聚乙烯自增强热塑性复合材料损伤失效机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高分子量聚乙烯(UHMWPE)纤维具有优异的综合性能,以其作为增强体的聚乙烯自增强(PE/PE)热塑性复合材料由于纤维和基体材料的化学相容性,可很好地发挥UHMWPE纤维的综合优良性能,因此,是一种极具应用前景的先进复合材料。研究PE/PE复合材料的损伤失效机理,对确保其结构在服役过程中的力学安全性是十分重要的,也有利于获得最佳的结构设计。现有对复合材料损伤失效机理的研究大多是集中在碳纤维、玻璃纤维等增强的热固性复合材料上。然而,由于基体的塑性性能、复合材料的热塑成型等特点,热塑性复合材料力学行为与热固性复合材料有很大的差异,而近年来随着热塑性复合材料的快速发展,工程领域应用热塑性复合材料越来越广泛,因此,对热塑性复合材料损伤失效机理的研究很有必要。本文对PE/PE热塑性复合材料损伤失效机理的研究具有现实意义。
     纤维增强复合材料的损伤是一个复杂的逐渐破坏过程,一般包含有基体开裂、纤维断裂、纤维抽拔、纤维-基体界面脱粘和分层等多种损伤模式。为了准确揭示PE/PE复合材料的逐渐损伤过程,本文开展了两个部分的研究工作:一是以基于逐渐损伤分析的有限元法作数值模拟研究,实现对层合板损伤进程及强度等性能的预报;二是以基于信号模式识别(PR)分析的声发射(AE)技术作实验检测研究,获取关于复合材料损伤进程的更丰富信息,并实现对模型的验证。本文为两种方法研究中尚存在的很多问题提供了新的解决思路,并以期为实际工程应用提供一种简便有效的解释热塑性复合材料损伤机制与检测分析的方法。
     在数值模拟研究中,首先开展了几种UHMWPE/LDPE单层板(0°、90°和45°)的力学测试实验,对实验结果初步分析发现,该材料的纵向、横向与偏轴剪切拉伸均存在明显的非线性,其纵向拉伸强度远大于其它两个方向上的拉伸强度。针对这一特性,以分段线弹性方法考虑了复合材料各向材料属性(E_1、E_2和G_(12))的非线性,并结合复合材料层合板的逐渐损伤有限元分析方法提出了一种综合考虑纵向、横向与面内剪切非线性的PE/PE层合板逐渐损伤模型。
     然后,利用ANSYS软件对所建立的含材料非线性的PE/PE层合板逐渐损伤模型进行模拟,采用APDL语言编写了参数化的有限元分析程序。模拟研究了单层板的材料非线性对其力学行为的影响及层合板的逐渐损伤过程。与拉伸试验数据对比的结果表明:UHMWPE/LDPE复合材料的各向材料属性(E_1、E_2和G_(12))非线性对于复合材料力学行为的数值模拟具有重要影响,而E_1的非线性对于复合材料层合板的拉伸力学行为有着显著的影响;以分段线弹性的方法表征各向材料属性的非线性,可简便有效地分析复合材料及其结构由于材料非线性而造成的非线性力学特性;所建立的含材料非线性的逐渐损伤模型清楚地揭示了UHMWPE/LDPE层合板在拉伸损伤过程中的基体开裂、纤维-基体脱粘和纤维断裂等损伤模式,并能反映损伤的进程,它简便地呈现了复合材料层合板的非线性拉伸过程,在应力-应变发展趋势与拉伸强度、断裂应变等性能预测上都与拉伸试验结果相一致,取得了良好的模拟结果。
     在声发射检测实验研究中,首先研究了几种简单铺层(0°、90°和[±45°])UHMWPE/LDPE复合材料的损伤AE特征及失效机理。采用模式识别(PR)一般分析方法对AE数据进行了预处理和聚类分析。在聚类分析中,结合扫描电子显微镜(SEM)技术获取了较好的分类结果。结果表明,PR技术对UHMWPE/LDPE热塑性复合材料损伤AE信号的区分是客观适用的,并可有效地对信号进行除噪;PR方法能别出试样中的基体开裂、纤维-基体界面脱粘、纤维抽拔和纤维断裂等损伤模式,识别结果与利用SEM对破坏断面观察所得结果一致;借助AE信号累计数对应变的关系曲线,能清楚了解试样中各种信号类别的活动特性,再结合每种试样的特点,并可较合理地辨清损伤模式与信号类别的对应关系,从而掌握试样的损伤活动特性。
     因此,本研究以0°、90°和[±45°]UHMWPE/LDPE热塑性复合材料为分析对象展开了进一步的研究,辅以对LDPE基体和UHMWPE纤维的声发射检测分析,建立起一种能客观识别复合材料试样中未知信号类别损伤源机制的无监督识别(UPR)统一方法,并由此获取了UHMWPE/LDPE复合材料中不同损伤模式的AE信号典型波形特征与信号样本数据,以期为复杂铺层层合板损伤AE信号的分类与损伤源机制识别提供有效分析方法。根据这些分析方法与结果,采用UPR和有监督识别(SPR)对UHMWPE/LDPE准各向同性层合板([0/90/+45]_s)的损伤AE信号进行了比较分析,并考察其损伤失效机理。结果表明,以所建立的UPR统一方法开展的无监督识别分析可客观、简便地分析复杂铺层层合板的损伤AE信号,另一方面,通过选取适当的样本数据,SPR方法同样可以实现对复杂铺层层合板损伤AE信号的快速区分;本文设计了从基体、纤维和简单铺层复合材料的分析中获取各种损伤模式的典型信号波形特征与AE信号数据,为上述两种分析方法在复杂铺层复合材料中的应用解决了关键性的问题,获得了合理的分析结果;两种方法对UHMWPE/LDPE层合板的研究得到了较一致的分类结果,表明PR技术分析具有客观一致性,层合板中不同损伤源机制所产的信号具有可分性。
     分析结果显示,对于[0/90/±45]_s层合板,其主要损伤机制有基体变形开裂、纤维断裂、和纤维-基体界面脱粘破坏,并伴有少量的纤维抽拔损伤,这些损伤都有一个发展的过程,其中纤维的损伤与断裂是层合板失效的主要原因。以这一结果对逐渐损伤模型所揭示的层合板损伤进程及机理进行了验证。研究最终表明,本文建立的含材料非线性的逐渐损伤模型可准确预报层合板的损伤特性,获得有关损伤的状态与进程;模拟的结果与声发射检测分析结果(包括SEM分析结果)相一致;同时,模型在对层合板应力-应变的发展趋势及其最终拉伸强度、断裂应变等均可以良好精度地模拟预测,验证了模型的有效性。
Ultra-high Molecular Weight Polyethylene (UHMWPE) has an excellent integrated property. Self-reinforced polyethylene (PE/PE) thermoplastic composites with UHMWPE as the reinforcing fiber can transfer the excellent properties of UHMWPE fiber to the composites commendably because of the chemical compatibility of fiber and matrix. Therefore, PE/PE composites have a promising future in application. Investigations on the damage and failure mechanisms of PE/PE composites are important to the assurance of mechanical safety of the composite structures during serviced, and the obtainment of optimal design of structures. Researches hitherto mostly focus on carbon fiber and glass fiber reinforced thermoset composites. However, because of the factors such as the plasticity of matrix and the thermoplastic of the composites, there exists a big difference between thermoplastic and thermoset composites in mechanical behaviors. On the other hand, as the faster development of thermoplastic composites in the recent years, thermoplastic composites are more and more used in the engineering field. So investigations on thermoplastic composites are a need of time. There are realistic meanings in the study on the PE/PE thermoplastic composites.
     The damage and failure process of fiber-reinforced composites is a complicate and progressive one. It may include many damage modes such as matrix cracking, fiber breakage, fiber pullout, fiber-matrix debonding and delamination. In order to reveal the progressive damage process of PE/PE composites nicely, this investigating study carried out two parts of work: the first part was numerical modeling study based on the Progressive Failure Analysis Methodology using Finite Element Method (FEM); the second part was Acoustic Emission (AE) monitoring and signal analysis based on Pattern Recognition (PR) technique. Efforts were also made to settle many existing problems in the two researching fields. The studies are expected to provide an effective and convenient way for the explaining of damage mechanisms and the analyzing of AE signals for thermoplastic composites.
     In the modeling study, several types of unidirectional UHMWPE/LDPE composites (0°, 90°and 45°) were firstly tested for the normal mechanical properties. Results showed that the composites have an obvious nonlinearity in longitudinal, transverse and shear stress-strain behavior. Therefore, a FEM based progressive damage model was developed for the PE/PE laminates subjected to tensile loading, by considering the nonlinear properties of unidirectional composites in the three tensile modulus(E_1, E_2 and G_(12)) as piecewise linear-elastic properties.
     Then, ANSYS software was used for simulating the progressive failure of UHMWPE/LDPE laminates to study the damage mechanisms, according to the established progressive failure model. The FEM analysis program was developed by using the APDL program language. Comparison was made to the data obtained from the tensile tests. Results showed as follows: the nonlinear properties of the compositesin the three tensile modulus (E_1,E_2 and G_(12)) have an important effect on the numericalmodeling of mechanical behaviors of UHMWPE/LDPE laminates; the nonlinear behavior of the laminates were remarkably affected by the longitudinal nonlinearity of the composites; the nonlinearity of composites and structures was conveniently and effectively included by the piecewise linear elasticity treatment; the progressive failure model can predict damage modes such as matrix cracking, fiber-matrix shearing to debonding and fiber fracture, and reveal the damage propagation; the analytical prediction showed an excellent agreement with the experimental data in the tensile stress, rupture strain and the developing trend of the stress-strain curve.
     In the AE monitoring and study, several simple lay-up of UHMWPE/LDPE composites (0°, 90°and [±45°]) were firstly investigated for the AE features and damage mechanisms of the composites. A common analytical procedure of PR technique was used for the preprocessing and clustering analysis of the AE data. In the clustering analysis, scanning electron microscope (SEM) technique was utilized for the assuring of the classification. Results showed as follows: the PR technique is objective and suitable for the analysis of AE data from UHMWPE/LDPE thermoplastic composites; it also can perform noise reduction effectively; the PR technique is able to identify damage modes such as matrix cracking, fiber-matrix debonding, fiber pullout, fiber breakage, etc. in the specimens, and the identification results are the same with the observation results by SEM; by the cumulative AE hits of each damage mode vs. strain curves, the damage process of the specimens can be reviewed clearly; in addition to the features of the specimen, a correlation between the clustered AE signal classes and their original damage modes could be established reasonably, and a clear understanding of damage mechanisms in the composites could be finally reached.
     Therefore, investigations were further carried out for the simple lay-up laminate of 0°, 90°and [±45°] UHMWPE/LDPE composites. Fracture waveforms of pure PE resin and UHMWPE fiber bundle were collected analyzed, in order to establish, by using Unsupervised Pattern Recognition (UPR) technique, a unified analytical procedure which can recognize the mechanical souses of the clustered AE signal classes objectively. Typical waveforms and AE signal samples of different damage modes in UHMWPE/LDPE composites were obtained from the analysis. All the information and the unified analytical procedure using UPR technique were proposed to be assistant in the analysis of the cases of complicated lay-up laminates. Then, AE data from UHMWPE/LDPE quasi-isotropic laminates ([0/90/±45]_s) was analyzed to study the damage mechanisms, by compared analysis using the established UPR procedure and Supervised Pattern Recognition (SPR) technique respectively. Results showed that the established UPR procedure can recognize the mechanical sources in the complicated lay-up laminates effectively; that on the other hand, by selecting a suitable sample data, the SPR technique can reach a fast separation of AE data from complicated lay-up laminates. In this study, typical waveforms and AE signal samples of different damage modes in UHMWPE/ LDPE composites were set to be obtained from the analyses of matrix, fiber and simple lay-up laminates. By this way the critical problems in the use of the UPR and SPR technique for the AE classification were solved and reasonable classifying results were obtained. Classifying results by the two techniques reached a good coherence. It showed that the PR technique is objective to the AE data analysis of UHMWPE/ LDPE composites, and that AE signals of the composite laminates are of separableness.
     The analytical result showed that, as for the [0/90/±45]_s laminates, the main damage modes existing were matrix cracking, fiber breakage and fiber-matrix debonding, with a little fiber pullout. All these damage modes presented a progressive failure process. The damage and failure of fibers was the dominant failure mode in the laminates and it account for the final fracture of the laminates. These results showed by the AE technique were used for the validation of the established progressive failure model. The investigating studies finally showed that, the established progressive failure model, considering the material nonlineanty of the UHMWPE/LDPE composites, can correctly predict the failure process and reveal the damage mechanisms. The numerical modeling results were supported by the AE monitoring and analyzing (including the SEM analyzing) results. At the same time, the model can predict the tensile stress, rupture strain and the developing trend of the stress-strain curve for the laminates perfectly, proving that the numerical modeling is valid.
引文
[1]蔡忠龙,冼杏娟.超高模聚乙烯纤维增强复合材料.北京:科学出版社,1997.
    [2]Ladizesky NH,Ward IM.Ultra-high-modulus polyethylene fibre composites:I-the preparation and properties of conventional epoxy resin composites.Compos Sci Technol,1986,26(2):129-164.
    [3]Moon SI,Jang J.The effect of the oxygen-plasma treatment of UHMWPE fiber on the transverse properties of UHMWPE-fiber/vinylester composites.Compos Sci Technol,1999,59(4):487-493.
    [4]Capiati NJ,Porter RS.The concept of one polymer composites modelled with high density polyethylene.J Mater Sci,1975,10:1671-1677.
    [5]Schulte K,Lacroix FV.High-density polyethylene fiber/polyethylene matrix composites.In:Kelly A,Zweben C,editors.Comprehensive Composite Materials,Vol 2.Pergamon:Elsevier,2000:231-248.
    [6]庄兴民.聚乙烯自增强复合材料的制备与力学性能研究.东华大学博士学位论文,2005.
    [7]张同华.基于声发射技术的PE/PE自增强复合材料损伤检测研究.东华大学博士学位论文,2008.
    [8]Zhang YX,Yang CH.Recent developments in finite element analysis for laminated composite plates Compos struct,2008,doi:10.1016/j.compstruct.2008.02.014.
    [9]Sleight DW.Progressive failure analysis methodology for laminated composite structures.NASA,1999.
    [10]杨明纬.声发射检测.北京:机械工业出版社,2005.
    [11]黄争鸣,张华山.纤维增强复合材料强度理论的研究现状与发展趋势——“破坏分析奥运会”评估综述.力学进展,2007,37(1):80-98.
    [12]Iannucci L.Progressive failure modelling of woven carbon composite under impact.Inter J Impact Eng,2006,32:1013-1043.
    [13]Petit PH,Waddoups ME.A method of predicting the nonlinear behavior of laminated composites. J Compos Mater, 1969, 3(1): 2-19.
    [14] Ochoa OO, Engblom JJ. Analysis of failure in composites. Compos Sci Technol, 1987, 28: 87-102.
    [15] Hashin Z. Failure criteria for unidirectional fiber composites. J Appl Mech,1980, 47: 329-334.
    [16] Lee JD. Three dimensional finite element analysis of damage accumulation in composite laminate. Comput & Struct, 1982, 15: 335-350.
    [17] Reddy YSN, Reddy JN. Linear and non-linear failure analysis of composite laminate with transverse shear. Compos Sci Technol, 1992, 44: 227-255.
    [18] Reddy YSN, Moorthy CMD, Reddy JN. Non-linear progressive failure analysis of laminated composite plates. Int J Non-linear Mechanics, 1995, 30(5):629-649.
    [19] Tolson S, Zabaras N. Finite element analysis of progressive failure in laminated composite plates. Comput & Struct, 1991, 38(3): 361-376.
    [20] Hwang WC, Sun CT. Failure analysis of laminated composites by using iterative three-dimensional finite element method. Comput & Struct, 1989,33(1): 41-47.
    [21] Engelstad SP, Reddy JN, Knight NF. Postbuckling response and failure prediction of graphite-epoxy plates loaded in compression. AIAA J, 1992,30(8): 2106-2113.
    [22] Chang FK, Scott RA. Post-failure analysis of bolted composite joints in tension or shear-out mode failure. J Compos Mater, 1987, 21(9): 809-833.
    [23] Chang FK, Chang KY. A progressive damage model for laminated composites containing stress concentration. J Compos Mater, 1987, 21(9): 834-855.
    [24] Hahn HT, Tsai SW. Nonlinear elastic behavior of unidirectional composite laminae. J Compos Mater, 1973, 7(1): 102-118.
    [25] Yamada SE, Sun CT. Analysis of laminate strength and its distribution. J Compos Mater, 1978, 12: 275-284.
    [26] Camanho PP, Matthews FL. A progressive damage model for mechanically fastened joints in composite laminates. J Compos Mater, 1999, 23: 2248-2249.
    [27]Kermanidis T,Labeas G,Tserpes KI.Finite element modeling of damage accumulation in bolted composite joints under incremental tensile loading.ECCMASE,Barcelona,Sep.2000.
    [28]Tserpes KI,Labeas G.Strength prediction of bolted joints in graphite/epoxy composite laminates.Compos B:Eng,2002,33(7):521-529.
    [29]Riccio A,Scaramuzzino F.Influence of damage onset and propagation on the tensile structural behaviour of protruding composite joints.4th GRACM Congress on Computational Mechanics,Patras,June 2002.
    [30]Zhang ZF,Chen HR,Ye L.Progressive failure analysis for advanced grid stiffened composite plates/shells.Compos struct,2008,86:45-54.
    [31]Ambur DR,Jaunky N,Hilburger MW,Davila CG.Progressive failure analyses of compression-loaded composite curved panels with and without cutouts.Compos Struct,2004,65:143-155.
    [32]McCarthy CT,McCarthy MA,Lawlor VP.Progressive damage analysis of multi-bolt composite joints with variable bolt-hole clearance.Compos B,2005,36:290-305.
    [33]Takeda T,Takano S,Shindo Y.Deformation and progressive failure behavior of woven-fabric-reinforced glass/epoxy composite laminates under tensile loading at cryogenic temperatures.Compos Sci Technol,2005,65:1691-1702.
    [34]Ganapathy S,Rao KP.Failure analysis of laminated composite cylindrical/spherical shell panels subjected to low-velocity impact.Comput &Struct,1998,68:627-641.
    [35]Cesari F,Re VD,Minak G,Zucchelli A.Damage and residual strength of laminated carbon-epoxy composite circular plates loaded at the centre.Compos A,2007,38:1163-1173.
    [36]程小全,郦正能.复合材料层合板低速冲击后压缩的损伤累积模型.应用数学和力学,2005,26(5):569-576.
    [37]Xiao JR,Gama BA,Gillespie Jr JW.Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading.Compos struct,2007,78:182-196.
    [38]Padhi GS,Shenoi RA,Moy SSJ,Hawkins GL.Progressive failure and ultimate collapse of laminated composite plates in bending.Compos struct,1998,40(3-4):277-291.
    [39]Lin WP,Hu HT.Nonlinear analysis of fiber-reinforced composite laminates subjected to uniaxial tensile load.J Compos Mater,2002,36:1429-1449.
    [40]Okabe T,Nishikawa M,Takeda N.Numerical modeling of progressive damage in fiber reinforced plastic cross-ply laminates.Compos Sci Technol,2008,68:2282-2289.
    [41]张彦,朱平,来新民,梁新华.低速冲击作用下碳纤维复合材料铺层板的损伤分析.复合材料学报,2006,23(2):150-157.
    [42]Baranski AT,Biggers Jr SB.Postbuckling analysis of tailored composite plates with progressive damage.Compos struct,1999,46:245-255.
    [43]Lui X,Wang GP.Progressive failure analysis of bonded composite repairs.Compos struct,2007,81(3):331-340.
    [44]Spottswood SM,Palazotto AN.Progressive failure analysis of a composite shell.Compos Struet,2001,53:117-131.
    [45]王丹勇,温卫东,崔海涛.复合材料单钉接头三维逐渐损伤破坏分析.复合材料学报,2005,22(3):168-174.
    [46]Bogetti TA,Hoppel CPR,Harik VM,Newill JF,Burns BP.Predicting the nonlinear response and progressive failure of composite laminates.Compos Sci Technol,2004,64:329-342.
    [47]Huang ZM,Failure analysis of laminated structures by FEM based on nonlinear constitutive relationship.Compos struct,2007,77:270-279.
    [48]许凤旌,陈积懋.声发射技术在复合材料发展中的应用.机械工程材料,1997,21(4):30-34.
    [49]沈功田,耿荣生,刘时风.声发射信号的参数分析方法.无损检测,2002,24(2):72-77.
    [50]Bohse J.Acoustic emission characteristics of micro-failure processes in polymer blends and composites.Compos Sci Technol,2000,60:1213-1226.
    [51]Bar HN,Bhat MR,Murthy CRL.Parametric analysis of acoustic emission signals for evaluating damage in composites using a PVDF film sensor.J Nondestr Eval,2005,24:121-134.
    [52]Dzenis YA,Qian J.Analysis of microdamage evolution histories in composites.Int J Solids Struct,2001,38:1831-1854.
    [53]Barre S,Benzeggagh ML.On the use of acoustic emission to investigate damage mechanisms in glass-fibre-reinforced polypropylene.Compos Sci Technol,1994,52(3):369-376.
    [54]Ativitavas N,Fowler TJ,Pothisiri T.Identification of fiber breakage in fiber reinforced plastic by low-amplitude filtering of acoustic emission data.J Nondestr Eval,2004,23(1):21-36.
    [55]Stepanova LN,Lebedev EY,Kareev AE.Use of the acoustic emission method in detecting the fracture process in specimens made of composite materials.Russian J Nondestr Testing,2004,40(7):34-41.
    [56]Giordano M,Calabro A,Esposito C,D'Amore A,Nicolais L.An acoustic-emission characterization of the failure modes in polymer-composite materials.Compos Sci Technol,1998,58:1923-1928.
    [57]Ramirez-Jimenez CR,Papadakis N,Reynolds N,Gan TH,Purnell P,Pharaoh P.Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event.Compos Sci Technol,2004,64:1819-1827.
    [58]Groot PJ de,Wijnen PAM,Janssen RBF.Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites.Compos Sci Technol,1995,55(4):405-412.
    [59]Choi NS,Takahashi K.Characterization of the damage process in short-fibre/thermoplastic composites by acoustic emission.J Mater Sci,1998,33:2357-2363.
    [60]Prosser WH,Gorman MR.Advanced,waveform based acoustic emission detection of matrix cracking in composites.Mater Evaluation,1995,53(9):1052-1058.
    [61]陈玉华,刘时风,耿荣生,沈功田.声发射信号的谱分析和相关分析.无 损检测, 2002, 24(9): 395-399.
    [62] Suzuki H, KinjoT, Hayashi Y, etal. Wavelet transform of acoustic emission signals. J Acoustic Emission, 1996, 14(2): 69-84.
    [63] Kostopoulos V, Loutas T H. On the identification of the failure mechanisms in oxide/oxide composites using acoustic emission. NDT & E International, 2003,36(8): 571-580.
    [64] Kostopoulos V, Loutas T, Dassios K. Fracture behavior and damage mechanisms identification of SiC/glass ceramic composites using AE monitoring. Compos Sci Technol, 2007, 67: 1740-1746.
    [65] Moevus M, Godin N, R'Mili M, et al. Analysis of damage mechanisms and associated acoustic emission in two SiCf/[Si-B-C] composites exhibiting different tensile behaviours. Part II: Unsupervised acoustic emission data clustering. Compos Sci Technol, 2008, 68: 1258-1265.
    [66] Kalogiannakis G, Quintelier J, Baets P de, Degrieck J, Hemelrijck DV. Identification of wear mechanisms of glass/polyester composites by means of acoustic emission. Wear, 2008, 264: 235-244.
    [67] Pappas YZ, Markopoulos YP, Kostopoulos V. Failure mechanisms analysis of 2D carbon/carbon using acoustic emission monitoring. NDT & E International,1998, 31: 157-163.
    [68] Philippidis TP, Nikolaidis VN, Anastassopoulos AA. Damage characterization of carbon/carbon laminates using neural network techniques on AE signals. NDT &E International 1998, 31: 329-340.
    [69] Godin N, Huguet S. Integration of the Kohonen's self-organising map and k-means algorithm for the segmentation of the AE data collected during tensile tests on cross-ply composite. NDT &E International, 2005, 38(4): 299-309.
    [70] Huguet S, Godin N. Use of acoustic emission to identify damage modes in glass fibre reinforced polyester. Composite Science and Technology, 2002,62(10-11): 1433-1444.
    [71] Godin N, Huguet S. Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers.NDT & E International,2004,37(4):253-264.
    [72]Bhat C,Bhat MR.Acoustic emission characterization of failure modes in composites with ANN.Composite Structures,2003,61(3):213-220.
    [73]Bar HN,Bhat MR,Murthy CRL.Identification of failure modes in GFRP using PVDF sensors:ANN approach.Composite Structures 2004;65:231-237.
    [74]Nishiwaki T,Yokoyama A,Maekawa Z,Hamada H.A new numerical modeling for laminated composites.Compos Strue,1995,32:641-647.
    [75]Gorman MR.Plate wave acoustic emission.J ASA.1991,90(1):358-364.
    [76]王震鸣.复合材料力学和复合材料结构力学.北京:机械工业出版社,1991.
    [77]Jones RM,Nelson DAR.A new material model for the nonlinear biaxial behavior of ATJ-S Graphite.J Compos Mater,1975,9(1):10-27.
    [78]Puck A,Sch(u|¨)rmann H.Failure analysis of FRP laminates by means of physically based phenomenologieal models.Compos Sci Teehnol,1998,58:1145-1168.
    [79]Cuntze RG.The predictive capability of failure mode concept-based strength criteria for multi-directional laminates—part B.Compos Sci Technol,2004,64(3-4):487-516.
    [80]Wolfe WE,Butalia TS.A strain-energy based failure criterion for non-linear analysis of composite laminates subjected to biaxial loading.Compos Sci Teehnol,1998,58(7):1107-1124.
    [81]Rotem A.Prediction of laminate failure with the Rotem failure criterion.Compos Sei Technol,1998,58(7):1083-1094.
    [82]沈观林,胡更开.复合材料力学.北京:清华大学出版社,Springer,2006.
    [83]康国政.ANSYS大型有限元程序的原理、结构与使用.成都:西南交通大学出版社,2004.
    [84]王勖成,邵敏.有限单元法基本原理和数值方法(第二版),北京:清华大学出版社,1996.
    [85]Release 10.0 documentation for ANSYS(?).ANSYS Inc.
    [86]阚前华,谭长建,张娟,董城.ANSYS高级工程应用实例分析与二次开发.北 京:电子工业出版社,2006.
    [87]Asp LE,Berglund LA,Talreja R.Prediction of matrix-initiated transverse failure in polymer composites.Compos Sci Technol,1996,56:1089-1097.
    [88]方岱宁,周储伟.有限元计算细观力学对复合材料力学行为的数值分析.力学进展,1998,28(2):173-188.
    [89]Sirivedin S,Fenner DN,Nath RB,etc al.Viscoplastic finite element analysis of matrix crack propagation in model continuous-carbon fibre-epoxy composites.Compos A,2006,37:1922-1935.
    [90]Barbero EJ,Lonetti P,Sikkil KK.Finite element continuum damage modeling of plain weave reinforced composites.Compos B,2006,37:137-147.
    [91](U|¨)nal(O|¨),Bansal NP.In-plane and interlaminar shear strength of a unidirectional Hi-Nicalon fiber-reinforced celsian matrix composite.Ceramics International,2002,28:527-540.
    [92]杨瑞峰,马铁华.声发射技术研究及应用进展.中北大学学报(自然科学版),2006,7(5):456-471.
    [93]CM Scala,RA Coyle.Pattern recognition and acoustic emission.NDT International,1983,16:339-343.
    [94]边肇祺,张学工.模式识别(第二版).北京:清华大学出版社,2002.
    [95]Pollock A A.Acoustic emission inspection.ASM handbook,Vol.17,Nondestructive evaluation and quality control.Materials Park,USA:ASM International,1989:278-294.
    [96]Noesis V4.0 professional edition reference manual.Pattern recognition & neural networks software for acoustic emission applications.Athens:Envirocoustics S.A.,2004.
    [97]Webb AR(著),王萍等译.Statistical pattern recognition(统计模式识别),2nd edition.北京:电子工业出版社,2004.
    [98]Theodoridis S,Koutroumbas K(著),李晶皎等译.Pattern recognition(模式识别),3rd edition.北京:电子工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700