深部巷道围岩非连续破裂机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着开采深度的增加,巷道围岩的变形破坏日趋严重,支护更为困难,对深部资源的安全开采带来了巨大威胁。研究表明:在深部高应力开采条件下,巷道围岩内将会出现完整区和破坏区相间隔的现象,称之为“非连续破裂”现象。采用传统的连续介质弹塑性力学已不能完全解释清楚,科学揭示深部巷道围岩非连续破裂机理已成为一个热点,本文通过现场探测、理论分析、数值模拟等研究方法,对这一现象进行系统分析。
     (1)以新汶矿业集团有限责任公司孙村煤矿、良庄煤矿、鄂庄煤矿深部巷道为探测地点,使用岩层钻孔探测记录仪对不同岩层结构顶板进行探测,探测结果表明:弱结构附近总是伴随着破裂区的出现,由此可知,在高应力作用下,深部巷道围岩内弱结构是产生非连续破裂的关键。
     (2)利用流变力学知识建立了具有强流变特性的本构模型,即“强流变模型”。该模型除包含传统流变力学元件外,还增加了非线性流变元件,用以描述岩石的加速蠕变阶段,并将其加入Flac3D模型库中,供数值模拟使用;基于理想介质圆形巷道的分析模型,探讨在考虑巷道轴向应力的影响下围岩中应力分布规律,确定了以最大拉应力准则为主、最大剪应力准则及能量准则为辅的破坏准则。
     (3)在提出合理数值模拟方法后,利用Flac3D考察采深、弱结构、围岩整体强度、巷道断面形状、采动及蠕变对于非连续破裂现象的影响程度,结果表明:足够的采深是产生非连续破裂现象前提条件,而弱结构是围岩内形成非连续破裂现象的关键,围岩强度的大小及采动将会影响到非连续破裂现象的破坏程度以及破坏范围,巷道断面形状对非连续破裂现象影响不大。
     (4)结合力学分析模型,以径向应变为依据,通过求解最大径向应变出现位置对非连续破裂现象进行力学分析,并基于各因素对非连续破裂现象的影响程度,对非连续破裂现象机理进行解释,进一步明确了“弱结构”在形成非连续破裂现象中的关键作用。
Along with mining depth's increasing, deformation of the rock around tunnels destroys seriously day by day and the supports become more difficult. Depth portion resources' safe mining is threaten greatly by it. The research indicated:On mining condition of high stress in depth, the phenomenon which the complete area and the destruction area will be separated is presented in surrounding rock and called "Non-continuous disintegrate". It is not able to be explained complete clearly by traditional continuous medium elasto-plasticity mechanics and scientific research about mechanism of Non-continuous disintegrate becomes a hot spot in surrounding rock. The system analysis research to this phenomenon through methods of scene survey, theoretical analysis, numerical simulation and so on is conducted in this dissertation.
     (1) The survey to the different roof structure tunnel is carrried on by using rock layer drill hole survey recording instrument in Xinwen coal mine, Liangzhuang coal mine, Ezhuang coal mine, Xinwen Mining Group Co., Ltd. The survey result indicated:, the weak structure is the reason which leads to Non-continuous disintegrate on condition of the high stress function in deep roadway. At the same time, factor of creepage and so on also have a great influence.
     (2) Constitutive model with strong rheological properties is Established by Rheology knowledge and named "strongly rheological model". Nonlinear rheological components is increased in this model besides of traditional rheological mechanical components to describe accelerated creep stage of the rock which is provided to research creep buckling in high stress condition.This model is added in the Flac3D model base for numerical simulation use; Based on media ideal analysis model of circular tunnel, Stress distribution in the surrounding rock is discussed about Tunnel excavating in the initial period under the conditions of axial stress, and the failure criteria which determined mainly by the maximum tensile stress criterion and supplemented by maximum shear stress criterion and energy criterion by numerical simulation of the mechanical angle.
     (3) After reasonable numerical simulation method determined, the impact of non-continuous fracture phenomenon which is caused by mining depth, weak structure, the overall strength of rock, roadway shape, mining and creep is simulated in Flac3D. The results show that:Enough mining depth is precondition of Non-continuous disintegrate phenomenon. However, weak structure plays a key role. The overall strength of rock and mining affect the scope of the damage and destruction of the non-continuous fracture phenomenon, but roadway shape has small effects.
     (4) Take the radial strain as the clue, combining with mechanical model, to explain the theoretical mechanism about Non-continuous disintegrate. Based on affect of various factors on the phenomenon of Non-continuous disintegrate explain the phenomenon, Site mechanism is interpreted and critical role which "weak structure" plays is further defined.
引文
1. Gurtunca R QKeynote L. Mining below 3000 m and challenges for the South African gold mining industry[A]. In:Proceedings of Mechanics of Jointed and Fractured Rock[C]. Rotterdam:A. A. Balkema,1998:3-10.
    2. Vogel M,Andrast H P. Alp transit-safety in construction as a challenge, health and safety aspects in very deep tunnel construction[J]. Tunneling and Underground Space Technology, 2000,15(4):481-484.
    3.何满潮.深部开采工程岩石力学的现状及其展望[A].见:中国岩石力学与工程学会编.第八次全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2004.88-94.
    4.何满潮,谢和平,彭苏萍,姜耀东.深部开采岩体力学研究.岩石力学与工程学报,2005,24(16).
    5.晏玉书.我国煤矿软岩巷道围岩控制技术现状及发展趋势[A].见:何满潮编.中国煤矿软岩巷道支护理论与实践[C].北京:中国矿业大学出版社,1996.1-17.
    6. Paterson M S. Experimental deformation and faulting in Wombeyan marble[J]. Bull. Geol. Soc. Am.,1958,69:465-467.
    7.谢和平.深部高应力下的资源开采—现状、基础科学问题与展望[A].见:香山科学会议编.科学前沿与未来(第六集)[C].北京:中国环境科学出版社.2002:179-191.
    8.周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35:91-99
    9.王明洋,周泽平,钱七虎.深部岩体的构造和变形与破坏问题[J].岩石力学与工程学报,2006,25(3):448-455.
    10.谢和平,陈忠辉.岩石力学[M].北京:高等教育出版社,2004.
    11.钱七虎.深部岩体工程围岩分区破裂化现象研究综述[J].岩石力学与工程学报.2008,27(6):443-449
    12. CLOETE D R, JAGER A J. The nature of the fracture zone in gold mines as revealed by diamond core drilling[J]. [S.I.]:Association of Mine Managers,1972.
    13. ADAMS G D, JAGER A J. Etroscopic observations of rock fracturing ahead of the stope faces in deep-level gold mines[J]. Journal of the South Africa Institute of Mining and Metallurgy,1980, (2):115-127.
    14. SHEMYAKIN I,FISENKO G L,KURLENYA M V. Zonal disintegration of rocks around underground workings.I.data of Insitu observations[J]. Soviet Mining Science,1986,22(3): 157-168.
    15.谭云亮,孙春江,宁建国,李海涛.深部侧空条件下巷道顶板岩层分区破裂探测研究.岩石力学与工程学报[J],2010,29(增1):2623-2629.
    16.方祖烈.软岩巷道维护原理与控制措施[M].中国煤矿软岩巷道支护理论与实践.北京:煤炭工业出版社,1996:64-70.
    17.许宏发,钱七虎等.电阻率法在深部巷道分区破裂探测中的应用[J].岩石力学与工程学报,2009,28(1):111-119.
    18.顾金才,顾雷雨,陈安敏,等.深部开挖洞室围岩分层断裂破坏机制模型实验研究[J].岩石力学与工程学报,2008,27(3):433-438.
    19.廖美春,郭志昆.深部岩体分区破裂化模拟试验模型几何尺寸的确定[J].防灾减灾工程学报,2006.26(3):326-330.
    20.潘一山,李英杰,唐鑫,等.岩石分区破裂化现象研究[J].岩石力学与工程学报,2007,26(增1):3335-3341.
    21.唐春安,张勇兵.深部巷道围岩间隔破裂现象的RFPA数值实验研究[J].岩石力学与工程学报,2008,27(7)(待刊).
    22.李树忱,钱七虎,李术才,等.深部岩体分区破裂化现象数值实现[J].岩石力学与工程学报,2008,27(8)(待刊).
    25.王明洋,周泽平,钱七虎.深部岩体的构造和变形与破坏问题[J].岩石力学与工程学报,2006,25(3):448-455.
    26.王明洋,宋华,郑大亮,等.深部巷道围岩的分区破裂机制及“深部”界定探讨[J].岩石力学与工程学报,2006,25(9):1771-1776.
    27.唐鑫,潘一山,章梦涛.深部巷道区域化交替破碎现象的机制分析[J].地质灾害与环境保护,2006,17(4):80-84.
    28.何满潮,彭涛.高应力软岩的工程地质特征及变形力学机制[J].矿山压力与顶板管理,1995(02):22-26
    29. E.I.Shemyakin, G.L.Fisenko, M.V.Kurlenya, V.N.Oparin. Zone disintegration of rocks around underground workings.Ⅳ.Practical applications[J], Journal of Mining Science, 1988,24(3):238-241.
    30. A.F.Borzvykh. Features of the zonal disintegration of roof rocks and a coal seam around mine workings[J], Journal of Mining Science,1991:418-427.
    31. CLOETE D R, JAGER A J. The nature of the fracture zone in goldmines as revealed by diamond core drilling[R]. [S.1.]:Association of Mine Managers,1972.
    32. ADAMS G R, JAGER A J. Petroscopic observations of rock fracturing ahead of stope faces in deep-level gold mine[J]. Journal of the South African Institute of Mining and Metallurgy,1980,80(6):204-209.
    33. M.Cai and H.Horii, A constitutive model and FEM analysis of jointed rock masses[J]. International J Rock Mech Min Sci Geomech Abstr 30(4),1993:351-359.
    34. Fairhurst C. Deformation, yield, rupture and stability of excavations at great depth[A]. In: Fairhust C ed.Rockburst and Seismacity in Mines[C]. Rotterdam:A.A.Balkema,1990: 1103-1114.
    35. Sellers E.J., Klerck P. Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels[J]. Tunneling and Underground Space Technology,2000, 15(4):463-469.
    36. Davide Bigont, Tomasz Hueckel.Uniqueness and localization associative and non-associative elastoplasticity[J].International journal solids structures.1991,28(2): 197-213.
    37. M.Cai and H.Horii. A constitutive model and FEM analysis of jointed rock masses[J]. International J Rock Mech Min Sci Geomech Abstr 30(4),1993:351-359.
    38.周小平,钱七虎.深埋巷道分区破裂化机理[J].岩石力学与工程学报,2007,26(5):877-885.
    39.陈卫忠,谭贤君,吕森鹏.深部软岩大型三轴压缩流变试验及本构模型研究[J].岩石 力学与工程学报.2009(9):43-50.
    40.邓荣贵,周德培,张倬元,付小敏.一种新的岩石流变模型[J].岩石力学与工程学报.2001,11:1321-1325
    41.李剑光,王永岩,王皓.深部岩体多孔介质流变模型的研究[J].岩土力学.2008,10(6):186-193.
    42.万志军,周楚良,罗兵全.软岩巷道围岩非线性流变数学力学模型[J].中国矿业大学学报,2004,11(2):23-27.
    43.戚承志,钱七虎,王明洋.深部隧道围岩的流变[J].北京建筑工程学院学报,2006,26(6):443-449.
    44.曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报.2002,21(5):632-634.
    45.王小平.对改进西原模型的再认识[J].河海大学学报(自然科学版).2007,35(6):651-654.
    46.张耀平,曹平,赵延林.软岩黏弹塑性流变特性及非线性蠕变模型[J].中国矿业大学学报,2009,38(1):34-40.
    47.杨圣奇,倪红梅,于世海.一种岩石非线性流变模型[J].河海大学学报(自科版)2007,35(4):388-392.
    48.殷德顺,任俊娟,和成亮,等.一种新的岩土流变模型元件[J].岩石力学与工程学报,2007,26(9):1899-1903.
    49.杨文东.坝基软弱岩体的非线性蠕变损伤本构模型及其工程应用[D].山东,山东大学,2008.
    50.李英杰.岩石分区破裂化的机理及实验研究[硕士论文[D].辽宁,辽宁工程技术大学,2006.
    51.张伯虎.深埋洞室围岩分区破裂化机理及应用[硕士论文[D].重庆,重庆大学,2008.
    52.周小平,张永兴.裂隙岩体卸荷本构理论及其应用[M].北京:科学出版社,2007.
    53.贺永年,张后全.深部围岩分区破裂化理论和实践的讨论[J].岩石力学与工程学报,27(11).2369-2375.
    54.谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社.1990.
    55.陈剑杰,孙均,林俊德.深埋岩石洞室受爆炸应力波作用的破坏效应[J].辽宁工程技术大学学报,2001,20:402-404.
    56.王德荣,李杰,钱七虎.深部地下空间周围岩体性能研究浅探[J].地下空间与工程学报.2006,2(4):542-546.
    57. Song QStankus J. Control Mechanism of a Tensioned Bolt System in the Laminated Roof with a Large Horizontal Stress [A]. The 16th Int. Conf on Ground Control in Mining[C]. Morgantown,West Virginia:[s.n.],1997.
    58. B.K.Hebblewhite, T.Lu. Geomechanical Behavior of Laminated Weak Coal Mine Roof Strata and the Implications for a Ground Reinforcement Strategy [J]. International Journal Of Rock Mechanics & Mining Sciences.2004,41:123-128.
    59. Wagner H. Support requirements for rockburst conditions [A]. In:Gay N C,Wainwright E H ed. Proc. the 1st Int. Cong. on Rockbursts and Seismicity[C]. Johannesburg:SAIMM, 1984:209-218.
    60.于学馥,郑颖人等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    61.Hoek E, Brown ET.岩石地下工程[M],连志升,王维德译.北京:冶金工业出版社,1986.
    62.蔡美峰.岩石力学与工程[M].北京:煤炭工业出版社,1983
    63.褚卫江,徐卫亚,杨圣奇,等.基于FLAC3D的岩石粘弹塑性流变模型二次开发研究[J].岩土力学,2006,25(3):433-447.
    64.陈育民,陈汉龙.邓肯-张模型在FLAC3D中开发与实现[J].岩土力学,2007,28(10):2123-2126.
    65.寇晓东,周维垣,杨若琼.FLAC3D进行三峡船闸高边坡稳定分析[J].岩石力学与工程学报,2001,20(1):6-12.
    66.徐平,李云鹏.FLAC3D-粘弹性模型的二次开发及其应用[J].长江科学院院报.2004.4(21):554-560.
    67.王国波,尹骥Davidenkov.模型在FLAC3D中的开发及验证[J].武汉理工大学学报.2008,89(30):63-67.
    68.冷先伦,盛谦.邓肯-张模型在FLAC3D中的实现及工程应用[J].建筑科学.2009,1(125):11-15.
    69.张福旺,李铁.深部开采复合型煤与瓦斯动力灾害的认识[J].中州煤炭.2009,3(6):15-21.
    70.钱七虎.非线性岩石力学的新进展-深部岩体力学的若干关键问题[M].第八次全国岩 石力学与工程学术大会论文集:10-12.
    71.李术才,王汉鹏等.深部巷道围岩分区破裂化现象现场监测研究.岩石力学与工程学报,2008,27(8):1545-1553.
    72.赵同彬.深部岩石蠕变特性试验及锚固围岩变形机理研究[D].山东科技大学,2009.
    73.张忠亭,王宏,陶振宇.岩石蠕变特性研究进展概况[J].长江科学院院报,1996,13(增):1-5.
    74.万玲,彭向和,杨春和,等.泥岩蠕变行为的试验研究及其描述[J].岩土力学,2005,26(6):924-928.
    75.陈渠,西田和范,岩本健,等.沉积软岩的三轴蠕变试验研究及分析评价[J].岩石力学与工程学报,2003,22(6):905-912.
    76.袁海平,曹平,万文,等.分级加卸载条件下软弱复杂矿岩蠕变规律研究[J].岩石力学与工程学报,2006,25(8):1575-1581.
    77. LangerM. Rheologicalbehaviorof rock masses[A]. In:Proc. of 4th cong. of Int. Soc.i RockMech[C]. TanTjong-kie, KangWen-fa. Lock in stress, creep and dilatancy of rocks and constitutive equation. RockMechanics,1980,13:5-22.
    78. MARANINIE, BRIGNOLIM. Creep behavior of a weak rock:experimental characterization[J]. International Journal of Rock Mechanics and Mining Sciences,1999, 36(1):127-138.
    79. FredericL.Pellet, GeraldineFabre.Damage. Evaluation with P-wave Velocity Measurements during Uniaxial Compression Tests on Argillaceous Rocks[J]. International Journal of Geomechanics,2007,36(1):431-432.
    80. E.Di Giuseppe, F.Funiciello. Gelatins as rock analogs:A systematic study of their rheological and physical properties [J]. Tectonophysics,2009,473(3-4):391-403.
    81. Z.Y.s, H.C.r. Rheological Complexity of Mafic Rocks and Effect of Mineral Component on Creep of Rocks[J]. Earth Science Rrontiers,2009,16(1):76-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700