和平.深部高应力下的资源开采与地下工程一机遇与挑战[C].香山科学会议第175次学术讨论会.深部高应力下的资源开采与地下工程,2001.
    17王德荣,李杰,钱七虎.深部地下空间周围岩体性能研究浅探[J].地下空间与工程,2006,2(4):542-546.
    18王明洋,周泽平,钱七虎.深部岩体的构造和变形与破坏问题[J].岩石力学与工程学报,2006,25(3):448-455.
    19钱七虎.深部大型地下工程围岩破坏特点及其施工设计对策[R].武汉:中科院武汉岩体力学研究所,2006,12.
    20 Gurtunca R G, Keynote L. Mining below 3 000 m and challenges for the South African gold mining industry[A]. In: Proceedings of Mechanics of Jointed and Fractured Rock[C] Rotterdam: A.A.Balkema, 1998: 3-10.
    21 Diering D H. Tunnels under pressure in an ultra-deep Wifwatersr and gold mine[J]. Journal of the South African Institute of Mining and Metallurgy, 2000, 100: 319-324.
    22 VogelM, Andrast H E Alp transit梥afety in construction as a challenge, health and safety aspects in very deep tunnel construction[J] Tunneling and Underground Space Technology, 2000, 15(4): 481-84.
    23 Hagan, T. N. Design and Performance of Underground Excavation[J]. ISRM Symposium Sponsored by: Int Soc for Rock Mechanics, Lisbon, Port British Geotechnical Soc, 1984: 255-262.
    24葛修润.岩石疲劳破坏的变形控制律、岩土力学试验的实时X射线CT扫描和边坡坝基抗滑稳定分析的新方法[J].岩土工程学报,2008,30(1):1-20.
    25尤明庆,苏承东,缑勇.大理岩孔道试样的强度及变形特性的试验研究[J].岩石力学与工程学报,2007,26(12):2420-2429.
    26高春玉,徐进,何鹏等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    27喻勇,尹健民.三峡花岗岩在不同加载方式下的能耗特征[J].岩石力学与工程学报,2004,23(2):205-208.
    28沈军辉,王兰生,王青海等.卸荷岩体的变形破裂特征[J].岩石力学与工程学报,2003,22(12):2028-2031.
    29徐松林,吴文,王广印等.大理岩等围压三轴压缩全过程研究I:三轴压缩全过程和峰前、峰后卸围压全过程试验[J].岩石力学与工程学报,2001,20(6):763-767.
    30沈明荣,石振明,张雷等.不同加载路径对岩石变形特性的影响[J].岩石力学与工程学报,2003,22(8):1234-1238.
    31卢应发,田斌,余天堂等.不同加载路径饱和岩石力学特征的试验研究[J].岩石力学与工程学报,2005,24(A01):5065-5071.
    32徐光苗,刘泉声,彭万巍等.低温作用下岩石基本力学性质试验研究[J].岩石力学与工程学报,2006,25(12):2502-2508.
    33朱合华,闫治国,邓涛.3种岩石高温后力学性质的试验研究[J].岩石力学与工程学报,2006,25(10):1945-1950.
    34方荣,朱珍德,张勇等.高温和循环高温作用后大理岩力学性能试验研究与 比较[J].岩石力学与工程学报,2005,24(A01):4735-4739.
    35周青春,李海波,杨春和等.南水北调西线一期工程砂岩温度、围压和水压耦合试验研究[J].岩石力学与工程学报,2005,24(20):3639-3645.
    36曹广祝,仵彦卿,丁卫华等.单轴-三轴和渗透水压条件下砂岩应变特性的CT试验研究[J].岩石力学与工程学报,2005,24(A02):5733-5739.
    37陈四利,冯夏庭,李邵军.岩石单轴抗压强度与破裂特征的化学腐蚀效应[J].岩石力学与工程学报,2003,22(4):547-551.
    38邢福东,朱珍德,刘汉龙等.高围压高水压作用下脆性岩石强度变形特性试验研究[J].河海大学学报:自然科学版,2004,23(2):184-187.
    39杨继华,刘汉东.岩石强度和变形真三轴试验研究[J].华北水利水电学院学报2007,28(3):66-68.
    40 Chang C, Haimson B C. True triaxial strength and deformability of the KTB deep hole amphibolite [J]. Journal of Geophysical Research, 2000, 105(8): 18999-19013.
    41 Haimson B C, Chang C. True triaxial strength of KTB amphibolite under borehole wall conditions and its use to estimate the maximum horizontal in-situ stress [J]. Journal of Geophysical Research, 2002, 107(B10): 2257-2271.
    42陈景涛,冯夏庭.高地应力下岩石的真三轴试验研究[J].岩石力学与工程学报,2006,25(8):1537-1543.
    43许东俊,章光,李廷芥等.岩爆应力状态研究[J].岩石力学与工程学报,2003,19(2):169-172.
    44何满潮,苗金丽,李德建等.深部花岗岩试样岩爆过程实验研究[J].岩石力学与工程学报,2007,26(5):865-876.
    45秦四清,李造鼎,张倬元等.岩石声发射技术概论[M].西南交通大学出版社, 1993.
    46梁忠雨,高峰,钟卫平等.岩石脆性断裂试验的声发射分析[J].矿业工程,2007,5(2):16-17.
    47李庶林,尹贤刚,王泳嘉等.单轴受压破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2499-2503.
    48张茹,谢和平,刘建锋.单轴多级加载岩石破坏声发射特性试验研究[J].岩石力学与工程学报,2006,25(12):2584-2588.
    49 Lei X L, Masuda K, Nishizawa O et al. Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock [J]. Journal of Structural Geology, 2004, 26: 247-258.
    50李俊平,余志雄,周创兵等.水力耦合下岩石的声发射特征试验研究[J].岩石力学与工程学报,2006,25(3):492-498.
    51潘长良,祝方才,曹平等.单轴压力下岩爆倾向岩石的声发射特征[J].中南工业大学学报,2001,32(4):336-338.
    52徐林生,唐伯明,慕长春等.高地应力与岩爆有关问题的研究现状[J].公路交通技术,2002,(4):48-51.
    53周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2004,35(1):91-99.
    54 Mogi K. Fracture and flow of rocks under high triaxial compression[J]. Geophys. Res., 1971, 76: 1225-1269.
    55许东俊,耿乃光.岩石强度随中间主应力变化规律[J].固体力学学报,1985,6(1):72-80.
    56蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    57尤明庆.岩石试样的强度及变形破坏过程[M].北京:地质出版社,2000.
    58孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    59王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    60杨挺青,罗文波,徐平等.黏弹性理论与应用[M].北京:科学出版社,2004.
    61崔希海,付志亮.岩石流变特性及长期强度的试验研究[J].岩石力学与工程学报,2006,25(5):1021-1024.
    62范庆忠,高延法.分级加载条件下岩石流变特性的试验研究[J].岩土工程学报,2005,27(11):1273-1276.
    63赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J].岩土力学,2003,24(4).583-586.
    64李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2000,22(3):299-303.
    65夏熙伦,徐平.岩石流变特性及高边坡稳定性流变分析[J].岩石力学与工程学报,1996,15(4):312-322.
    66李化敏,李振华,苏承东.大理岩蠕变特性试验研究[J].岩石力学与工程学报,2004,23(22):3745-3749.
    67陈有亮.岩石蠕变断裂特性的试验研究[J].力学学报,2003,35(4):480-484.
    68任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报,2002,(1):10-15.
    69扬建辉.砂岩单轴受压蠕变试验现象研究[J].石家庄铁道学院学报,1995,8(2):77-80.
    70 Ito H., Sasajima S. A ten year creep experiment on small rock specimens[J]. Int. J. RockMech. Mine Sci. and Geomech. Abstr., 1987, 24(2): 113-121.
    71金丰年.岩石拉压特征的相似性[J].岩土工程学报,1998,20(3):31-33.
    72 Costin L S.Time-dependent damage and creep of brittle rock[J].Damage Mechanics and Continuum Modeling, ASCE, 1985, 25-38.
    73 Kranz R L. The effects of confining pressure andstress difference on static fatigue ofgranite[J].J.Geophys.Res., 1980, 85(2): 1854-1866.
    74 Karaz R L.Crack growth and development during creep of barre granite[J].Int. J. RockMech. Min. Sci. & Geomech. Abstr., 1979, 16(11): 23-35.
    75 Kranz R L. Crack-crack and crack-pore interactions in stresses granite [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1979, 16(11): 37-47.
    76丁秀丽.岩体流变特性的试验研究及模型参数辨识[D].武汉:中国科学院武汉岩土力学研究所,2005.
    77凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,12(4):304-312.
    78凌建明.节理岩体损伤力学及时效损伤特性的研究[D].上海:同济大学,1992.
    79谢强,姜崇喜,凌建明.岩石细观力学实验与分析[M].西南交通大学出版社,1997.
    80杨延毅.节理裂隙岩体损伤.断裂力学模型及其在岩体工程中的应用.[D].北京:清华大学,1990.
    81杨延毅.裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究[J].工程力学,1994,11(2):81-90.
    82袁海平.诱导条件下节理岩体流变断裂理论与应用研究[D].长沙:中南大学, 2006.
    83陈卫忠,朱维申等.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报,1999(12):33-37.
    84邓广哲,朱维申.岩体裂隙非线性蠕变过程特性与应用研究[J].岩石力学与工程学报,1998,17(4):358-365.
    85邓广哲,朱维申.蠕变裂隙扩展与岩石长时强度效应实验研究[J].实验力学,2002,17(2):177-183.
    86杨松林,徐卫亚.裂隙蠕变的稳定性准则[J].岩土力学,2003,24(3):423-427.
    87徐卫亚,杨松林.裂隙岩体松弛模量分析[J].河海大学学报(自然科学版),2003,31(3):295-298.
    88 Chen S H, Pande G N. Rheological model and finite element analysis of jointed rock masses reinforced by passive, fully-grouted bolts. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1994, 31(3): 273-277.
    89 Chen S H, Egger P. Elasto-viscoplastic distinct modelling of bolt in jointed rock masses. Proc. Comp. Meth. and Adv. in Geomech., Wuhan, China, 1997.
    90 Korzeniowski W.: Rheological model of hard rock pillar[J]. Rock Mechanics and Rock Engineering, 1991, 24 (3): 155-166.
    91李铀,朱维申,白世伟等.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报,2003,22(10).1673-1677.
    92杨圣奇,徐卫亚,谢守益等.饱和状态下硬岩三轴流变变形与破裂机制研究[J].岩土工程学报,2006,28(8):962-969.
    93 Fujii Y., Kiyama T. Circumferential strain behavior during creep tests of brittle rocks[J]. Int. J. Rock Mech. Mine Sci. and Geomech Abstr., 1999, 36(3): 323-337.
    94朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796.
    95刘泉声,出口勉.三峡花岗岩与温度及时间相关的力学性质试验研究[J].岩石力学与工程学报,2001,20(5):715-719.
    96 Sun Jun,Hu Y Y. Time-dependent effects on the tensile strength of saturated granite at Three Gorges Project in China[J]. Int. J. Rock Mech. Mine Sci.,1997,34: 381-381.
    97杨彩红,王永岩,李剑光等.含水率对岩石蠕变规律影响的试验研究[J].煤炭学报,2007,32(7):695-699.
    98 Yu MaoHong. Twin-shear theory and its application[M]. Beijing: Science Press, 1998.
    99 Yu Maohong. Advances in, strength theories for materials under complex stress state in the 20th century [J]. ASME, Appl. Mech. Rev., 2002, 55(3): 169-218.
    100高红.岩土材料屈服破坏准则研究[D].武汉:中国科学院武汉岩土力学研究所,2006.
    101 Colmenares, L.B. and M.D. Zoback, A statistical evaluation of rock failure criteria constrained by polyaxial test data for five different rocks, International Jour. Rock Mech. Min. Sci., 2002, 39: 695-729.
    102周维垣.高等岩石力学[M].北京:水利电力出版社,1990.
    103 Edelbro, C. Rock mass strength-a review[R]. Sweden: Lulea" University ofTechnology, 2003.
    104Hoek, E., Brown, E.T.. Practical estimates of rock mass strength. Int. J. RockMech. Min. Sci. Geomech. Abstr. 1997, 27(3), 227-229.
    105 Hoek E., Carranza-Torres C, Corkum B. Hoek-Brown Failure Criterion - 2002Edition. In: Hammah R., Bawden W., Curran J, Telesnicki M. (Eds.), Proceedingsof NARMS-TAC 2002, Mining Innovation and Technology. Toronto-10 July2002. University of Toronto, 2002: 267-273.
    106黄书岭,冯夏庭,张传庆.脆性岩石广义多轴应变能强度准则及试验验iiE[J].岩石力学与工程学报,2008,27(1):124-134.
    107 Pelli F, Kaiser PK, Morgenstern NR. An interpretation of ground movements recorded during construction of Donkin-Morien tunnel[J]. Can Geotech, 1991,28(2):239-254.
    108 Martin CD. Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength[J]. Can Geotech 1997, 34(5):698-725.
    109 V. Hajiabdolmajid, P.K. Kaiser, CD. Martin. Modelling brittle failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6): 731-741.
    110 Hajiabdolmajid VR. Mobilization of strength in brittle failure of rock, Ph.D. thesis, epartment of Mining Engineering, Queen's University, Kingston, Canada, 2001.
    111苏国韶,冯夏庭.基于粒子群优化算法的高地应力条件下硬岩本构模型的参数辨识[J].岩石力学与工程学报,2005,24(17):3029-3034.
    112苏国韶.高地应力下大型地下洞室群稳定性分析与智能优化研究[D].武汉:中国科学院武汉岩土力学研究所,2006.
    113殷有泉,曲圣年.弹塑性耦合和广义正交法则[J].力学学报,1982,14(1):29-41.
    114 Z.P.Bazant, et al. Endochronic theory of Inelasticity and Failure of Concrete[J]. J. of Eng. Mech. Div., ASCE, 1976, 102(EM4): 701-755.
    115 Desai C S, Toth J.Disturbed state constitutive modeling based on stress-strain and nondestructive behavior[J].Int.J.Solids Structures, 1996, 33(11): 1619-1650
    116 Desai C. S.. Mechanics of Materials and Interfaces梩he Disturbed State Concept[M]. Boca Raton: CRC Press, USA, 2001.
    117 Han , D.J. and Chen , W.F. Strain space plasticity formulation for hardening-softening materials with elastoplastic coupling[J]. Int. J. Solids Structures, 1986, 22 (8): 935-950.
    118周维垣,杨强.岩石力学数值计算方法[M].北京:中国电力出版社,2005.
    119Krajcinovic D. Damage Mechanics(2nd Edition)[M]. Netherland: Elsevier Science BV, 2003.
    120 Marigo J. J.. Modelling of brittle and fatigue damage for elastic materials by growth ofmicrovoids[J]. EngFract Mech, 1985, 21(4): 861-874.
    121 Sidoroff F. Damage mechanics and its application to composite materials. In: Proceedings of the European Mechanics Colloquium 182, Elsevier Applied Science Publisher, 1985: 21-35.
    122 Frantziskonis G , et al. Analysis of a strain softening constitutive model[J].Int.J.Solids Structure, 1987, 23(6): 751-767.
    123 Kawamoto T, Ichikawa Y, Kyoya T. Deformation and fracture behaviour of discontinuous rock mass and damage mechanics theory [J]. Int J.for Num and Analy.Meth in Geomech, 1988, 12(1): 1-30.
    124 J.F. Shao and J.W. Rudnicki, A microcrack based continuous damage model for brittle geomaterials[J], Mech Mater, 2000, 32: 607-619.
    125 Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6: 773-782.
    126 Bazant Z P. Mechanics of fracture and progressive cracking in concrete structures. In: Fracture mechanics of concrete, Martinus Nijhoff, 1985.1.
    127余寿文.断裂损伤与细观力学[J].力学与实践,1988,10(2):1-9.
    128周维垣,剡公瑞.岩体弹脆性损伤本构模型及工程应用[J].岩土工程学报,1998,20(5):54-57.
    129朱维申,李术才,张强勇.三维脆弹塑性断裂损伤模型在裂隙岩体工程中的应用[J].固体力学学报,1999,20(2):164-170.
    130谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    131冯夏庭.智能岩石力学导论[M],北京:科学出版社,2000.
    132张成良.深部岩体多场耦合分析及地下空间开挖卸荷研究[D],武汉:武汉理工大学,2007.
    133 Ohnishi Y, Kabayashi A. Thermal-hydraulic-mechanical coupling analysis ofrock mass. Comprehensive Rock Engineering[C], J. A. Hudson, edit, Pergamon,New York, 1993, (2): 191-208.
    134Jiao Y, Hudson J A. The fully-coupled model for rock engineering systems.International Journal of Rock Mechanics and Mining Sciences, 1995, 32(5):
    491-512.
    135范广勤.岩土工程流变力学[M]北京:煤炭工业出版社,1993.
    136章根德,何鲜,朱维耀.岩石介质流变学[M].北京:科学出版社, 1999.
    137陈沅江,潘长良,曹平等.基于人工神经网络的岩土流变本构模型辨识[J].中国有色金属学报,2002,12(5):1027-1034.
    138金丰年,浦奎英.关于粘弹性模型的讨论[J].岩石力学与工程学报,1995,14(4):335-361.
    139孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1106.
    140杨圣奇.岩石流变力学特性特性的研究及其工程应用[D].南京:河海大学,2005.
    141徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006,(3)-433-447.
    142曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632-634.
    143陈沅江,潘长良,曹平等.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209-214.
    144邓荣贵,周德培,张倬元等.一种新的岩石流变模型[J].岩石力学与工程学报,200 1,20(6):780-784.
    145王来贵,何峰,刘向峰等.岩石试件非线性蠕变模型及其稳定性分析[J].岩石力学与工程学报,2004,23(10):1640-1642.
    146 Boukharov G N, ChandaM W. The three processes of brittle crystalline rock creep[ J]. In.t J. Rock Mech. Min. Sc.i &Geomech.Abstr., 1995, 32(4): 325-333.
    147韦立德.岩石力学损伤和流变本构模型研究[D].南京:河海大学,2003.
    148吕爱钟,丁志坤,焦春茂等.岩石非定常蠕变模型辨识[J].岩石力学与工程学报,2008,27(01):16-21.
    149丁志坤,吕爱钟.岩石粘弹性非定常蠕变方程的参数识别[J].岩土力学,2004,25(S): 37-40.
    150罗润林,阮怀宁,孙运强等.一种非定常参数的岩石蠕变本构模型[J].桂林工学院学报, 2007,27(2):200-203.
    151陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报。1991,10(4):299-312.
    152 J.F. Shao, Q.Z. Zhu and K. Su. Modeling of creep in rock materials in terms of material degradation[J], ComputGeotech, 2003, 30: 549-555.
    153金丰年.岩石的非线性流变[M].南京:河海大学出版社,1998.
    154陈祖安.岩石蠕变扩容与损伤变量本构关系[J].地球物理学进展,1993,(4):
    31-35.
    155徐海滨,朱维申,白世伟岩体粘弹塑性.损伤本构模型及其有限元分析[J].岩土力学,1992,13(1):11-20.
    156肖洪天,周维垣,杨若琼.岩石裂纹流变扩展的细观机理分折[J].岩石力学与工程学报,1999,18(6):623-626.
    157孙钧,凌建明.三峡船闸高边坡岩体的细观损伤及长期稳定性研究[J].岩石力学与工程学报,1997,16(1):1-12.
    158陈卫忠,朱维申.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报,1999,(12):33-37.
    159陈炳瑞.岩石工程长期稳定性智能反馈分析方法及应用研究[D].沈阳:东北. 大学,2006.
    160王芝银,郭书太,李云鹏.等效连续岩体流固耦合流变分析模型[J].岩土力学,2006,27(12):2123-2126.
    161朱珍德,郭海庆.裂隙岩体水力学基础[M]北京:科学出版社,2007.
    162梁冰,李平.孔隙压力作用下圆形巷道围岩的蠕变分析[J].力学与实践,2006,28(5):69-72.
    163杨彩红,王永岩,李春林.含水率变化对深部工程岩体蠕变规律的影响[J].化工矿产地质,2007,29(1):55-60.
    164吴秀仪,刘长武,沈荣喜等.水压与外力共同作用下的岩石蠕变模型[J].西南交通大学学报,2007,42(6):720-725.
    165魏佳,李剑光,段雪娣.孔隙水压对岩体蠕变影响研究[J].矿山压力与顶板管理,2005, (4):125-126.
    166黄小华.温度.水.应力下开挖扰动区裂隙花岗岩体流变过程研究及细胞自动机模拟[D].武汉:中国科学院武汉岩土力学研究所,2007.
    167Andreev G.Brittle Failure of Rock Materials[M]-Rotterdam:A.A.Balkema,1995.
    168徐则民,黄润秋.深埋特长隧道及其施工地质灾害[M].成都:西南交通大学出版社,2000.
    169谢国权,曾新华.某特长隧道极强岩爆成因机理分析与防治[J].人民长江,2007,38(8):127-129.
    170单治钢.锦屏二级水电站长隧洞的岩爆分析与防治[J].成都理工学院学报,2001,28(S):446-450.
    171靖洪文,许国安,谢述新.不同围压下大理岩剪胀试验研究[J].河海大学学报.2001,29(S):31-33.
    172康红普.岩石扩容与巷道底臌[J].阜新矿业学院学报,1992,11(3):40-45.173陆阳泉,赵家骝.利用大样本岩石破裂实验模拟扩容:扩散孕震模式的某些. 结果(一)[J].地震学报,1998,20(2):194-200.
    174单治钢,张倬元,刘汉超.雅砻江锦屏二级水电站可行性研究一引水隧洞围岩分类研究专题报告[R],杭州:中国水电顾问集团华东勘测设计研究院,2005.
    175单治钢,刘汉龙.锦屏岩体特性报告[R],中国水电顾问集团华东勘测设计研究院,2005.
    176尤明庆.岩石的力学性质[M].北京:地质出版社,2007.
    177陈景涛.高地应力下硬岩本构模型的研究和应用[D].北京:中国科学院研究生院,2006.
    178邓小亮.三轴压缩下大理岩应力应变全过程力学特性及内时本构关系研究[D].武汉:中国科学院武汉岩土力学研究所,1991.
    179赵永红,黄杰藩,王仁.岩石微破裂发育的扫描电镜即时观测研究[J].岩石力学与工程学报,1992,11(3):284-294.
    180朱珍德,张勇,王春娟.大理岩脆-延转换的微观机理研究[J].煤炭学报,2005,30(2):31-35.
    181尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778-781.
    182谢强,姜崇喜,凌建明.岩石细观力学试验与分析[M],成都:西南交通大学出版社,1996.
    183冯夏庭译,声发射(AE)技术的应用[M].北京:冶金工业出版社,1996.
    184陈顒.地壳岩石的力学性能——理论基础与实验方法[M],北京:地震出版社, 1988.
    185 C. D. Martin. The strength of massive Lac du Bonnet granite around underground openings[D], The United States: University of Manitoba, 1993.
    186SAMMIS C G, ASHBY M F. The failure of brittle porous solids under compressive stress states[J]. ActaMetallurgica, 1986, 34(3): 511-526.
    187KEMENY J M, COOK N G W. Crack models for the failure of rocks in compression[C]. Proceedings of the International Conference on Constitutive Laws for Engineering Materials. Amsterdam: Elsevier, 1987: 879-887.
    188 DEY TN, WANG C Y. Some mechanisms of microcrack growth and interaction in compressive rock failurefJ]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1981, 18(3): 199-209.
    189 BRACE W F, PAULDING B W, SCHOLZ C. Dilatancy in the fracture of crystalline rocks[J]. Journal of Geophysical Research, 1966, 71(16): 3939-3953.
    190Hallbauer, D.K., Wagner, H. and Cook, N.GW.. Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.1973, 9: 37-86.
    191耶格(J.C.Jaeger),库克(N.GW.Cook)著.岩石力学基础[M],北京:科学出版社,1981.
    192 L.R. Alejano, E. Alonso. Considerations of the dilatancy angle in rocks and rock massesfJ]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42 (4): 481-507.
    193张流,薛丽霞,施良骐等.高围压卞岩石破坏和摩擦滑动过程中的声发射活动性[J].岩石力学与工程学报,1990,9(1):38_47.
    194陈景涛,冯夏庭.高应力下硬质岩石的本构模型研究[C].2006年三峡库区地质灾害与岩土环境学术研讨会论文集.重庆:[s.n.],2006:88-103.
    195路德春,江强,姚仰平.广义非线性强度理论在岩石材料中的应用[J].力学学报,2005,37(6):729-736.
    196 Aubertin M, Li L, Simon R. Formulation and application of a short-term strength criterion for isotropic rocks. Can. Geotech. J. 1999, 36(5): 947-60.
    197周小平,钱七虎,杨海清.深部岩体强度准则[J].岩石力学与工程学报,2008,27(1):117-123.
    198 Mogi K. Effect of intermediate principal stress on rock failure. J. Geophys. Res. 1967, 72 (20): 5117-5131.
    199 Hudson, J.A., Harrison, J.P., 1997. Engineering Rock Mechanics: An Introductionto the Principles.Pergamon Press, Oxford.
    200高延法,陶振宇.岩石强度准则的真三轴压力试验检验与分析[J].岩土工程学报,1993,15(4):26.32.
    201 Y. Jiang, H. Yoneda, Y. Tanabashi.Theoretical estimation of loosening pressure on tunnels in soft rocks[J].Tunnelling and Underground Space Technology, 2001, 16 (2): 99-105.
    202 Chang C, Haimson B. True triaxial strength and deformability of the German Continental deep drilling program (KTB) deep hole amphibolite. J. Geophys. Res. 2000, 105 (B8): 18999-19014.
    203 Haimson BC, Chang C. A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. Int. J. Rock Mech.Min.Sci. 2000, 37 (1-2): 285-296.
    204 J.-P. Tshibangu, The effect of a polyaxial confining state on the behaviour of two limestones, in Environmental and Safety Concerns in Underground Construction, Lee, Yang & Cheng (eds), pp. 465-470, Balkema, Rotterdam, 1997.
    205 Michelis P. Polyaxial yielding of granular rock. J. Eng. Mech. 1985; 111 (8): 1049-1066.
    206 Wiebols GA, Cook NGW. An energy criterion for the strength of rock in polyaxial compression. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1968, 5(6): 529-549.
    207 Mogi, K. Fracture and flow of rocks under high triaxial compression. Journal of Geophysical Research 1971, 76(5): 1255-1269.
    208李小春,许东俊.中间主应力对岩石强度的影响程度和规律[J].岩土力学,1991,12(1):9-16.
    209郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    210陈益峰,周创兵,盛永清.应变敏感的裂隙及裂隙岩体水力传导特性研究[J].岩石力学与工程学报,2006,25(12):2441-2452.
    211 Itasca Consulting Group, Inc. USA. FLAC3D [M]. Fast Lagranginan Analysis of Continua in 3 Dimensions, version 2.1, User's Manual.
    212刘波,韩彦辉.FLAC原理、实例于应用指南[M].北京:人民交通出版社,2005.
    213张传庆.基于破坏接近度的岩石工程安全性评价方法的研究[D]北京:中国科学院研究生院,2006.
    214 R.S.Read. 20 years of excavation response studies at AECL's Underground ' Research Laboratory [J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41 (8): 1251-1275.
    215中国水电顾问集团华东勘测设计研究院.雅砻江锦屏二级水电站可行性研究报告-工程地质专题(9):引水隧洞高地应力、高外水压条件下岩体特性及围岩稳定性研究专题报告[R].杭州,2005.11.
    216中国水电顾问集团华东勘测设计研究院.雅砻江锦屏二级水电站工程引水隧洞地质条件报告[R].杭州,2006.4.
    217陈卫忠,杨建平,伍国军等.低渗透介质渗透性试验研究[J].岩石力学与工程学报,2008,27(2):236-243.
    218杨天鸿,于庆磊,王善勇等.荷载和水压作用下岩石裂纹贯通过程的数值模拟研究[J].岩石力学与工程学报,2005,24(S1):5026-5030.
    219沈珠江.岩土破损力学:理想脆弹塑性模型[J]岩土工程学报,2003,25(3):253-257.
    220薛毅.最优化原理与方法[M].北京:北京工业大学出版社,2001.
    221冯夏庭周辉等.雅砻江锦屏二级水电站招标设计阶段引水隧洞围岩稳定性及结构设计研究报告[R].武汉:中国科学院武汉岩土力学研究所,2006
    222朱焕春.雅砻江锦屏II级水电站引水隧洞围岩稳定性与支护措施研究报告[R].武汉:Itasca咨询集团公司,2006.8.
    223 E. Eberhardt. Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38 (4): 499-518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700