用户名: 密码: 验证码:
髌骨骨折和创伤性关节炎的基础与临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:髌骨骨折是临床上常见的肢体创伤,各类文献中也有大量报道。在各种类型的骨折中,横行骨折是最为常见的的。曾有报道指出膝关节交叉韧带损伤多见于运动创伤。在临床治疗中,横行骨折最常用的治疗方法是张力带钢丝固定技术。手术目的是将骨折块进行解剖复位,重建关节面和伸膝装置,全面恢复膝关节功能。虽然髌骨骨折和交叉韧带损伤机制相似,但是闭合性髌骨骨折合并交叉韧带损伤的病例鲜有报道。然而,发生高能量或粉碎性骨折可能会出现交叉韧带损伤或断裂。骨科医师经常会忽略合并伤的问题,造成临床误诊以及不恰当的治疗。
     髌骨骨折约占全身骨折的1%。纵观历史,各种固定方法均存有争议。近年来,髌骨在伸膝过程中发挥的作用逐渐被人们所知,主张最大限度的保留髌骨以利于日后的功能恢复。然而,由于髌骨的特殊位置以及患者的主观愿望,治疗过程仍具有挑战性。
     随着时代的发展,手术治疗髌骨骨折已得到较为广泛的认可,临床疗效不断提高,但其存在的中远期并发症也备受关注,如膝关节僵直、创伤性关节炎等。因此,我们应对髌骨骨折术后患者进行更为客观的疗效评估,以便通过适当的保守治疗或手术干预来阻止病理学变化的恶性循环,维持膝关节正常的生物力学机制。目前,步态分析系统在国外已广泛应用于各种下肢疾病的预防和术式评估等方面。2012年3月至2012年11月期间我院行切开复位内固定术治疗27例单侧髌骨骨折患者,本文于术后3个月对患者进行步态分析,测量其足底各区域的压力峰值,探讨动态步态分析技术在髌骨骨折术后疗效评估中的应用价值。
     创伤性关节炎(TOA)作为髌骨骨折的主要并发症,其病例特征为关节软骨的退行性改变以及软骨下骨重塑。关节软骨的结构性改变包括蛋白多糖耗竭、关节表面裂隙以及潮线的破坏。正常的关节软骨中不存在血管,但在创伤性关节炎的病理变化中,软骨下骨内血管逐渐侵入钙化软骨层并突破潮线。同时,血管侵入也被认为是骨赘形成的重要因素。然而,关节软骨退变及血管侵入的病理机制尚不完全清楚。
     软骨基质的降解对于关节软骨血管化是至关重要的。多种蛋白酶将胶原蛋白降解,这些蛋白酶属于基质金属蛋白酶家族(MMP),其作用为切割胶原和蛋白聚糖。软骨退变所形成的各种生化指标可以作为诊断创伤性关节炎的特征性依据。近来有研究表明,创伤性关节炎软骨细胞中的若干种基质金属蛋白酶出现上调或下降。有学者曾经在大鼠体内利用MMP抑制剂延缓软骨破坏及血管化。Kruppel样因子5(KLF5)通过诱导MMP-9的转录间接导致软骨基质退变。然而,KLF5与MMP-9的表达以及关节软骨病理改变的机制尚不完全了解。
     我们推测KLF5和MMP-9的表达与关节软骨血管化有密切联系。本研究首先评估的是KLF5和MMP-9的表达与TOA严重程度之间的关系。实验结果显示在TOA患者中MMP-9和KLF5的高表达与关节软骨的退变存在必然联系,这两者成为介入治疗TOA的新型分子靶点。
     方法:首先,自2012年3月1日至2012年6月30日,在我院对60例单膝髌骨骨折患者进行膝关节核磁共振(MRI)检查。患者的平均年龄为40.2岁(13-64岁),其中48例为男性。将患者按照致伤原因进行分组,其中28例为坠落伤或车祸伤,属于高能量创伤;32例为行走时摔伤,属于低能量创伤。继而将患者按照骨折类型进行分类,其中31例属于横行骨折,29人属于粉碎性骨折。
     其次,采用Bostman髌骨损伤疗效评分标准对术后3个月的27例单侧髌骨骨折患者的膝关节功能进行评价。该标准包括:关节运动范围、疼痛、股四头肌萎缩、爬楼梯及工作影响等方面,满分为30分,其中满意:28~30分,不满意:<28分,根据评分结果将所有患者分为评分满意组和评分不满意组。动态足底压力测量过程:术后3个月要求每一受试者挺胸抬头在测力平板上常速自然行走,左、右脚各有3次落在平板内。在距离平板2m的位置开始行走,通过测力平板后再走出1m左右。在正式测试之前每位受试者应进行练习,以确保试验过程的顺利进行及数据的准确。利用分析软件中的时间分析模块计算出足底各解剖部位的平均峰值压力,其中M1~M5分别代表第1~5跖骨区,HM为足跟内侧区,HL为足跟外侧区。每位受试者分别进行3次动态足底压力数据采集,取其平均值。分别计算两组患者健足与患足的足底峰值压力分布差异。
     最后,随机挑选20例全膝置换术患者的31个关节标本,其中男性3例、女性17例,平均年龄67.2岁(55-74岁)。排除患有包括风湿及类风湿关节炎在内的其他炎症性关节疾病。将每个标本分别截取2-3个边长为0.5cm的骨块,将磨损程度最重的胫骨平台内侧面的截骨骨块作为磨损组(SC, n=29);以软骨表面无磨损的骨块为对照组(NC,n=17),所有标本放入10%的中性福尔马林溶液中固定。排除其他炎症性关节炎的患者。
     将骨块整体放入福尔马林-硝酸液中浸泡进行脱钙处理,每隔12小时换液1次,脱钙7天。完全脱钙的标准:取5ml脱钙液用2M的NaOH调整至中性,再倒入5%的草酸钠或草酸铵溶液1ml,如5分钟后脱钙液不浑浊,则认为脱钙完全;否则,仍需继续脱钙。将脱钙后的标本进行脱蜡包埋,5μm连续切片,随后进行苏木精伊红染色和番红O染色,确定关节软骨受损程度。所有样本均由两名资深病理科医师在双盲状态下查证。利用改良Janusz评分判定软骨损伤程度。评分范围为0-5分,0分代表软骨正常无损伤染色均匀,作为对照组(NC);≥3代表软骨重度损伤,表面或中间区域出现染色缺失(SC)。
     结果:
     1高能量创伤和粉碎性髌骨骨折容易导致膝关节交叉韧带损伤
     1.17例合并交叉韧带损伤患者的详细情况
     MRI扫描结果显示了这7例髌骨骨折合并交叉韧带损伤患者的具体情况。平均年龄45.7岁(13-64岁),其中6例为男性。在所有7例患者中,1例为摔伤,4例为车祸伤,以及2例坠落伤。其中3例为左膝髌骨骨折,6例为粉碎性骨折。7例韧带损伤分别为2例为后交叉韧带完全断裂,2例为后交叉韧带部分断裂,3例为前交叉韧带部分断裂。髌骨骨折合并交叉韧带损伤率为11.6%。由于膝关节的肌肉拮抗,物理诊断的结果与MRI的扫描结果并非完全一致。在这7例患者中,只有5例抽屉试验阳性,4例Lachman试验阳性。
     1.2不同组别之间损伤率的比较
     在这7例髌骨骨折合并交叉韧带损伤的患者中,只有1例为低能量创伤(3.1%,1/32),而有6例为高能量创伤(21.4%,6/28)。高能量创伤组的韧带损伤率明显高于低能量创伤组(P<0.05)。
     在这7例髌骨骨折合并交叉韧带损伤的患者中,只有1例为横行骨折(3.2%,1/31),而有6例为粉碎性骨折(20.7%,6/29)。粉碎性骨折组的韧带损伤率明显高于横行骨折组(P<0.05)。
     2Footscan步态分析技术所提供的足底压力峰值有助于髌骨骨折术后生物力学早期变化的诊断
     2.1Bostman评分满意组
     本组20例,临床上无明显不适症状,关节屈伸度≥120°,股四头肌萎缩不明显。目测步态正常,且经规范的训练后能达到水平匀速直线行走的标准步态,步速范围为97~113步/min,平均104步/min。足底压力测量结果显示:本组患者健侧在1个步态周期中的足底各区域平均压力峰值总和与患侧相似,差异无统计学意义(P>0.05)。健侧第5跖骨头区域压力平均峰值较患侧高,差异有统计学意义(P<0.05);但双足足底其他区域压力平均峰值数值相近,差异均无统计学意义(P>0.05)。本组患者双下肢足底压力的最大峰值均出现在足跟外侧区,健侧平均为(218.3±19.7) N,患侧平均为(208.4±25.0) N。2.2Bostman评分不满意组
     本组7例,临床上存在不适症状,关节屈伸度≤90°,股四头肌周径萎缩≥1cm。目测步态具有不同程度的异常,经规范的行走训练后基本能够达到水平匀速直线行走的标准步态,步速范围为87~98步/min,平均92步/min。足底压力测量结果显示:本组患者健侧在1个步态周期中的足底各区域平均峰值压力总和与患侧相似,差异无统计学意义(P>0.05)。双足第3跖骨区和足跟外侧区的足底压力峰值比较差异无统计学意义(P>0.05);但是,在第1、2、4、5跖骨区及足跟内侧区这5个区域内双足的足底压力峰值比较差异有统计学意义(P<0.05)。
     3增加的KLF5与MMP-9表达通过促进软骨降解而诱导关节软骨血管化
     3.1关节软骨损伤的形态学观察
     将检测的标本通过HE、番红O染色,确定关节软骨磨损与否。显微镜观察染色切片,无磨损的软骨切片表现为,关节软骨表层光滑、平整,软骨细胞分布均匀,无簇聚软骨细胞,潮线完整;番红O染色均匀,无失染现象。损伤处的关节软骨表面不平整、高低起伏、纹理紊乱,表层变薄;有大小不等的裂隙。根据形态学鉴定结果,将标本分为磨损组和无磨损组,进行下列指标的检测。
     3.2关节软骨损伤与血管和神经侵入的关系
     HE染色和CD34标志物免疫组化均显示,软骨磨损部位的切片,有血管突破潮线侵入软骨。在所检测的29例软骨磨损的标本切片中,有16例(55.2%)可观察到侵入软骨的血管;同一标本用扫描电镜也观察到在损伤软骨的近潮线处分布的血管,血管腔面的内皮结构和腔内双凹圆盘状的红细胞清晰可见,这更近一步印证了此管腔的性质。而在相应的无磨损的软骨区,仅有2例(2/17)发现有血管存在,占11.7%,出现新生血管的频率明显低于磨损组,两组之间具有显著性差异(P<0.05)。表明血管侵入数量与软骨磨损程度成正相关。
     为了确定磨损软骨中是否有神经侵入,本实验采用感觉神经特异性标志物PGP9.5抗体进行免疫组化染色。在磨损组有新生血管形成的软骨标本中检出数量稀少的神经纤维,且靠近增生的血管,而磨损组无血管侵袭的标本以及无磨损组中均未发现神经纤维,PGP9.5染色为阴性。提示神经侵入可能滞后于血管生成。
     3.3软骨退行性变与KLF5和MMP-9表达的关系
     免疫组化染色显示,在无磨损处的软骨细胞内,可观察到极少量的KLF5和MMP-9阳性染色颗粒;而在关节软骨磨损部位簇集的软骨细胞中, KLF5、MMP-9的表达活性均明显升高,镜下可见密集分布的阳性染色棕色颗粒;在KLF5表达活性高的细胞中,其MMP-9的表达水平也相应升高,二者的变化趋势具有一致性。利用形态学Fig.像分析软件通过测定颗粒平均光密度值(IOD),也证实磨损组的KLF5和MMP-9表达活性显著高于无磨损组,二者比较具有显著性差异(P<0.05)。两种蛋白表达活性与血管侵袭数量具有正相关性。
     3.4关节软骨胶原纤维结构变化
     分别取磨损组和无磨损组的软骨标本(每组n=5),经处理后进行扫描电镜观察。无磨损的软骨表面较为光滑,切面可见排列整齐、均匀而密集的胶原纤维,方向与表面呈切线;磨损组软骨表面粗糙不平,浅坑和隆起相间;切面可见胶原纤维增粗、断裂、排列混乱,空隙增大,有软骨细胞分布其中。
     结论:
     1高能量创伤和粉碎性髌骨骨折容易导致膝关节交叉韧带损伤。
     2Footscan步态分析技术所提供的足底压力峰值有助于髌骨骨折术后生物力学早期变化的诊断。
     3增加的KLF5与MMP-9表达通过促进软骨降解而诱导关节软骨血管化。
Objectives: Firstly, the patellar is a component of the patellofemoral joint.Patellar fractures are commonly encountered in orthopedic practice and arewell reported in the literature. Approximately1%of all skeletal injuries arerelated to the patella, wheres transverse fractures are the most commonpatellar injury. Previous studies have shown that injuries to the cruciateligament in the knee are common in sports, as well as other activities. Inclinical treatment, the most common method of transverse patella fracturefixation is the tension band wiring technique. The aim of operative treatmentof transverse patella fractures is the anatomic reduction of the fracture parts toreconstruct the articular surface and extensor mechanism to regain full kneejoint function. Closed patellar fractures with a cruciate ligament injury arerarely reported, although the mechanisms of patellar fracture and cruciateliament injury are similar. However, high-energy or comminuted patellarfractures might occur in which the cruciate ligament may be injured ordisrupted. Surgeons often neglect whether the closed patellar fracture iscombined with a cruciate ligament injury, resulting in misdiagnosis andinappropriate treatment.
     Patellar fracture account for1%of body fractures. Throughout history,various fixation methods are controversial. In recent years, the role of play inthe patella extensor process of gradually been kown advocate maximize theretention of the patella in order to facilitate future fuctional recovery. However,due to the special position of the patella and the patient's subjective desire, thecourse of treatment remains challenging.
     With the development of surgical treatment of patellar fracture has beenmore widely recognized, the clinical efficacy of continuous improvement, butits existence is also of concern in the long-term complications, such as knee stiffness, traumatic arthritis. Therefore, wu should patellar fracture surgery inpatients with a more objective assessment of the efficacy, in order to adopt anappropriate conservative treatment or surgical intervention to stop the viciouscycle of pathological changes, maintenance of normal biomechanicalmechanism of the knee. Currently, the gait analysis system has been widelyused in foreign countries to prevent and surgical evaluation of various aspectsof lower limb disorders. Period from March2012to November2012in ourhospital open reduction and internal fixation treatment of27cases of unilateralpatellar fracture patients, the paper after3months in patients with gait analysis,measuring the plantar pressure in the regions peak, evaluate the value ofdynamic gait analysis techniques patellar fracture surgery in the efficacyevaluation.
     Traumatic osteoarthritis(TOA) is characterized by progressive loss ofjoint articular cartilage and subchondral bone remodeling. Structural changesin the osteoarthritic articular cartilage include proteoglycan depletion,fissuring, and tidemark duplication. Blood vessels are absent in normal adultarticular cartilage, and invade from the subchondral bone into the calcifiedcartilage and breach the tidemark in TOA. Vascular invasion is also thought tobe important in osteophyte formation. However, the mechanism of articularcartilage degeneration and vascular invasion is incompletely understood.
     The degradation of cartilage matrix is particular crucial for vascularinvasion. This step requires proteolytic breakdown by a variety of proteinases,among which members of the matrix metalloproteinase(MMP) family are ofspecial interest due to their ability to cleave collagens and aggrecan, the twoprincipal matrix components of cartilage. The products of catilage degradation,as biochemical markers, have diagnostic applicability in TOA. Recent studieshave shown that several MMPs are up-or down-regulated in osteoarthriticchondrocytes as compared with normal chondrocytes. Treatment with a MMPinhibitor inhibits joint damage and osteochondral angiogenesis in rats.Kruppel-like factor(KLF)5causes cartilage matrix degradation throughtranscriptional induction of MMP-9in mice. However, the expression of KLF5and MMP-9as well as the clinicopathololgical significance for thesealterations in the carilage degeneration of human knee TOA has not yet beenclarified.
     We hypothesized that, in TOA, the expression of KLF5and MMP-9isassociated with cartilage degeneration, and is linked to vascular invasion. Thepresent study is the first to evaluate the association of the expression of KLF5and MMP-9with the severity of TOA cartilage change. Our results indicatethat high expression of KLF5and MMP-9may be involved in the articularcartilage degeneration in TOA patients, and that KLF5and MMP-9may benovel molecular targets for therapeutic intervention in TOA.
     Methods: Firstly, full approval from the Research Ethics Committee andthe Research Governance Committee was received for the study. All thesubjects who participated in the study provided informed consent. Patientswere identified by Picture Archiving and Communication System for theperiod from March1to June30,2012. A total of sixty patients with patellarfracture who underwent open reduction and internal fixation were enrolled tothe study. Patients that were13to64years of age were included. The meanage of the patients was40.2years and48patients were men. Sixty patientshad unilateral patellar fracture and24patients had a left patellar fracture. Allpatients had their histories taken and were examined by the orthopedist withfellowship teraining in sports medicine, including Drawer test and Lachmantest. According to the cause of injury,31patients had low-energytrauma(tumbling injury) and29patients had had high-energy trauma(fallinginjury or motor vehicle). According to the fracture pattern, there were32cases of transverse fracture and28cases of comminuted fracture. In our seriesof patellar injuries, all60patients had an isolated and closed injury.
     All images were read and interpreted by two fellowship-trainedmusculoskeletal radiologists who was blinded to the results of the clinicalassessment for each subject. Each scan diagnosed on the condition of thecrucaite ligament pathology. The cruciate ligament was assessed and classifiedas normal, partially torn, or completely ruptured. Patients with multiple fractures, or those who had total and partial patellectomy were excluded fromthe study.
     Secondly, twenty-seven patients with unilateral patellar fracture treatedwith open reduction internal fixation (ORIF) were following up for evaluatingknee function based on patella injury efficacy score (Bostman). The dynamicgait analysis (Footscan, RsScan International, Belgium) was used to calculateand analyze mean peak pressure of seven anatomical areas including the firstto fifth metatarsal head, medial heel and lateral heel. The distributiondifference of peak pressures was compared between the healthy feet andinjured feet according to index.
     Thirdly, approval was obtained from the Hebei Medical UniversityClinical Research Ethics Committee. After informed consent had been given,31tibiofemoral joints, including articular surfaces, joint capsule, andintra-articular structures, were collected from20patients that met clinicalsymptomatic criteria(American College of Rheumatology revised criteria forTOA) at the time of total knee joint replacement(TKR) surgery. In the presentstudy, we used joint samples from20patients(31knee joints,3male) with amedian age of68.4(range55-74) years. Each sample was sawn into2-3blocks(5mm×5mm×5mm), and categorized according to its grossmorphology, as either belonging to the severe change group(SC, n=29) ofcartilage, which was taken from the main defective area of maximal load, or tothe group with no observed change(NC, n=17), taken from areas with noobvious surface defects. All of the specimens were then verified by safranin Ostaining by two independent observers in a double-blind manner. Cartilagedamages were evaluated using the modified Janusz's system. Using thismethod, cartilage damage was scored on a scale of0-5. Score0representscartilage of normal appearance that shows uniform staining throughoutarticular cartilage, serving as a control(NC); and≥3, severe, differentdegrees of loss of staining in the superficial and middle zones(SC) assessed inthis study. Patients with other forms of arthritis or other clinical inflammatoryjoint disease were excluded.
     All samples were fixed and preserved in10%neutral buffered formalinfor48-72h and subsequently decalcified for24-36h in10%EDTA-PBS. Theserial sections(6μm) were prepared, and were then routinely stained withhematoxylin and eosin(HE) and safranin O as described.
     Results:
     1. High-energy trauma often results in a comminuted patellar fracture, whichis often combined with cruciate ligament injury.
     1.1Details of the seven patients with combined cruciate ligament injuries
     MRI findings showede that there were seven cases of patellar fracturecombined with cruciate ligament injury. The mean age was45.7years(range,13-64years) and six patients were men. There were one case of a trumbleinjury, four cases of a motor vehicle accident and two cases of a fall injury.Three patients had a left patellar fracture. And six cases had a comminutedfracture. There were two cases of a completely ruptured posterior cruciateligament, two cases of a partially torn posterior cruciate ligament, and threecases of a partially torn anterior cruciate ligament. The percentage of patientswith these combined injuries was11.6%(7/60). Because of antagonistic andpainful knees, the diagnostic results of the two tests are not the same as MRI.In our seven patients with cruciate ligament injury, only five patients werepositive for the Drawer test and four were positive for the Lachman test.
     1.2Comparision of different groups and combined injuries
     Among seven patients with combined cruciate ligament injuries, therewas one case of low-energy trauma(3.1%,1/32) and six cases of high-energytrauma(21.4%,6/28). The incidence of a combined injury of the crucatieligament with high-energy trauma was significantly higher than that withlow-energy trauma(P<0.05).Among the seven patients with combined injuries, one had a transversefracture(3.2%,1/31) and six had a comminuted fracture(20.7%,6/29). Theincidence of combined injuries in those with a comminuted fracture washigher than that in those with a transverse fracture(P<0.05).
     2. Footscan gait analysis may therefore be a useful tool for detecting the early change of biomechanics and can evaluate the recovery of the patellar fracture.
     Follow-up lasted for6-15months (mean12months). In the group withsatisfaction(20cases), there showed no significant difference of sum of peakpressure between the healthy feet and injured feet (P>0.05). And nosignificant difference was shown of plantar peak pressure distribution, expectthe fifth metatarsal head(P<0.05). In the group with dissatisfaction(7cases),there also showed no significant difference of sum of peak pressure betweenthe healthy feet and injured feet (P>0.05). But the obvious difference wasshown in the first, second, fourth, fifth metatarsal head and medial heel(P<0.05).
     3. The expression of KLF5and MMP-9may be involved in cartilagedegeneration, contribution to human TOA.
     3.1The morphology of articular cartilage injury
     All of the samples were divided into two groups, SC and NC by safraninO and HE staining, according to the damages of articular cartilages. Thecartilage surfaces in the SC group revealed more severe changes in structurecompared to samples of the NC group, which had smooth surfaces.
     3.2Neurovascular invasion is associated with severity of cartilage damages inTOA
     Blood vessels verfied by CD-34positve endothelium crossed multipletidemarks and entered the non-calcified cartilage, which were observed inboth SC and NC samples. However, the frequency of vascular invasion in theSC group(16/29,55.2%) was higher than that in NC samples(2/17,11.7%)(P<0.05). Moreover, endothelial cells, fibrovascular tissue, perivascular cells,and red blood cells were also observed in vascular structures by scanningelectron microscopy. In the SC group, the articular surfaces with vascularinvasion in the cartilage revealed severe damages, as compared with thosewhere wessels were not detected.
     PGP9.5-positive nerves were observed only in30%of samples of the SCgroup, and were always associated with blood vessels. Nerves were notobserved in the NC group.
     3.3Cartilage degenberation is associated with expression of KLF5andMMP-9in TOA
     The results of dual-immunofluorescent staining showed that theexpression of KLF5and MMP-9was significantly increased in chondrocytesseen in the severe change area of articular cartilage, and was co-localized inthe same cells. The chondrocytes expressing KLF5and MMP-9were mainlydistributed in the areas of the damaged articular surface. However, theexpression of the two proteins was hardly detected in articular cartilage fromthe NC group. The expression of KLF5and MMP-9was significantlydifferently between SC and NC samples(P<0.05).
     3.4Structure changes in articular cartilage collagen fibers
     The fine structure of the articular cartilage and collagen fibers wasassessed by SEM. Collagen fibers in some areas of the articular surface of theNC group formed smooth and parallel waves. However, in damaged cartilage,the collagen fibers appear to have a smaller diameter and to be less tightlypacked and less highly organized than those seen in the superficial zone ofnormal articular cartilage in the NC group. Collagen fibers of the normalcartilage are scattered homogeneously and deeply in the matrix, while thefibers on the damaged articular cartilage are interrupted and disordered.
     Conclusion:
     1High-energy trauma often results in a comminuted patellar fracture,which is often combined with cruciate ligament injury.
     2Footscan gait analysis may therefore be a useful tool for detecting theearly change of biomechanics and can evaluate the recovery of the patellarfracture.
     3The expression of KLF5and MMP-9may be involved in cartilagedegeneration, contribution to human TOA.
引文
1Anand S, Hahnel JCR, Giannoudis PV. Open patellar fractures: Highenergy injuries with a poor outcome? Injury2008;39:480-484
    2Perry J, Antonelli D, Ford W. Analysis of knee-joint forces duringflexed-knee stance. J Bone Joint Surg Am1975;57:961-967
    3Lohmander LS, Englund PM, Dahl LL, et al. The long-term consequenceof anterior cruciate ligament and meniscus injuries osteoarthritis. Am JSports Med2007;35:1756-1769
    4Carpenter JE, Kasman RA, Patel N, et al. Biomechanical evaluation ofcurrent patella fracture fixation techniques. J Orthop Trauma1997;11:351-356
    5John J, Wagner WW, Kuiper JH. Tension-band wiring of transversefractures of patella. Int Orthop2007;31:703-707
    6Patel VR, Parks BG, Wang Y, et al. Fixation of patella fractures withbraided polyester suture: a biomechanical study. Injury2000;31:1-6
    7Heusinkveld MHG, Hamer A, Traa WA, et al. Treatment of transversepatellar fractures: a comparison between metallic and non-metallicimplants. Br Med Bull2013
    8Donell ST, Marshall TJ, Darrah C, et al. Cruciate ligament assessment inMRI scans: A pilot study of a static drawer technique. Knee2006;13:137-144
    9Torchia ME, Lewallen DG. Open fractures of the Patella. J OrthopTrauma1996;10:403-409
    10Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MRimaging: injury patterns of medial patellar soft-tissue restraints andosteochondral injuries of the inferomedial patella. Radiology2002;225:736-743
    11Guerrero P, Li X, Patel K, et al. Medial patellofemoral ligament injurypatterns and associated pathology in lateral patella dislocation: an MRIstudy. Sports Med Arthrosc Rehabil Ther Technol2009;1:17
    12Kirsch MD, Fitzgerald SW, Friedman H, et al. Transient lateral patellardislocation: diagnosis with MR imaging. AJR Am J Roentgenol1993;161:109-113
    13Lance E, Deutsch AL, Mink JH. Prior lateral patellardislocation: MRimaging findings. Radiology1993;189:905-907
    14Nomura E, Horiuchi Y, Inoue M. Correlation of MR imaging findings andopen exploration of medial patellofemoral ligament injuries in acutepatellar dislocations. Knee2002;9:139-143
    15Sanders TG, Paruchuri NB, Zlatkin MB. MRI of osteochondral defects ofthe lateral femoral condyle: incidence and pattern of injury after transientlateral dislocation of the patella. AJR Am J Roentgenol2006;187:1332-1337
    16Virolainen H, Visuri T, Kuusela T. Acute dislocation of the patella: MRfindings. Radiology1993;189:243-246
    17Guenoun D, Corroller TL, Amous Z, et al. The contribution of MRI to thediagnosis of traumatic tears of the anterior cruciate ligament. Diagn IntervImaging2012;93:331-341
    18Shi DL, Wang YB, Ai ZS. Effect of anterior cruciate ligamentreconstruction on biomechanical features of knee in level walking: ameta-analysis. Chin Med J2010;123:3137-3142
    19Shi DL, Yao ZJ. Knee function after anterior cruciate ligamentreconstruction with patellar or hamstring tendon: a meta-analysis. ChinMed J2011;124:4056-4062
    20Neuman P, Kostogainnis I, Friden T, et al. Patellofemoral osteoarthritis15years after anterior cruciate ligament injury a prospective cohort study.Osteoarthritis Cartilage2009;17:284-290
    21Shabat S, Mann G, Kish B, et al. Functional results after patellar fracturesin elderly patients. Arch Gerontol Geriatr2003;37:93-98
    1Zhang YZ, et al. Clinical epidemiology of orthopedic trauma: Thieme,2012,10:548-563
    2沈雷,陆骅,何继业,等.空心螺钉钢丝张力带治疗髌骨骨折.中华创伤骨科杂志,2008,4:326-328
    3Sutherland DH. The evolution of clinical gait analysis part Ⅲ-kineticsand energy assessment. Gait Posture,2005,21:447-461
    4Lazaro LE, Wellman DS, Pardee NC, et al. Effect of computerizedtomography on classification and treatment plan for patellar fractures. JOrthop Trauma,2013,27:336-344
    5Mao N, Ni H, Ding W, et al. Surgical treatment of transverse patellafractures by the cable pin system with a minimally invasive technique. JTrauma Acute Care Surg,2012,74:1056-1061
    6苏立立.丝线矩形张力带固定治疗髌骨粉碎性骨折.山西医药,2007,6:552-553
    7王序全,李起鸿.机械应力异常与关节软骨退变.国外医学(生物医学工程分册),1999,22:100-104
    8蒋仕林,赵金忠.髌骨稳定性的解剖学与生物力学研究进展.国际骨科学杂志,2009,30:15-17
    9励建安,孟殿怀.步态分析的临床应用.中华物理医学与康复杂志,2006,28:500-503
    10陈占法,马利杰,张英泽,等.采用Footscan系统指导跟骨骨折患者术后康复训练的疗效观察.中华物理医学与康复杂志,2009,31:405-408
    11陈占法,李西成,张英泽,等. Footscan足底压力分析系统对跟骨骨折患者术后康复疗效的评定.中华物理医学与康复杂志,2008,30:181-184
    12陈雁西,俞光荣,王明鑫,等.足底压力分析在跟骨骨折术后疗效评估中的应用.中华创伤杂志,2008,24:22-27
    13Rosenbaum D, Becker HP. Plantar pressure distribution measurements.Technical background and clinical applications. Foot Ankle Surg,1997,3:1-14
    14袁刚,张木勋,王忠琴,等.正常人足底压力分布及其影响因素分析.中华物理医学与康复杂志,2004,26:156-159
    15Bedi HS, Love BR. Difference in impulse distribution in patients withplantar fasciitis. Foot Ankle Int,1998,19:153-156
    16Woodburn J, Helliwell P. Observation on the F-scan in-shoe pressuremeasuring system. Clin Biomech (Bristol, Avon),1996,11:301-304
    1Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role inarthritis, Front. Biosci.11(2006)529-543
    2Clark JM. The structure of vascular channels in the subchondral plate, J.Anat.171(1990)105-115
    3Clarke IC. Surface characteristics of human articular cartilage—a scanningelectron microscope study, J. Anat.108(1971)23-30
    4Donmez G, Sullu Y, Baris SL, et al. Vascular endothelial growth factor(vegf), matrix metalloproteinase-9(mmp-9), and thrombospondin-1(tsp-1)expression in urothelial carcinomas, Pathol. Res. Pract.205(2009)854-857
    5Duncan H, Jundt J, Riddle JM, et al. Christopherson, The tibialsubchondral plate. A scanning electron microscopic study, J. Bone JointSurg. Am.69(1987)1212-1220
    6Engsig MT, Chen QJ, Vu TH, et al. Delaisse, Matrix metalloproteinase9and vascular endothelial growth factor are essential for osteoclastrecruitment into long bones, J. Cell Biol.151(2000)879-889
    7Hashimoto S, Creighton-Achermann L, Takahashi K, et al. Activegelatinase b is identified by histozymography in the cartilage resorptionsites of development long bones, Dev. Dyn.215(1999)190-205
    8Mapp PI, Walsh DA, Bowyer J, et al. Effects of a metalloproteinaseinhibitor on osteochondral angiogenesis, chondropathy and pain behaviorin a rat model of osteoarthritis, Osteoarthritis Cartilage18(2010)593-600
    9Ortega N, Behonick D, Stickens D, et al. How proteases regulate bonemorphogenesis, Ann. N. Y. Acad. Sci.995(2003)109-116
    10Shinoda Y, Ogata N, Higashikawa A, et al. Kruppel-like factor5causescartilage degradation through transactivation of matrix metalloproteinase9,J. Biol. Chem.283(2008)24682-24689.
    11Suri S, Gill SE, Massena De Camin S, et al. Neurovascular invasion at theosteochondral junction and in osteophytes in osteoarthritis, Ann. Rheum.Dis.66(2007)1423-1428
    12Taniguchi N, Carames B, Ronfani L, et al. Aging0related loss of thechromatin protein hmgb2in articular cartilage is linked toreducedcellularity and osteoarthritis, Proc. Natl. Acad. Sci. U. S. A.106(2009)1181-1186
    13Van Spil WE, Degroot J, Lems WF, et al. Serum and urinary biochemicalmarkers for knee and hip-osteoarthritis: a systematic review applying theconsensus biped criteria, Osteoarthritis Cartilage18(2010)605-612
    14Vu TH, Shipley JM, Bergers G, et al. Mmp-9/gelatinase b is a key regulatorof growth plate angiogenesis and apoptosis of hypertrophic chondrocytes,Cell93(1998)411-422
    15Werb Z. ECM and cell surface proteolysis: regulating cellular ecology, Cell
    91(1997)439-442
    16Zelzer E, Mamluk R, Ferrara N, et al. Vegfa is necessary for chondrocytesurvival during bone development, Development131(2004)2161-2171
    1Bostr m A. Fracture of the patella: Astudy of422patellar fractures. ActaOrthop Scand Suppl1972;143:1-80
    2Atesok K, Doral MN, Lowe J, et al. Symptomatic bipartite patella:Treatment alternatives. J Am Acad Orthop Surg2008;16(8):455-461
    3Scapinelli R. Blood supply of the human patella: Its relation to ischaemicnecrosis after fracture. J Bone Joint Surg Br1967;49(3):563-570
    4Kaufer H. Mechanical function of thepatella. J Bone Joint Surg Am1971;53(8):1551-1560
    5Huberti HH, Hayes WC, Stone JL, et al. Force ratios in thequadricepstendon and ligamentum patellae. J Orthop Res1984;2(1):49-54
    6Carpenter JE, Kasman R, Matthews LS. Fractures of the patella. J BoneJoint Surg Am1993;75:1550-1561
    7Nord RM, Quach T, Walsh M, et al. Detection of traumatic arthrotomy ofthe knee using the saline solution load test. J Bone Joint Surg Am2009;91(1):66-70
    8Marsh JL, Slongo TF, Agel J, et al. Fracture and dislocation classificationcompendium:2007. Orthopaedic Trauma Association classification,database and outcomes committee.J Orthop Trauma2007;21(10suppl):S1-S133
    9Braun W, Wiedemann M, Rüter A, et al. Indications and results ofnonoperative treatment of patellar fractures. Clin Orthop RelatRes1993;(289):197-201
    10Pritchett JW. Nonoperative treatment of widely displaced patella fractures.Am J Knee Surg1997;10(3):145-148
    11Lotke PA, Ecker ML. Transverse fractures of the patella. Clin Orthop RelatRes1981;(158):180-184
    12Gardner MJ, Griffith MH, Lawrence BD, et al. Complete exposure of thearticular surface for fixation of patellar fractures. J Orthop Trauma2005;19(2):118-123
    13Muller ME, Allgower M, Schneider R, et al. Manual of Internal Fixation:Techniques Recommended by the AO Group. Berlin, Germany, Springer,1979, pp248-253
    14Weber MJ, Janecki CJ, McLeod P, et al. Efficacy of various forms offixation of transverse fractures of the patella. J Bone Joint Surg Am1980;62(2):215-220
    15Fortis AP, Milis Z, Kostopoulos V, et al: Experimental investigation of thetension band in fractures of the patella. Injury2002;33(6):489-493
    16Benjamin J, Bried J, Dohm M, et al. Biomechanical evaluation of variousforms of fixation of transverse patellar fractures. J OrthopTrauma1987;1(3):219-222
    17John J, Wagner WW, Kuiper JH. Tension-band wiring of transversefractures of patella: The effect of site of wire twists and orientation ofstainless steel wire loop. A biomechanical investigation. Int Orthop2007;31(5):703-707
    18Burvant JG, Thomas KA, Alexander R, et al. Evaluation of methods ofinternal fixation of transverse patella fractures: A biomechanical study. JOrthop Trauma1994;8(2):147-153
    19Carpenter JE, Kasman RA, Patel N, et al. Biomechanical evaluation ofcurrent patella fracture fixation techniques. J Orthop Trauma1997;11(5):351-356
    20Berg EE. Open reduction internal fixation of displaced transverse patellafractures with figure-eight wiring through parallel cannulated compressionscrews. J Orthop Trauma1997;11(8):573-576
    21McGreal G, Reidy D, Joy A. Patellar Fractures in Adults Mahalingam K,Cashman WF: The biomechanical evaluation of polyester as a tensionband for the internal fixation of patellar fractures. J Med Eng Technol1999;23(2):53-56
    22Patel VR, Parks BG, Wang Y, et al. Fixation of patella fractures withbraided polyester suture: A biomechanical study. Injury2000;31(1):1-6
    23Chatakondu SC, Abhaykumar S, Elliott DS. The use of non-absorbablesuture in the fixation of patellar fractures: A preliminary report. Injury1998;29(1):23-27
    24Gosal HS, Singh P, Field RE. Clinical experience of patellar fracturefixation using metal wire or non-absorbable polyester: A study of37cases.Injury2001;32(2):129-135
    25Luna-Pizarro D, Amato D, Arellano F, et al. Comparison of a techniqueusing a new percutaneous osteosynthesis device with conventional opensurgery for displaced patella fractures in a randomized controlled trial. JOrthop Trauma2006;20(8):529-535
    26Turgut A, Günal I, Acar S, et al. Arthroscopic-assisted percutaneousstabilization of patellar fractures. Clin Orthop Relat Res2001;(389):57-61
    27El-Sayed AM, Ragab RK. Arthroscopicassisted reduction and stabilizationof transverse fractures of the patella. Knee2009;16(1):54-57
    28Yanmis I, Og.uz E, Atesalp AS, et al. Application of circular externalfixator under arthroscopic control in comminuted patella fractures:Technique and early results. J Trauma2006;60(3):659-663
    29Sutton FS Jr, Thompson CH, Lipke J, et al. The effect of patellectomy onknee function. J Bone Joint Surg Am1976;58(4):537-540
    30Saltzman CL, Goulet JA, McClellan RT, et al. Results of treatment ofdisplaced patellar fractures by partial patellectomy. J Bone Joint Surg Am1990;72(9):1279-1285
    31B stman O, Kiviluoto O, Nirhamo J. Comminuted displaced fractures ofthe patella. Injury1981;13(3):196-202
    32Marder RA, Swanson TV, Sharkey NA, et al. Effects of partialpatellectomy and reattachment of the patellar tendon on patellofemoralcontact areas and pressures. J Bone Joint Surg Am1993;75(1):35-45
    33Matava MJ. Patellar tendon ruptures. J Am Acad Orthop Surg1996;4(6):287-296
    34Yang KH, Byun YS. Separate vertical wiring for the fixation ofcomminuted fractures of the inferior pole of the patella. J Bone Joint SurgBr2003;85(8):1155-1160
    35Kastelec M, Veselko M. Inferior patellar pole avulsion fractures:Osteosynthesis compared with pole resection. J Bone Joint Surg Am2004;86(4):696-701
    36Matejcic′A, Puljiz Z, Elabjer E, et al. Multifragment fracture of thepatellar apex: Basket plate osteosynthesis compared with partialpatellectomy. Arch Orthop Trauma Surg2008;128(4):403-408
    37Günal I, Taymaz A, K se N, et al. Patellectomy with vastus medialisobliquus advancement for comminuted patellar fractures: A prospectiverandomised trial. J Bone Joint Surg Br1997;79(1):13-16
    38Torchia ME, Lewallen DG. Open fractures of the patella. J Orthop Trauma1996;10(6):403-409
    39Anand S, Hahnel JC, Giannoudis PV. Open patellar fractures: High energyinjuries with a poor outcome? Injury2008;39(4):480-484
    40Catalano JB, Iannacone WM, Marczyk S, et al. Open fractures of thepatella: Long-term functional outcome. J Trauma1995;39(3):439-444
    41Wu CC, Tai CL, Chen WJ. Patellar tension band wiring: A revisedtechnique. Arch Orthop Trauma Surg2001;121(1-2):12-16
    42Smith ST, Cramer KE, Karges DE, et al. Early complications in theoperative treatment of patella fractures. J Orthop Trauma1997;11(3):183-187
    43Choi HR, Min KD, Choi SW. Lee Migration to the popliteal fossa ofbroken wires from a fixed patellar fracture. Knee2008;15(6):491-493
    44Biddau F, Fioriti M, Benelli G. Migration of a broken cerclage wire fromthe patella into the heart: A case report. J Bone Joint Surg Am2006;88(9):2057-2059
    45Bayar A, Sener E, Keser S, et al. What leads unfavourable Cybex testresults for quadriceps power after modified tension band osteosynthesis ofpatellar fractures? Injury2006;37(6):520-524
    46Sorensen KH. The late prognosis after fracture of the patella. Acta OrthopScand1964;34:198-212
    1Buoncristiani AM, Tjoumakaris FP, Starman JS, et al. Anatomicdoublebundle anterior cruciate ligament reconstruction. Arthroscopy.2006;22:1000-1006
    2Freedman KB, D’Amato MJ, Nedeff DD, et al. Arthroscopic anteriorcruciate ligament reconstruction: a metaanalysis comparing patellar tendonand hamstring autografts. Am J Sports Med.2003;31:2-11
    3Frobell RB, Roos EM, Roos HP, et al. A randomized trial of treatment foracute anterior cruciate ligament tears. N Engl J Med.2010;363:331-342
    4Levy BA. Is early reconstruction necessary for all anterior cruciateligament tears? N Engl J Med.2010;363;386-388
    5Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for15sports: summary and recommendations of injury prevention initiatives. JAthl Train.2007;42:311-319
    6Pujol N, Bianchi MP, Chambat P. The incidence of anterior cruciateligament injuries among competitive alpine skiers: a25-year investigation.a) Am J Sports Med.2007;35:1070-1074
    7Anderson AF, Dome DC, Gautam S, et al. Correlation of anthropometricmeasurements, strength, anterior cruciate ligament size, and intercondylarnotch characteristics to sex differences in anterior cruciate ligament tearrates. Am J Sports Med.2001;29:58-66
    8Gwinn DE, Wilckens JH, McDevitt ER, et al. The relative incidence ofanterior cruciate ligament injury in men and women at the United StatesNaval Academy. Am J Sports Med.2000;28:98-102
    9Arendt E, Dick R. Knee injury patterns among men and women incollegiate basketball and soccer. NCAA data and review of literature. Am JSports Med.1995;23:694-701
    10Agel J, Arendt EA, Bershadsky B. Anterior cruciate ligament injury innational collegiate athletic association basketball and soccer: a13-yearreview. Am J Sports Med.2005;33:524-530
    11Hewett TE, Myer GD, Ford KR. Reducing knee and anterior cruciateligament injuries among female athletes: a systematic review ofneuromuscular training interventions. J Knee Surg.2005;18:82-88
    12Besier TF, Lloyd DG, Cochrane JL, et al. External loading of the knee jointduring running and cutting maneuvers. Med Sci Sports Exerc.2001;33:1168-1175
    13Zebis MK, Bencke J, Andersen LL, et al. The effects of neuromusculartraining on knee joint motor control during sidecutting in female elitesoccer and handball players. Clin J Sport Med.2008;18:329-337
    14Souryal TO, Moore HA, Evans JP. Bilaterality in anterior cruciateligament injuries: associated intercondylar notch stenosis. Am J SportsMed.1988;16:449-454
    15Uhorchak JM, Scoville CR, Williams GN, et al. Risk factors associatedwith noncontact injury of the anterior cruciate ligament: a prospectivefour-year evaluation of859West Point cadets. Am J Sports Med.2003;3:831-842
    16Davis TJ, Shelbourne KD, Klootwyk TE. Correlation of the intercondylarnotch width of the femur to the width of the anterior and posterior cruciateligaments. Knee Surg Sports Traumatol Arthrosc.1999;7:209-214
    17Shelbourne KD, Davis TJ, Klootwyk TE. The relationship betweenintercondylar notch width of the femur and the incidence of anteriorcruciate ligament tears. A prospective study. Am J Sports Med.1998;26:402-408
    18Giuliani JR, Kilcoyne KG, Rue JPH. Anterior cruciate ligament anatomy: areview of the anteromedial and posterolateral bundles. J Knee Surg.2009;22:148-154
    19Li G, DeFrate LE, Sun G, et al. In vivo elongation of the anterior cruciateligament and posterior cruciate ligament during knee flexion. Am J SportsMed.2004;32:1415-1420
    20Sidles JA, Larson RV, Garbini JL, et al. Ligament length relationships inthe moving knee. J Orthop Res.1988;6:593-610
    21Odensten M, Gillquist J. Functional anatomy of the anterior cruciateligament and a rationale for reconstruction. J Bone Joint Surg Am.1985;67:257-262
    22Georgoulis AD, Pappa L, Moebius U, et al. The presence of proprioceptivemechanoreceptors in the remnants of the ruptured ACL as a possiblesource of re-innervation of the ACL autograft. Knee Surg Sports TraumatolArthrosc.2001;9:364-368
    23Gabriel MT, Wong EK, Woo SLY, et al. Distribution of in situ forces in theanterior cruciate ligament in response to rotatory loads. J Orthop Res.2004;22:85-89
    24Sakane M, Fox RJ, Woo SL-Y, et al. In situ forces in the anterior cruciateligament and its bundles in response to anterior tibial loads. J Orthop Res.1997;15:285-293
    25Prodromos CC, Fu FH, Howell SM, et al. Controversies in soft-tissueanterior cruciate ligament reconstruction: grafts, bundles, tunnels, fixation,and harvest. J Am Acad Orthop Surg.2008;16:376-384
    26Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of anteriorcruciate ligament injury in basketball video analysis of39cases. Am JSports Med.2007;35:359-367
    27Boden BP, Torg JS, Knowles DB, et al. Video analysis of anterior cruciateligament injury: abnormalities in hip and ankle kinematics. Am J SportsMed.2009;37:252-259
    28Beynnon BD, Fleming BC. Anterior cruciate ligament strain in-vivo: areview of previous work. J Biomech.1998;31:519-525
    29Benjaminse A, Gokeler A, vand der Schans CP. Clinical diagnosis of ananterior cruciate ligament rupture: a meta-analysis. J Orthop Sports PhysTher.2006;36:267-288
    30Solomon DH, Simel DK, Bates DW, et al. The rational clinicalexamination. Does this patient have a torn meniscus or ligament of theknee?Value of the physical examination. JAMA.2001;286:1610-1620
    31Galway HR, MacIntosh DL. The lateral pivot shift: a symptom and sign ofanterior cruciate ligament insufficiency. Clin Orthop.1980;147:45-50
    32Ostrowski JA. Accuracy of3diagnostic test for anterior cruciate ligamenttears. J Athl Train.2006;41:120-121
    33Noyes FR, Mooar PA, Matthew DS, et al. The symptomatic anteriorcruciate-deficient knee, part I. J Bone Joint Surg Am.1983;65:154-162
    34Sherman MF, Warren RF, Marshall JL, et al. A clinical and radiographicalanalysis of127anterior cruciate insufficient knees. ClinOrthop.1988;227:229-237
    35Spindler KP, Wright RW. Clinical practice. Anterior cruciate ligament tear.N Engl J Med.2008;359:2135-2142
    36Chhabra A, Starman JS, Ferretti M, et al. Anatomic, radiographic,biomechanical, and kinematic evaluation of the anterior cruciate ligamentand its two functional bundles. J Bone Joint Surg Am.2006;88(suppl4):2-10
    37Steckel H, Vadala G, Davis D, et al.2D and3D3-Tesla magneticresonance imaging of the double bundle structure in anteriorcruciateligament anatomy. Knee Surg Sports Traumatol Arthrosc.2006;14:1151-1158
    38Starman JS, Vanbeek C, Armfield DR, et al. Assessment of normal ACLdouble bundle anatomy in standard viewing planes by magneticresonanceimaging. Knee Surg Sports Traumatol Arthrosc.2007;15:493-499
    39Fithian DC, Paxton EW, Stone ML, et al. Prospective trial of a treatmentalgorithm for the management of the anterior cruciateligament-injuredknee. Am J Sports Med.2005;33:335-346
    40Barrack RL, Bruckner JD, Kneisl J, et al. The outcome of nonoperativelytreated complete tears of the anterior cruciate ligament in active youngadults. Clin Orthop Relat Res.1990;259:192-199
    41Noyes FR, Barber SD, Mooar LA. A rationale for assessing sports activitylevels and limitations in knee disorders. Clin Orthop Relat Res.1989;246:238-249
    42Scavenius M, Bak K, Hansen S, et al. Isolated total ruptures of the anteriorcruciate ligament: a clinical study with long-term follow-up of7year.Scand J Med Sci Sports.1999;9:114-119
    43Wittenberg RH, Oxfort HU, Plafki C. A comparison of conservative anddelayed surgical treatment of anterior cruciate ligament ruptures: amatched pair analysis. Int Orthop.1998;22:145-148
    44Recht MP, Piraino DW, Cohen MA, et al. Localized anterior arthrofibrosis(cyclops lesion) after reconstruction of the anterior cruciate ligament: MRimaging findings. Am J Roentgenol.1995;165:383-385
    45Aune AK, Holm I, Risberg MA, et al. Four-strand hamstring tendonautograft compared with patellar tendon-bone autograft for anteriorcruciateligament reconstruction: a randomized study with two-yearfollowup. Am J Sports Med.2001;29:722-728
    46Tuman JM, Diduch DR, Rubino LJ, et al. Predictors for hamstring graftdiameter in anterior cruciate ligament reconstruction. Am J SportsMed.2007;35:1945-1949
    47DeAngelis JP, Fulkerson JP. Quadriceps tendon—a reliable alternative forreconstruction of the anterior cruciate ligament. Clin SportsMed.2007;26:587-596
    48Lee S, Seong SC, Jo H, et al. Anterior cruciate ligament reconstructionusing quadriceps tendon autograft. J Bone Joint Surg Am.2007;89(suppl3):116-126
    49Prodromos C, Joyce B, Shi K. A meta-analysis of stability of autograftscompared to allografts after anterior cruciate ligament reconstruction.Knee Surg Sports Traumatol Arthrosc.2007;15:851-856
    50Krych AJ, Jackson JD, Hoskin TL, et al. A meta-analysis of patellar tendonautograft versus patellar tendon allograft in anterior cruciate ligamentreconstruction. Arthroscopy.2008;24:292-298
    51Sun K, Tian S, Zhang J, et al. Anterior cruciate ligament reconstructionwith BPTB autograft, irradiated versus non-irradiated allograft: aprospective randomized clinical study. Knee Surg Sports TraumatolArthrosc.2009;17:464-474
    52Ristanis S, Stergiou N, Patras K, et al. Excessive tibial rotation duringhigh-demand activities is not restored by anterior cruciate ligamentreconstruction. Arthroscopy.2005;21:1323-1329
    53Tashman S, Collon D, Anderson K, et al. Abnormal rotational knee motionduring running after anterior cruciate ligament reconstruction. Am J SportsMed.2004;32:975-983
    54Adachi N, Ochi M, Uchio Y, et al. Reconstruction of the anterior cruciateligament: single-versus double-bundle multistranded hamstring tendons. JBone Joint Surg Br.2004;86:515-520
    55Hamada M, Shino K, Horibe S, et al. Single-versus bi-socket anteriorcruciate ligament reconstruction using autogenous multiple-strandedhamstring tendons with endoButton femoral fixation: a prospective study.Arthroscopy.2001;17:801-807
    56Yasuda K, Kondo E, Ichiyama H, et al. Anatomic reconstruction of theanterom edial and posterolateral bundles of the anterior cruciate ligamentusing hamstring tendon grafts. Arthroscopy.2004;20:1015-1025
    57Mae T, Shino K, Miyama T, et al. Single-versus two-femoral socketanterior cruciate ligament reconstruction technique: biomechanicalanalysis using a robotic simulator. Arthroscopy.2001;17:708-716
    58Nishimoto K, Kuroda R, Mizuno K, et al. Analysis of the graft bendingangle at the femoral tunnel aperture in anatomic double bundle anteriorcruciate ligament reconstruction: a comparison of the transtibial and thefar anteromedial portal technique. Knee Surg Sports Traumatol Arthrosc.2009;17:270-276
    59Yagi M, Wong EK, Kanamori A, et al. Biomechanical analysis of ananatomic anterior cruciate ligament reconstruction. Am J SportsMed.2002;30:660-666
    60Yamamoto Y, Hsu WH, Woo SL, et al. Knee stability and graft functionafter anterior cruciate ligament reconstruction: a comparison of a lateraland an anatomical femoral tunnel placement. Am J Sports Med.2004;32:1825-1832
    61Abebe ES, Moorman CT III, Dziedzic TS, et al. Femoral tunnel placementduring anterior cruciate ligament reconstruction: an in vivo imaginganalysis comparing transtibial and2-incision tibial tunnel-independenttechniques. Am J Sports Med.2009;37:1904-1911
    62Abebe ES, Kim JP, Utturkar GM, et al. The effect of femoral tunnelplacement on ACL graft orientation and length during in vivo kneeflexion.J Biomechanics.2011;44:1914-1920
    63Shelbourne KD, Klotz C. What I have learned about the ACL: utilizing aprogressive rehabilitation scheme to achieve total knee symmetryafteranterior cruciate ligament reconstruction. J Orthop Sci.2006;11:318-325
    64Wright RW, Preston E, Fleming BC, et al. A systematic review ofanteriorcruciate ligament reconstruction rehabilitation: part II: open versusclosed kinetic chain exercises, neuromuscular electrical stimulation,accelerated rehabilitation, and miscellaneous topics. J Knee Surg.2008;21:225-234
    65Risberg MA, Holm I, Myklebust G, et al. Neuromuscular training versusstrength training during first6months after anterior cruciateligamentreconstruction: a randomized clinical trial. Phys Ther.2007;87:737-750
    66Moffat KL, Wang IN, Rodeo SA, et al. Orthopedic interface tissueengineering for the biological fixation of soft tissue grafts. Clin SportsMed.2009;28:157-176
    67Mahirogullari M, Ferguson CM, Whitlock PW, et al. Freeze-driedallografts for anterior cruciate ligament reconstruction. Clin Sports Med.2007;26:625-637
    68Lopez-Vidriero E, Goulding KA, Simon DA, et al. The use of plateletrichplasma in arthroscopy and sports medicine: optimizing the healingenvironment. Arthroscopy.2010;26:269-278
    69Weitzel PP, Richmond JC, Altman GH, et al. Future direction ofthetreatment of ACL ruptures. Orthop Clin North Am.2002;33:653-661
    1Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier J-P, Fahmi H. Roleof proinflammatory cytokines in the pathophysiology of osteoarthritis. NatRev Rheumatol2011Jan;7(1):33e42
    2Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis:adisease of the joint as an organ. Arthritis Rheum2012Jun;64(6):1697e707
    3Goldring MB, Otero M. Inflammation in osteoarthritis. Curr OpinRheumatol2011Sep;23(5):471e8
    4Bijlsma JWJ, Berenbaum F, Lafeber FPJG. Osteoarthritis: an update withrelevance for clinical practice. Lancet2011Jun18;377(9783):2115e26
    5Sellam J, Berenbaum F. Clinical features of osteoarthritis. In: Firestein GS,Budd RC, Harris Jr ED, McInnes IB, Ruddy S, Sergent JS, Eds. Kelley’sTextbook of Rheumatology. Philadelphia:Elsevier Inc;2008:1547e61
    6Shibakawa A, Aoki H, Masuko-Hongo K, Kato T, Tanaka M, Nishioka K,et al. Presence of pannus-like tissue on osteoarthritic cartilage and itshistological character. Osteoarthritis Cartilage2003Feb;11(2):133e40
    7Guermazi A, Roemer FW, Hayashi D. Imaging of osteoarthritis: updatefrom a radiological perspective. Curr Opin Rheumatol2011Sep;23(5):484e91
    8Roemer FW, Guermazi A, Felson DT, Niu J, Nevitt MC, Crema MD, et al.Presence of MRI-detected joint effusion and synovitis increases the risk ofcartilage loss in knees without osteoarthritis at30-month follow-up: theMOST study. Ann Rheum Dis2011Oct;70(10):1804e9
    9Ayral X, Pickering EH, Woodworth TG, Mackillop N, Dougados M.Synovitis: a potential predictive factor of structural progression of medialtibiofemoral knee osteoarthritis results of a1year longitudinalarthroscopic study in422patients. Osteoarthritis Cartilage2005May;13(5):361e7
    10Stürmer T, Brenner H, Koenig W, Günther K-P. Severity and extent ofosteoarthritis and low grade systemic inflammation as assessed by highsensitivity C reactive protein. Ann Rheum Dis2004Feb;63(2):200e5
    11Pearle AD, Scanzello CR, George S, Mandl LA, DiCarlo EF, Peterson M,et al. Elevated high-sensitivity C-reactive protein levels are associatedwith local inflammatory findings in patients with osteoarthritis.Osteoarthritis Cartilage2007May;15(5):516e23
    12Scanzello CR, McKeon B, Swaim BH, DiCarlo E, Asomugha EU, KandaV, et al. Synovial inflammation in patients undergoing arthroscopicmeniscectomy: molecular characterization and relationship to symptoms.Arthritis Rheum2011Feb;63(2):391e400
    13Sellam J, Berenbaum F. The role of synovitis in pathophysiology andclinical symptoms of osteoarthritis. Nat Rev Rheumatol2010Nov;6(11):625e35
    14Hussein MR, Fathi NA, El-Din AME, Hassan HI, Abdullah F, Al-HakeemE, et al. Alterations of the CD4(t), CD8(t) T cell subsets,interleukins-1beta, IL-10, IL-17, tumor necrosis factoralphaand solubleintercellular adhesion molecule-1in rheumatoid arthritis andosteoarthritis:preliminary observations. Pathol Oncol Res2008Sep;14(3):321e8
    15Blom AB, van Lent PL, Libregts S, Holthuysen AE, van der Kraan PM,van Rooijen N, et al. Crucial role of macrophages in matrixmetalloproteinase-mediated cartilage destruction during experimentalosteoarthritis: involvement of matrix metalloproteinase3. Arthritis Rheum
    2007Jan;56(1):147e57
    16Blom AB, van Lent PLEM, Holthuysen AEM, van der Kraan PM, Roth J,van Rooijen N, et al. Synovial lining macrophages mediate osteophyteformation during experimental osteoarthritisOsteoarthritis Cartilage2004Aug;12(8):627e35
    17Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nervegrowth in osteoarthritis. Nat Rev Rheumatol2012Jul;8(7):390e8
    18Haywood L, McWilliams DF, Pearson CI, Gill SE, Ganesan A, Wilson D,et al. Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum
    2003Aug;48(8):2173e7
    19E X, Cao Y, Meng H, Qi Y, Du G, Xu J, et al. Dendritic cells of synoviumin experimental model of osteoarthritis of rabbits. Cell Physiol Biochem2012;30(1):23e32
    20Suurmond J, Dorjée AL, Boon MR, Knol EF, Huizinga TWJ, Toes REM,et al. Mast cells are the main interleukin17-positive cells inanticitrullinated protein antibody-positive and–negative rheumatoidarthritis and osteoarthritis synovium. Arthritis Res Ther2011;13(5): R150
    21Gordon S. Pattern recognition receptors: doubling up for the innateimmune response. Cell2002Dec27;111(7):927e30
    22Kawai T, Akira S. The role of pattern-recognition receptors in innateimmunity: update on Toll-like receptors. Nat Immunol2010May;11(5):373e84
    23Kim HA, Cho M-L, Choi HY, Yoon CS, Jhun JY, Oh HJ, et al. Thecatabolic pathway mediated by Toll-like receptors in human osteoarthriticchondrocytes. Arthritis Rheum2006Jul;54(7):2152e63
    24Scanzello CR, Plaas A, Crow MK. Innate immune system activation inosteoarthritis: is osteoarthritis a chronic wound?Curr Opin Rheumatol
    2008Sep;20(5):565e72
    25García-Arnandis I, Guillén MI, Gomar F, Pelletier J-P, Martel-Pelletier J,Alcaraz MJ. High mobility group box1potentiates the pro-inflammatoryeffects of interleukin-1b in osteoarthritic synoviocytes. Arthritis Res Ther2010;12(4):R165
    26van Lent PLEM, Blom AB, Schelbergen RFP, Sl etjes A, Lafeber FPJG,Lems WF, et al. Active involvement of alarmins S100A8and S100A9inthe regulation of synovial activation and joint destruction during mouseand human osteoarthritis Arthritis Rheum2012May;64(5):1466e76
    27Sohn DH, Sokolove J, Sharpe O, Erhart JC, Chandra PE, Lahey LJ, et al.Plasma proteins present in osteoarthritic synovial fluid can stimulatecytokine production via Toll-like receptor4. Arthritis Res Ther2012;14(1):R7
    28Nair A, Kanda V, Bush-Joseph C, Verma N, Chubinskaya S, Mikecz K, etal. Synovial fluid from patients with early osteoarthritis modulatesfibroblast-like synoviocyte responses to toll-like receptor4and toll-likereceptor2ligands via soluble CD14. Arthritis Rheum2012Jul;64(7):2268e77
    29Scanzello CR, Umoh E, Pessler F, Diaz-Torne C, Miles T, Dicarlo E, et al.Local cytokine profiles in knee osteoarthritis: elevated synovial fluidinterleukin-15differentiates early from end-stage disease. OsteoarthritisCartilage2009Aug;17(8):1040e8.
    30Wang Q, Rozelle AL, Lepus CM, Scanzello CR, Song JJ, Larsen DM, et al.Identification of a central role for complement in osteoarthritis. Nat Med
    2011Dec;17(12):1674e9
    31Rosenthal AK. Crystals, inflammation, and osteoarthritis. Curr OpinRheumatol2011Mar;23(2):170e3
    32MacMullan P, McMahon G, McCarthy G. Detection of basic calciumphosphate crystals in osteoarthritis. Joint Bone Spine2011Jul;78(4):358e63
    33Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Goutassociateduric acid crystals activate the NALP3inflammasome. Nature2006Mar9;440(7081):237e41
    34Denoble AE, Huffman KM, Stabler TV, Kelly SJ, Hershfield MS,McDaniel GE, et al. Uric acid is a danger signal of increasing risk forosteoarthritis through inflammasome activation. Proc Natl Acad Sci USA
    2011Feb1;108(5):2088e93
    35Bougault C, Gosset M, Houard X, Salvat C, Godmann L, Pap T, etal.Stress-induced cartilage degradation does not depend onNLRP3inflammasome in osteoarthritis. Arthritis Rheum2012Aug29,http://dx.doi.org/10.1002/art.34678[Epub ahead of print]
    36Attur M, Statnikov A, Aliferis CF, Li Z, Krasnokutsky S, Samuels J, et al.Inflammatory genomic and plasma biomarkers predict progression ofsymptomatic knee OA (SKOA). Osteoarthritis Cartilage2012Apr20.Suppl1:S34eS35
    37Fernández-Puente P, Mateos J, Fernández-Costa C, Oreiro N,Fernández-López C, Ruiz-Romero C, et al. Identification of a panel of novelserum osteoarthritis biomarkers. J Proteome Res2011Nov4;10(11):5095e101
    38Attur M, Belitskaya-Lévy I, Oh C, Krasnokutsky S, Greenberg J, Samuels J,et al. Increased interleukin-1b gene expression inperipheral bloodleukocytes is associated with increased pain and predicts risk forprogression of symptomatic knee osteoarthritis. Arthritis Rheum2011Jul;63(7):1908e17
    39Yusuf E, Nelissen RG, Ioan-Facsinay A, Stojanovic-Susulic V, DeGroot J,van Osch G, et al. Association between weight or body mass index and handosteoarthritis: a systematic review.Ann Rheum Dis2010Apr;69(4):761e5
    40Pottie P, Presle N, Terlain B, Netter P, Mainard D, Berenbaum F. Obesityand osteoarthritis: more complex than predicted!. Ann Rheum Dis2006Nov1;65(11):1403e5
    41Gabay O, Berenbaum F. Adipokines in arthritis: new kids on the block.Curr Rheumatol Rev2009;5(4):226e32
    42Gómez R, Conde J, Scotece M, Gómez-Reino JJ, Lago F, Gualillo O.What’s new in our understanding of the role of adipokines inrheumaticdiseases? Nat Rev Rheumatol2011Sep;7(9):528e36
    43Gosset M, Berenbaum F, Salvat C, Sautet A, Pigenet A, Tahiri K, et al.Crucial role of visfatin/pre-B cell colony-enhancing factor in matrixdegradation and prostaglandin E2synthesis in chondrocytes: possibleinfluence on osteoarthritis. Arthritis Rheum2008May;58(5):1399e409
    44Puenpatom RA, Victor TW. Increased prevalence of metabolic syndrome inindividuals with osteoarthritis: an analysis of NHANES III data. PostgradMed2009Nov;121(6):9e20
    45Sowers M, Karvonen-Gutierrez CA, Palmieri-Smith R, Jacobson JA, JiangY, Ashton-Miller JA. Knee osteoarthritis in obese women withcardiometabolic clustering. Arthritis Rheum2009Oct15;61(10):1328e36
    46Yoshimura N, Muraki S, Oka H, Tanaka S, Kawaguchi H, Nakamura K, etal. Accumulation of metabolic risk factors such as overweight, hypertension,dyslipidaemia, and impaired glucose tolerance raises the risk of occurrenceand progression of knee osteoarthritis: a3-year follow-up of the ROADstudy. Osteoarthritis Cartilage [Internet]2012Jul12[cited2012Jul17]
    47Hoeven TA, Kavousi M, Clockaerts S, Kerkhof HJ, van Meurs JB, FrancoO, et al. Association of atherosclerosis with presence and progression ofosteoarthritis: the Rotterdam study. AnnRheum Dis2012May6[Epubahead of print]
    48Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic andregulatory pathways. Physiol Rev2006;86:515e81
    49Deng Y, Scherer PE. Adipokines as novel biomarkers and regulators of themetabolic syndrome. Ann N Y Acad Sci2010Nov;1212:E1eE19
    50Yusuf E, Ioan-Facsinay A, Bijsterbosch J, Klein-Wieringa I, KwekkeboomJ, Slagboom PE, et al. Association between leptin, adiponectin and resistinand long-term progression of hand osteoarthritis. Ann Rheum Dis2011Jul;70(7):1282e4
    51Filková M, Li_sková M, Hulejová H, Haluzík M, Gatterová J, Pavelková A,et al. Increased serum adiponectin levels in female patients with erosivecompared with non-erosive osteoarthritis. Ann Rheum Dis2009Feb1;68(2):295e6
    52de Boer TN, van Spil WE, Huisman AM, Polak AA, Bijlsma JWJ, LafeberFPJG, et al. Serum adipokines in osteoarthritis; comparison with controlsand relationship with local parameters of synovial inflammation andcartilage damage. Osteoarthritis Cartilage2012Aug;20(8):846e53
    53Clockaerts S, Bastiaansen-Jenniskens YM, Runhaar J, Van Osch GJVM,Van Offel JF, Verhaar JAN, et al. The infrapatellar fat pad should beconsidered as an active osteoarthritic joint tissue: a narrative review.Osteoarthritis Cartilage2010Jul;18(7):876e82
    54Distel E, Cadoudal T, Durant S, Poignard A, Chevalier X, Benelli C. Theinfrapatellar fat pad in knee osteoarthritis: an important source ofinterleukin-6and its soluble receptor. Arthritis Rheum2009Nov;60(11):3374e7
    55Busso N, Karababa M, Nobile M, Rolaz A, Van Gool F, Galli M, et al.Pharmacological inhibition of nicotinamide phosphoribosy ltransferase/visfatin enzymatic activity identifies a new inflammatory pathway linked toNAD. PLoS ONE2008May21;3(5): e2267.
    56Richette P, Poitou C, Garnero P, Vicaut E, Bouillot JL, Lacorte JM, et al.Benefits of massive weight loss on symptoms, systemic inflammation andcartilage turnover in obese patients with knee osteoarthritis. Ann RheumDis2011Jan;70(1):139e44
    57Kyrkanides S, Tallents RH, Miller J-NH, Olschowka ME, Johnson R, YangM, et al. Osteoarthritis accelerates and exacerbates Alzheimer’s diseasepathology in mice. J Neuroinflammation2011;8:112
    58Licastro F, Candore G, Lio D, Porcellini E, Colonna-Romano G, FranceschiC, et al. Innate immunity and inflammation in ageing: a key forunderstanding age-related diseases. Immun Ageing2005May18;2(1):8
    59Loeser RF. Aging and osteoarthritis. Curr Opin Rheumatol2011Sep;23(5):492e6
    60Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. The senescence associatedsecretory phenotype: the dark side of tumor suppression. Annu Rev Pathol2010;5:99e118
    61Campisi J, Andersen JK, Kapahi P, Melov S. Cellular senescence: a linkbetween cancer and age-related degenerative disease? Semin Cancer Biol
    2011Dec;21(6):354e9
    62Forsyth CB, Cole A, Murphy G, Bienias JL, Im H-J, Loeser Jr RF.Increased matrix metalloproteinase-13production with aging by humanarticular chondrocytes in response to catabolic stimuli. J Gerontol A BiolSci Med Sci2005Sep;60(9):1118e24
    63Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis.Bone2012Aug;51(2):241e8
    64Loeser RF, Yammani RR, Carlson CS, Chen H, Cole A, Im H-J, et al.Articular chondrocytes express the receptor for advanced glycation endproducts: potential role in osteoarthritis. Arthritis Rheum2005Aug;52(8):2376e85
    65Rasheed Z, Akhtar N, Haqqi TM. Advanced glycation end products inducethe expression of interleukin-6and interleukin-8by receptor for advancedglycation end productmediated activation of mitogen-activated proteinkinases and nuclear factor-B in human osteoarthritis chondrocytes.Rheumatology2010Dec20;50(5):838e51
    66Tankó LB, S ndergaard B-C, Oestergaard S, Karsdal MA, Christiansen C.An update review of cellular mechanisms conferring the indirect and directeffects of estrogen on articular cartilage. Climacteric2008Feb;11(1):4e16
    67Richette P, Dumontier M-F, Tahiri K, Widerak M, Torre A, Benallaoua M,et al. Oestrogens inhibit interleukin1betamediated nitric oxide synthaseexpression in articular chondrocytes through nuclear factor-kappa Bimpairment. Ann Rheum Dis2007Mar;66(3):345e50
    68Pfeilschifter J, K ditz R, Pfohl M, Schatz H. Changes in proinflammatorycytokine activity after menopause. Endocr Rev2002Feb;23(1):90e119
    69Guilak F. Biomechanical factors in osteoarthritis. Best Pract Res ClinRheumatol2011Dec;25(6):815e23
    70Issa RI, Griffin TM. Pathobiology of obesity and osteoarthritis: integratingbiomechanics and inflammation. Pathobiol Aging Age Relat Dis [Internet]
    2012May9;2[cited2012Jul18]
    71Stevens AL, Wishnok JS, White FM, Grodzinsky AJ, Tannenbaum SR.Mechanical injury and cytokines cause loss of cartilage integrity andupregulate proteins associated with catabolism, immunity, inflammation,and repair. Mol Cell Proteomics2009Jul;8(7):1475e89
    72Chauffier K, Laiguillon M-C, Bougault C, Gosset M, Priam S, Salvat C, etal. Induction of the chemokine IL-8/Kc by the rticular cartilage: possibleinfluence on osteoarthritis. Joint Bone Spine [Internet]2012Feb15[cited
    2012Jul17]
    73Gosset M, Berenbaum F, Levy A, Pigenet A, Thirion S, Saffar J-L, et al.Prostaglandin E2synthesis in cartilage explants under compression:mPGES-1is a mechanosensitive gene. Arthritis Res Ther2006;8(4):R135
    74Sanchez C, Pesesse L, Gabay O, Delcour J-P, Msika P, Baudouin C, et al.Regulation of subchondral bone osteoblast metabolism by cycliccompression. Arthritis Rheum2012Apr;64(4):1193e203
    75Berenbaum F. Signaling transduction: target in osteoarthritis. Curr OpinRheumatol2004Sep;16(5):616e22
    76Verbruggen G, Wittoek R, Vander Cruyssen B, Elewaut D. Tumournecrosis factor blockade for the treatment of erosive osteoarthritis of theinterphalangeal finger joints: a double blind, randomised trial on structuremodification. Ann Rheum Dis2012Jun;71(6):891e8[Epub2011Nov29]
    77Chevalier X, Goupille P, Beaulieu AD, Burch FX, Bensen WG, ConrozierT, et al. Intraarticular injection of anakinra in osteoarthritis of the knee: amulticenter, randomized, doubleblind, placebo-controlled study. ArthritisRheum2009Mar15;61(3):344e52
    78Maksymowych WP, Russell AS, Chiu P, Yan A, Jones N, Clare T, et al.Targeting tumor necrosis factor alleviates signs and symptoms ofinflammatory osteoarthritis of the knee. Arthritis Res Ther2012Oct4;14(5):R206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700