大跨斜拉桥有限元模型修正与结构损伤监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨桥梁的结构健康监测已成为当今土木工程界研究的热点问题。桥梁结构由于受到车辆、风、地震等荷载作用以及环境影响或突发事件(温度、湿度、撞击等)因素会在运营期间发生不同程度的损伤。桥梁结构一旦发生损伤,将对桥梁安全造成巨大威胁并严重危害人民的生命财产和安全。一些严重的突发事故诸如桥梁倾覆倒塌等还会给国家和社会带来巨大的灾难。利用桥梁结构的响应监测数据,通过模型修正与损伤识别揭示结构状态退化,据此评估结构安全与预测剩余寿命,对于桥梁运行维护与灾害预防具有重要意义。本文提出了一种大跨斜拉桥模型修正的方法,并且在实验室建立了一座缩尺比例为1:150的斜拉桥模型,通过理论研究与物理模拟较为系统地研究了斜拉桥模型修正中的一些关键问题:为了克服基于傅里叶变换的动力损伤识别方法的局限性,发展了基于小波变换的振动传递性的概念,建立了更加有效的斜拉桥结构损伤识别算法;针对结构损伤的空间位置的任意性,提出了一种斜拉桥损伤的分布式探测方法,并且利用物理模型试验验证了该方法的可行性。主要研究工作和结论如下:
     绪论部分首先阐述了桥梁健康监测和损伤识别的研究意义,接着回顾和总结了近几十年来桥梁健康监测的发展情况,介绍了健康监测系统的概念、组成、发展历史以及在工程中的实际应用情况。根据国内外近些年来对斜拉桥损伤识别方法的研究,详细地介绍了适用于大跨斜拉桥结构损伤识别方法的理论以及各类损伤识别方法的适用条件范围和优缺点。最后针对在桥梁健康监测和损伤识别中的问题给出了本文的主要研究内容和研究思路。
     以山东黄河胜利大桥为工程背景,基于模型相似理论建立比尺为1:150的斜拉桥模型,并通过开展斜拉桥模型试验获得斜拉桥的静动力响应数据。首先阐述了模型实验的目的与意义,相似理论在模型实验中的应用。然后详细介绍了模型的设计制作的整个过程,包括模型材料的选择、各物理量相似常数的推导、结构各构件的尺寸设计和边界条件的模拟等内容。在斜拉桥模型静力加载试验通过百分表测试桥面的挠度,自制FBG光纤传感器监测斜拉索的索力变化。通过模态分析试验获得了斜拉桥的前三阶竖向弯曲振动频率和相应的振型。最后通过模型试验研究了斜拉索损伤对桥梁位移和索力变化的影响,讨论了关键索索力变化对整个桥梁安全状况的影响。该模型桥为本文的研究基准模型,为斜拉桥健康监测与损伤识别的研究做铺垫。
     第三章提出了一种对大跨斜拉桥有限元模型进行分步修正的策略。首先回顾了斜拉桥有限元模型建立的各种方法,并采用ANSYS通用软件建立了模型斜拉桥的三维有限元模型。然后,利用斜拉桥模型试验获得的实测响应数据,构建包括频率响应残差、振型响应残差以及位移响应残差的多响应目标函数。对有限元模型进行优化,使得修正后的有限元模型全面准确地反映模型斜拉桥的静动力学行为。基于ANSYS参数化设计语言(APDL)进行二次开发,编制模型优化程序,采用一阶优化方法和子问题方法开展有限元模型修正。不同于以往的斜拉桥模型修正策略,仅仅关注于结构的动力或静力响应与原型的一致性,本文提出的有限元模型分步修正策略兼顾了正确反映模型桥的静动力响应。通过灵敏度分析选择合适的修正参数先对频率残差项进行优化,使第一次修正后的有限元模型计算频率与实测频率相近。然后选择其它修正参数对位移项和振型项进行修正,使第二次修正后的有限元模型在静力响应方面也与模型桥的实测响应一致。同时,还将修正后的有限元模型物理参数与实际估算值作比较,二者的一致性验证了模型修正程序的有效性。最后,利用修正后的有限元模型预测模型斜拉桥及其原型桥的响应,又进一步验证了该有限元模型的正确性。
     为寻找对损伤敏感的损伤指标,在第四章中提出了基于小波变换的传递性函数损伤识别方法。介绍了响应自由度之间的传递性函数的概念及其在土木工程领域的特点和应用,总结和归纳了利用传递性函数构造损伤识别指标进而对结构的损伤进行探测的方法。然后推导了通过小波变换构造结构传递性函数的损伤识别指标,并结合统计学中的离群值分析方法对损伤进行探测,同时给出了损伤识别的具体步骤。通过数值模型试验与实验室斜拉桥模型试验加以验证。在数值模型试验与斜拉桥模型试验中将本文所提出的方法与传统的传递性函数进行对比,结果表明本文所提出的方法对结构出现的损伤十分敏感,能够识别结构的早期微小损伤。
     结构损伤具有典型的局部性质,通常表现为局部应变的异常。结构应变的分布式监测与损伤敏感特征分析,是实现大跨桥梁损伤探测与定位的理想途径之一。第五章提出了基于分布式应变监测的大跨度斜拉桥结构损伤探测方法,通过小波变换对分布式光纤测试的斜拉桥桥面应变分布进行多尺度分析,克服了分布式光纤应变监测信号受观测噪声和空间分辨率平均效应的不利影响,准确地确定了空间域信号奇异点在桥面的位置。介绍了分布式光纤的特点、BOTDA(布里渊光时域分析技术)的测试原理以及其在桥梁健康监测中的广泛应用。在模型试验中通过布设不同形式的分布式光纤进行试验研究。通过斜拉桥数值模型与物理模型试验结果进行分析和比较验证所提出方法的有效性。数值试验和模型试验均表明,采用所提出的方法可以对桥梁多处位置发生的损伤进行有效地识别,该损伤识别方法具有对噪声的鲁棒性和对损伤的敏感性。
     最后,对全文的研究工作进行归纳和总结,并对大跨斜拉桥健康监测和损伤识别的发展方向进行了展望。
Nowadays, the study of structural health monitoring and damage identification for the long span bridges has become hot issues in civil engineering. Damages of different level appear on the bridge due to the traffic loads, wind load, earthquake and other environmental effects (temperature, humidity and strike, etc.) in operation, which will greatly threaten the safety of bridges and may cause great loss to human life and property. Some serious accidents such as the collapse of the bridge will cause great disaster to our country and society. Therefore, in order to secure the safety of the bridge structures and prevent the case of disaster, one need to identify and alert the damage of the bridge structures in time, which is of great significance in saving the economic loss and protecting the human life and property. A great number of researchers and engineers expect to make use of the characteristics of the bridge, especially its dynamic property to investigate the damage identification algorithm and apply the structural health monitoring system to detect and alert the damage by constructing the damage index which is sensitive to the damage of the bridge. The study is carried out under this background.
     In order to better study the structural health monitoring and damage identification of the cable-stayed bridge, a cable-stayed bridge model with the scale ratio1:150was built in the laboratory. Based on this physical model, three issues including finite element model updating method, wavelet-based transmissibility function and the structural health monitoring of the cable-stayed bridge on the basis of measuring the distributed strain are studied by carrying out the model test and numerical simulation. The main work and research scheme are stated as follows.
     First of all, the significance of structural health monitoring and damage identification for the bridge structures is stressed in the introduction part. Secondly, the development of structural health monitoring for the bridge structures in recent decades is briefly introduced. Then the concept, composition, history and application of the structural health monitoring system are also presented. According to the recent study on the damage identification methods for the cable-stayed bridge, different kinds of damage identification methods adopted in bridge engineering are presented, and their application fields and advantages as well as disadvantages are also evaluated. Finally, the outline and the idea of this research are provided at the end of the introduction based on the issues and problems occurred in the structural health monitoring and damage identification areas for the cable-stayed bridges.
     Based on the engineering background of Yellow River Shengli Bridge in Shandong province, a small scale cable-stayed bridge model with the scale ratio1:150was built according to the similarity theory and the model tests were carried out to obtain both of the static and dynamic experimental data. The goal and significance of the model test are explained at first, and then the application of the similarity theory in model test is introduced. The whole process of the design and fabrication of the model bridge is presented, including model material selection, derivation of physical quantities, design of the structural components as well as boundary simulation, etc. The dial test indicators are used to measure the displacement of the bridge deck, and self-made FBG optical sensors are used to monitor the cable force change during the model tests. Modal test was also performed to obtain the first three vertical bending frequencies and mode shapes. Finally, the study on the effects of bridge displacement and cable force change caused by the damage of the cable is carried out, and the influence of the cable force change on the bridge health status is discussed. This physical model was used as a baseline model for the study of cable-stayed bridge of structural health monitoring and damage identification.
     A two-step FE model updating strategy for long span cable-stayed bridge is proposed in the Chapter3. The various methods of FE model updating for cable-stayed bridge were reviewed in the first time, then a three dimensional cable-stayed bridge model was established using ANSYS software. Based on the experimental data from the model test, a multi-objective function was formulated including frequency, mode shape and displacement differences. The FE model was updated to improve the accuracy of estimating both of the static and dynamic responses. An optimization program was developed using first order and sub-problem method to update the FE model based on APDL (ANSYS Parametric Design Language). The two-step FE model updating strategy proposed in this study takes consideration of both static and dynamic responses of the bridge model, and is different from the conventional FE updating methods, which only take account of either dynamic or static responses of prototype. The frequency difference was first minimized by selecting the appropriate parameter with sensitivity analysis, which makes the computed frequency as close as the measures one. Then other parameters were selected to minimize the mode shape and displacement differences, which makes the static responses predicted by the FE model agrees with the experimental results after the second step of model updating. Meanwhile, the updated parameters were used to compare with the actual ones of the model bridge. The agreement of them verifies the effectiveness of the updating program. At last, using the updated FE model to predict the responses of the model bridge and prototype bridge to further validate the accuracy of the FE model.
     In order to search the damage index which is sensitive to the damage, a wavelet-based transmissibility function method is proposed to detect the damage. The concept of transmissibility function between the responses between the degrees of freedom (DOF) is introduced and its features and applications are also presented. The damage identification methods using the transmissibility function are summarized. Then, a new damage index using wavelet-based transmissibility is derived and constructed. A statistical method named outlier analysis is adopted in the study to detect the damage in the structure and the concrete damage detection procedure is also presented. Numerical simulation and experiment were also carried out to verify the effectiveness of the proposed method. Also, a comparison study was carried out by using the conventional transmissibility method. The results show that the damage detection method proposed in this study is very sensitive to the damage, which highlight the strength of the method to detect the slight damage in the early stage of the structure.
     Structural damage is a typical local phenomenon, which commonly leads to the abnormality in the local strain. Monitoring the structural damage in a distributed manner, as well as extracting the damage-sensitive feature, is an effective way to detect the damages in the long-span bridges. A damage detection method for the long span bridge is proposed by using the distributed optical sensor. The strain signals of the deck, which are measured by distributed optical fiber sensor, are decomposed into multiple levels using wavelet transform. The proposed method has alleviated the noise effects on the strain signals and averaging effect caused by the spatial resolution of BOTDA (Brillouin Optical Time Domain Analysis), thus determines the exact location of the singular point of the spatial signal accurately and conveniently. The features of the distributed optical sensor, the principle of BOTDA, and its application are presented. The damage index is constructed using wavelet transform to detect the singularity of the distributed signal of the bridge structure. Different types of the optical sensors were used in the study. Both of the numerical simulation and model tests were carried out on the cable-stayed bridge model to testify the effectiveness of the proposed method. The results show that the proposed damage detection method can detect multi damage locations of the bridge structure and it is also sensitive to the damage and robust to the environmental noise.
     Finally, the summary is given at the end of the research, and the prospect for the structural health monitoring and damage identification of the cable-stayed bridge is also proposed.
引文
[1]李爱群,缪长青.桥梁结构健康监测[M].人民交通出版社,2009.
    [2]Jang S, Jo H, Cho S, et al. Structural health monitoring of a cable-stayed bridge using smart sensor technology:deployment and evaluation [J]. Smart Structures and Systems, 2010,6(5-6):439-459.
    [3]Chae M J, Yoo H S, Kim J Y, et al. Development of a wireless sensor network system for suspension bridge health monitoring [J]. Automation in Construction,2012,21(237-252.
    [4]秦权.桥梁结构的健康监测[J].中国公路学报.2000,13(2):39-44.
    [5]Fuhr P L, Huston D R. Corrosion detection in reinforced concrete roadways and bridges via embedded fiber optic sensors [J]. Smart Materials and Structures,1998,7(2):217.
    [6]欧进萍,周智,武湛君,等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报.2004,01):45-49.
    [7]李爱群,缪长青,李兆霞,等.润扬长江大桥结构健康监测系统研究[J].东南大学学报(自然科学版).2003,05):544-548.
    [8]Casas J R, Cruz P J. Fiber optic sensors for bridge monitoring [J]. Journal of Bridge Engineering,2003,8(6):362-373.
    [9]Li H, Li D, Song G. Recent applications of fiber optic sensors to health monitoring in civil engineering [J]. Engineering structures,2004,26(11):1647-1657.
    [10]孙汝蛟,孙利民,孙智.FBG传感技术在大型桥梁健康监测中的应用[J].同济大学学报(自然科学版).2008,02):149-154.
    [11]Peddle J, Goudreau A, Carlson E, et al. Bridge displacement measurement through digital image correlation [J]. Bridge Structures-Assessment, Design & Construction,2011,7(4): 165-173.
    [12]Gamache R, Santini-Bell E. Non-intrusive Digital Optical Means to Develop Bridge Performance Information [C]. University of New Hampshire. NDT Conference Paper, Nantes, France,2009:
    [13]Doebling S W, Farrar C R, Prime M B. A summary review of vibration-based damage identification methods [J].Shock and Vibration Digest,1998,30(2):91-105.
    [14]Yan Y J, Cheng L, Wu Z Y, et al. Development in vibration-based structural damage detection technique [J]. Mechanical Systems and Signal Processing,2007,21(5): 2198-2211.
    [15]Los Alamos National Lab., NM (United States). Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics:a literature review[R].1996
    [16]Alvandi A, Cremona C. Assessment of vibration-based damage identification techniques [J]. Journal of Sound and Vibration,2006,292(1):179-202.
    [17]Cawley P, Adams R D. The location of defects in structures from measurements of natural frequencies [J].The Journal of Strain Analysis for Engineering Design,1979,14(2): 49-57.
    [18]0stachowicz W M, Krawczuk M. Vibration analysis of a cracked beam [J]. Computers & Structures,1990,36(2):245-250.
    [19]Biswas M, Pandey A K, Samman M M.Diagnostic experimental spectral/modal analysis of a highway bridge [J].The International Journal of Analytical and Experimental Modal Analysis,1990,5(1):33-42.
    [20]Lee Y, Chung M. A study on crack detection using eigenfrequency test data [J]. Computers & Structures,2000,77(3):327-342.
    [21]Clayton E H, Koh B, Xing G, et al. Damage detection and correlation-based localization using wireless mote sensors [C]. Intelligent Control,2005. Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation,2005:304-309.
    [22]Messina A, Williams E J, Contursi T. Structural damage detection by a sensitivity and statistical-based method [J]. Journal of Sound and Vibration,1998,216(5):791-808.
    [23]Kim J T, Ryu Y S, Cho H M, et al. Damage identification in beam-type structures: frequency-based method vs mode-shape-based method [J]. Engineering structures,2003, 25(1):57-67.
    [24]Shi Z, Law S, Zhang L. Structural Damage Detection from Modal Strain Energy Change [J]. Journal of Engineering Mechanics,2000,126(12):1216-1223.
    [25]Park N G, Park Y. Identification of damage on a substructure with measured frequency response functions [J]. Journal of mechanical science and technology,2005,19(10): 1891-1901.
    [26]Yang Q W. A new damage identification method based on structural flexibility disassembly [J]. Journal of Vibration and Control,2011,17(7):1000-1008.
    [27]Wang B S, Liang X B, Ni Y Q. Comparative study of damage indices in application to a long-span suspension bridge [C]. Proceedings of the international conference on advances in structural dynamics,2000:1085-1092.
    [28]Sohn H, Dzwonczyk M, Straser E G, et al. Adaptive modeling of environmental effects in modal parameters for damage detection in civil structures [C].5th Annual International Symposium on Smart Structures and Materials,1998:127-138.
    [29]Turner J D. An experimental and theoretical study of dynamic methods of bridge condition monitoring. University of Reading,1984.
    [30]Wood M G. Damage analysis of bridge structures using vibrational techniques Aston University,1992.
    [31]Farrar C R, Jauregui D A. Comparative study of damage identification algorithms applied to a bridge:I. Experiment [J]. Smart materials and structures,1998,7(5):704.
    [32]Ni Y Q, Zhou H F, Chan K C, et al.Modal Flexibility Analysis of Cable-Stayed Ting Kau Bridge for Damage Identification [J].Computer-Aided Civil and Infrastructure Engineering,2008,23(3):223-236.
    [33]Xu Z, Wu Z. Simulation of the effect of temperature variation on damage detection in a long-span cable-stayed bridge [J]. Structural Health Monitoring,2007,6(3):177-189.
    [34]Alampalli S. Significance of operating environment in condition monitoring of large civil structures [J].Shock and Vibration,1999,6(5):247-251.
    [35]Worden K, Sohn H, Farrar C R. Novelty detection in a changing environment:regression and interpolation approaches [J]. Journal of sound and vibration,2002,258(4): 741-761.
    [36]Kim J, Yun C, Yi J.Temperature effects on frequency-based damage detection in plate-girder bridges [J].KSCE journal of civil engineering,2003,7(6):725-733.
    [37]Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shapes [J]. Journal of sound and vibration,1991,145(2):321-332.
    [38]ABDEL WAHAB M M, DE ROECK G. Damage detection in bridges using modal curvatures: application to a real damage scenario [J]. Journal of Sound and Vibration,1999,226(2): 217-235.
    [39]李忠献,齐怀展,朱劲松.基于模态曲率法的大跨度斜拉桥损伤识别[J].地震工程与工程振动.2007,27(4):122-126.
    [40]Pandey A K, Biswas M.Damage detection in structures using changes in flexibility [J].Journal of sound and vibration,1994,169(1):3-17.
    [41]Toksoy T, Aktan A E. Bridge-condition assessment by modal flexibility [J]. Experimental Mechanics,1994,34(3):271-278.
    [42]Doebling S W, Farrar C R. Computation of structural flexibility for bridge health monitoring using ambient modal data [C]. Proceedings of the 11th ASCE Engineering Mechanics Conference,1996:1114-1117.
    [43]孙国,顾元宪.连续梁结构操作识别的改进预谋阵方法[J].工程力学.2003,20(4):50-54.
    [44]Catbas F N, Gul M, Burkett J L. Conceptual damage-sensitive features for structural health monitoring:laboratory and field demonstrations [J].Mechanical Systems and Signal Processing,2008,22(7):1650-1669.
    [45]Zhang Z, Aktan A E. The damage indices for the constructed facilities [C]. Proceedings of the 13th International Modal Analysis Conference,1995:1520-1529.
    [46]Stubbs N, Kim J, Farrar C R. Field verification of a nondestructive damage localization and severity estimation algorithm [C]. Proceedings-SPIE the international society for optical engineering,1995:210-218.
    [47]Cornwell P, Doebling S W, Farrar C R. Application of the strain energy damage detection method to plate-like structures [J]. Journal of Sound and Vibration,1999,224(2): 359-374.
    [48]刘涛,李爱群,丁幼亮.小波分析在结构损伤识别中的应用[J].地震工程与工程振动.2008, 28(2):29-35.
    [49]Gurley K, Kareem A. Applications of wavelet transforms in earthquake, wind and ocean engineering [J]. Engineering Structures,1999,21(2):149-167.
    [50]郭健.基于小波分析的结构损伤识别方法研究[D].浙江大学,2004.
    [51]Al-Khalidy A, Noori M, Hou Z, et al. Health monitoring systems of linear structures using wavelet analysis [C]. Structural Health Monitoring-Current Status and Perspectives, Proceedings of the International Workshop on Structural Health Monitoring. Technomic, Lancaster, Basel,1997:164-175.
    [52]Hou Z, Noori M N, St Amand R. Wavelet-based approach for structural damage detection [J]. Journal of Engineering Mechanics,2000,126(7):677-683.
    [53]李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与试验分析[J].土木工程学报.2003,36(5):52-57,75.
    [54]Surace C, Ruotolo R.Crack detection of a beam using the wavelet transform [C]. Proceedings-SPIE the international society for optical engineering,1994:1141-1147.
    [55]Melhem H, Kim H. Damage detection in concrete by fourier and wavelet analyses [J]. Journal of Engineering Mechanics,2003,129(5):571-577.
    [56]Kim H, Melhem H. Damage detection of structures by wavelet analysis [J]. Engineering Structures,2004,26(3):347-362.
    [57]Gokdag H, Kopmaz O. A new damage detection approach for beam-type structures based on the combination of continuous and discrete wavelet transforms [J]. Journal of Sound and Vibration,2009,324(3-5):1158-1180.
    [58]Hong J C, Kim Y Y, Lee H C, et al. Damage detection using the Lipschitz exponent estimated by the wavelet transform:applications to vibration modes of a beam [J]. International journal of solids and structures,2002,39(7):1803-1816.
    [59]胡昌华,张君波,夏军.基于MATLAB的系统分析与设计-小波分析[M].西安:西安电子科技大学出版社,1999.
    [60]李爱群,丁幼亮.工程结构损伤预警理论及其应用[M].科学出版社,2007.
    [61]Sun Z. Structural damage assessment based on wavelet packet transform [J]. Journal of Structural Engineering,2002,128(10):1354-1361.
    [62]丁幼亮,李爱群,缪长青.基于小波包能量谱的结构损伤预警方法研究[J].工程力学.2006,23(8):42-48.
    [63]刘涛,李爱群,丁幼亮,等.基于小波包能量谱的结构损伤预警方法试验研究[J].振动与冲击.2009,28(4):4-9.
    [64]韩建刚,任伟新,孙增寿.结构损伤识别的小波包分析试验研究[J].振动与冲击.2006,25(1):47-50.
    [65]余竹,夏禾,Goicolea J. M.,等.基于小波包能量曲率差法的桥梁损伤识别试验研究[J].振动与冲击.2013,32(5):20-25.
    [66]任伟新,彭雪林.青洲斜拉桥的基准动力有限元模型[J].计算力学学报.2007,24(5):609-614.
    [67]Mottershead J E, Friswell M I.Model updating in structural dynamics:a survey [J]. Journal of sound and vibration,1993,167(2):347-375.
    [68]丁幼亮,李爱群,缪长青,等.大跨桥梁结构损伤诊断与安全评估的多尺度有限元模拟研究[J].地震工程与工程振动.2006,26(2):66-72.
    [69]Marwala T. Finite-element-model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics [M].Springer,2010.
    [70]Berman A. Mass matrix correction using an incomplete set of measured modes [J].AIAA journal,1979,17(10):1147-1148.
    [71]Akula V R, Ganguli R. Finite element model updating for helicopter rotor blade using genetic algorithm [J].AIAA journal,2003,41(3):554-556.
    [72]Marwala T. Finite element model updating using wavelet data and genetic algorithm [J]. Journal of Aircraft,2002,39(4):709-711.
    [73]Perera R, Ruiz A.A multistage FE updating procedure for damage identification in large-scale structures based on multiobjective evolutionary optimization [J]. Mechanical Systems and Signal Processing,2008,22(4):970-991.
    [74]Brits R, Engelbrecht A P, van den Bergh F. Locating multiple optima using particle swarm optimization [J]. Applied Mathematics and Computation,2007,189(2):1859-1883.
    [75]Pandey P C, Barai S V. Multilayer perceptron in damage detection of bridge structures [J]. Computers & Structures,1995,54 (4):597-608.
    [76]Levin R 1, Lieven N. Dynamic finite element model updating using neural networks [J]. Journal of Sound and Vibration,1998,210(5):593-607.
    [77]Hongxing H, Sol H, Wilde D W. On a statistical optimization method used in finite element model updating [J]. Journal of Sound and Vibration,2000,231(4):1071-1078.
    [78]Wu J R, Li Q S. Finite element model updating for a high-rise structure based on ambient vibration measurements [J]. Engineering Structures,2004,26(7):979-990.
    [79]Di Lorenzo R, Ingarao G, Chinesta F. Integration of gradient based and response surface methods to develop a cascade optimisation strategy for Y-shaped tube hydroforming process design [J]. Advances in Engineering Software,2010,41(2):336-348.
    [80]Kikuchi S, Takayama K. Reliability assessment for the optimal formulations of pharmaceutical products predicted by a nonlinear response surface method [J]. International journal of pharmaceutics,2009,374(1):5-11.
    [81]宗周红,高铭霖,夏樟华.基于健康监测的连续刚构桥有限元模型确认(Ⅰ)——基于响应面法的有限元模型修正[J].土木工程学报.2011,44(2):90-98.
    [82]费庆国,张令弥,李爱群,等.基于统计分析技术的有限元模型修正研究[J].振动与冲击.2005,24(3):23-26.
    [83]袁爱民.基于灵敏度分析的有限元模型修正技术若干关键问题研究[D].南京:东南大学,2006.
    [84]Li X Y, Law S S. Adaptive Tikhonov regularization for damage detection based on nonlinear model updating [J].Mechanical Systems and Signal Processing,2010,24(6): 1646-1664.
    [85]Wang X, Hu N, Fukunaga H, et al. Structural damage identification using static test data and changes in frequencies [J]. Engineering Structures,2001,23(6):610-621.
    [86]Teughels A, De Roeck G. Damage detection and parameter identification by finite element model updating [J]. Archives of Computational Methods in Engineering,2005,12(2): 123-164.
    [87]Hua X G, Ni Y Q, Chen Z Q, et al. Structural Damage Detection of Cable-Stayed Bridges Using Changes in Cable Forces and Model Updating [J]. Journal of structural engineering, 2009,9(135):1093-1106.
    [88]朱劲松,肖汝诚.桥梁损伤识别的实用模型修正方法研究[J].工业建筑.2006,S1):21-224.
    [89]Lu Z R, Law S S. Identification of system parameters and input force from output only [J]. Mechanical Systems and Signal Processing,2007,21(5):2099-2111.
    [90]Zhu X Q, Law S S.Moving load identification on multi-span continuous bridges with elastic bearings [J]. Mechanical systems and signal processing,2006,20(7):1759-1782.
    [91]Yin S H, Tang C Y. Identifying cable tension loss and deck damage in a cable-stayed bridge using a moving vehicle [J]. Journal of Vibration and Acoustics,2011,133(21007.
    [92]Yang Y B, Lin C W, Yau J D. Extracting bridge frequencies from the dynamic response of a passing vehicle [J]. Journal of Sound and Vibration,2004,272(3-5):471-493.
    [93]Yang Y B, Lin C W.Vehicle-bridge interaction dynamics and potential applications [J]. Journal of sound and vibration,2005,284(1):205-226.
    [94]Yu L, Chan T H. Recent research on identification of moving loads on bridges [J]. Journal of Sound and Vibration,2007,305(1):3-21.
    [95]卜建清,王树栋,罗韶湘.由车激响应识别桥梁损伤的灵敏度方法[J].振动与冲击.2007,26(7):80-84.
    [96]陈上有.基于车桥耦合振动分析的桥梁结构参数识别与损伤诊断方法研究[D].北京:北京交通大学,2008.
    [97]Majumder L, Manohar C S. A time-domain approach for damage detection in beam structures using vibration data with a moving oscillator as an excitation source [J]. Journal of Sound and Vibration,2003,268(4):699-716.
    [98]孙宗光,高赞明,倪一清,等.斜拉桥桥面结构损伤位置识别的指标比较[J].工程力学.2003,20(1):27-31.
    [99]袁颖.桥梁结构损伤识别方法的相关问题研究[D].大连:大连理工大学,2006.
    [100]冉志红.桥梁结构损伤识别的动力指纹方法研究[D].成都:西南交通大学,2007.
    [101]于繁华.基于计算智能技术的桥梁结构损伤识别研究[D].长春:吉林大学,2008.
    [102]孙砚飞.基于光纤光栅传感的桥梁损伤识别与评估系统研究[D].武汉:武汉理工大学,2008.
    [103]施洲.基于动力测试的桥梁结构损伤识别及性能评定理论与应用研究[D].成都:西南交通大学,2007.
    [104]谢峻,江见鲸,韩大建,等.大跨度斜拉桥损伤识别的三步法[J].工程力学.2006,08):53-56.
    [105]Koh B H, Dyke S J. Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data [J].Computers and Structures,2007,85(3-4):117-130.
    [106]Xu Z D, Liu M, Wu Z, et al. Energy Damage Detection Strategy Based on Strain Responses for Long-Span Bridge Structures [J]. Journal of Bridge Engineering,2011,16(5): 644-652.
    [107]王柏生,倪一清,高赞明.青马大桥桥板结构损伤位置识别的数值模拟[J].土木工程学报.2001,34(3):67-73.
    [108]万珊珊,李守善.东营黄河公路钢斜拉桥[J].土木工程学报.1989,22(3):48-54.
    [109]Yang 0, Ou J P. Health monitoring data analysis and comparison of prototype and laboratorial model for long-span cable-stayed bridge [C].Proc. of SPIE, San Diego, CA, USA,2009:72952M.
    [110]Caetano E, Cunha A, Taylor C A. Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge. Part Ⅰ:modal analysis [J]. Earthquake Engineering and Structural Dynamics,2000,29(4):481-498.
    [111]Caetano E, Cunha A, Taylor C A. Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge. Part Ⅱ:Seismic response [J].Earthquake Engineering and Structural Dynamics,2000,29(4):499-521.
    [112]Wu G, Xu H. Theoretical and experimental study on shear lag effect of partially cable-stayed bridge [J]. Journal-Zhejiang University Science,2005,6(8):875.
    [113]赵翔.拉索损伤对斜拉桥结构性能影响的研究[D].南京:东南大学,2005.
    [114]陈星烨,颜东煌,马晓燕.斜拉桥试验模型相似性推导与动力问题的数值分析[J].岩石力学与工程学报.2006,S1):3206-3211.
    [115]Todd M D, Nichols J M, Trickey S T, et al. Bragg grating-based fibre optic sensors in structural health monitoring [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2007,365(1851):317-343.
    [116]Kammer D C. Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures [J]. Journal of guidance, control, and dynamics,1991,14(2):251-259.
    [117]公路桥梁抗风设计规范[S].北京:人民交通出版社,2004.
    [118]Daniell W E, Macdonald J H G. Improved finite element modelling of a cable-stayed bridge through systematic manual tuning [J]. Engineering Structures,2007,29(3):358-371.
    [119]Bayraktar A, Altunisik A C, Sevim B, et al. Modal Testing, Finite-Element Model Updating, and Dynamic Analysis of an Arch Type Steel Footbridge [J]. Journal of Performance of Constructed Facilities,2009,23(2):81-89.
    [120]李兆霞,李爱群,陈鸿天,等.大跨桥梁结构以健康监测和状态评估为目标的有限元模拟[J].东南大学学报(自然科学版).2003,33(5):562-572.
    [121]Zhang Q W, Chang T, Chang C C. Finite-element model updating for the Kap Shui Mun cable-stayed bridge [J]. Journal of Bridge Engineering,2001,4(6):285-293.
    [122]Brownjohn J M W, Xia P Q. Dynamic assessment of curved cable-stayed bridge by model updating [J].Journal of Structural Engineering,2000,126(2):252-260.
    [123]Jaishi B, Ren W. Finite element model updating based on eigenvalue and strain energy residuals using multiobjective optimisation technique [J].Mechanical Systems and Signal Processing,2007,21(5):2295-2317.
    [124]Jaishi B, Kim H, Kim M K, et al. Finite element model updating of concrete-filled steel tubular arch bridge under operational condition using modal flexibility [J]. Mechanical Systems and Signal Processing,2007,21(6):2406-2426.
    [125]Schlune H, Plos M, Gylltoft K. Improved bridge evaluation through finite element model updating using static and dynamic measurements [J]. Engineering Structures,2009,31(7): 1477-1485.
    [126]Li J, Huang M S, Zhu H P. Study on Different Residual and Weight Coefficient in Model Updating of Bridge Structure [C]. Proceedings of the Ninth International Conference of Chinese Transportation Professionals,Harbin, China,2009:100-107.
    [127]范立础.桥梁抗震[M].同济大学出版社,1997.
    [128]夏品奇,Brownjohn James M. W斜拉桥有限元建模与模型修正[J].振动工程学报.2003,16(2):219-223.
    [129]Wilson J C, Gravelle W. Modelling of a cable-stayed bridge for dynamic analysis [J]. Earthquake engineering & structural dynamics,1991,20(8):707-721.
    [130]Nazmy A S, Abdel Ghaffar A M. Non-linear earthquake-response analysis of long-span cable-stayed bridges:Applications [J]. Earthquake engineering & structural dynamics, 1990,19(1):63-76.
    [131]项海帆,朱乐东.考虑约束扭转刚度影响的斜拉桥动力分析模型[C].1992:1039-1045.
    [132]范哲,刘朵,金峤,等.花坛隔离带对混合型桥梁结构受力性能的影响分析[J].华东公路.2011,03):38-41.
    [133]Ren W, Peng X. Baseline finite element modeling of a large span cable-stayed bridge through field ambient vibration tests [J]. Computers & Structures,2005,83(8-9): 536-550.
    [134]Zapico J L, Gonzalez M P, Friswell M I, et al. Finite element model updating of a small scale bridge [J]. Journal of Sound and Vibration,2003,268(5):993-1012.
    [135]博弈创作室.APDL参数化有限元分析技术及其应用实例[M].北京:中国水利电力出版社,2004.
    [136]Ribeiro A M R, Silva J M M, Maia N M M. On the generalisation of the transmissibility concept [J]. Mechanical Systems and Signal Processing,2000,14(1):29-35.
    [137]Maia N M M, Silva J M M, Ribeiro A M R.The transmissibility concept in multi-degree-of-freedom systems [J]. Mechanical Systems and Signal Processing,2001, 15(1):129-137.
    [138]Ribeiro A, Fontul M, Maia N, et al. Further developments on the transmissibility concept for multiple degree of freedom systems [J]. Scientific Bulletin of the "Politehnica", University of Timisoara, Transactions on Mechanics,2005,50(64):1224-6077.
    [139]Maia N, Urgueira A, Almeida R. Whys and Wherefores of Transmissibility 2011,197-216
    [140]Law S S, Li J, Ding Y. Structural response reconstruction with transmissibility concept in frequency domain [J]. Mechanical Systems and Signal Processing,2011,25(3): 952-968.
    [141]Almeida R A B, Urgueira A P V, Maia N M M. The use of transmissibility properties to estimate FRFs on modified structures [J].Shock and Vibration,2010,17(4):563-577.
    [142]Urgueira A P V, Almeida R A B, Maia N M M. On the use of the transmissibility concept for the evaluation of frequency response functions [J].Mechanical Systems and Signal Processing,2011,25(3):940-951.
    [143]Canales G, Mevel L, Basseville M. Transmissibility Based Damage Detection [C]. Proceedings of the 27th International Modal Analysis Conference (IMAC-XXVII), Orlando, Florida, USA,2009:
    [144]Steenackers G, Devriendt C, Guillaume P. On the use of transmissibility measurements for finite element model updating [J]. Journal of sound and vibration,2007,303(3): 707-722.
    [145]Devriendt C, Guillaume P. Identification of modal parameters from transmissibility measurements [J].Journal of Sound and Vibration,2008,314(1):343-356.
    [146]Sampaio R, Maia N M M, Ribeiro A, et al.Transmissibility techniques for damage detection [C]. Proceedings of 19th International Modal Analysis Conference (IMAC XIX),Kissimmee, Florida, USA,2001:1524-1527.
    [147]Johnson T, Adams D E, Schiefer M. An analytical and experimental study to assess structural damage and integrity using dynamic transmissibility 2002:472-476.
    [148]Zhu D, Yi X, Wang Y. Sensitivity analysis of transmissibility functions for structural damage detection [C]. Proceedings of SPIE,2011:79832M.
    [149]Mao Z, Todd M. A structural transmissibility measurements-based approach for system damage detection 2010:76500G.
    [150]Worden K, Manson G, Fieller N. Damage detection using outlier analysis [J]. Journal of Sound and Vibration,2000,229(3):647-667.
    [151]Mallat S G.A theory for multiresolution signal decomposition:The wavelet representation [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1989,11(7):674-693.
    [152]Barnett V, Lewis T. Outliers in statistical data [M].Wiley New York,1994.
    [153]Worden K. Structural fault detection using a novelty measure [J]. Journal of Sound and vibration,1997,201(1):85-101.
    [154]Omenzetter P, Brownjohn J M W, Moyo P. Identification of unusual events in multi-channel bridge monitoring data [J].Mechanical Systems and Signal Processing,2004,18(2): 409-430.
    [155]Rizzo P, Sorrivi E, Lanza Di Scalea F, et al. Wavelet-based outlier analysis for guided wave structural monitoring:Application to multi-wire strands [J]. Journal of Sound and Vibration,2007,307(1):52-68.
    [156]Manson G, Pierce S G, Worden K, et al. Long-term stability of normal condition data for novelty detection [C].SPIE's 7th Annual International Symposium on Smart Structures and Materials,2000:323-334.
    [157]Sohn H, Park H W, Law K H, et al. Combination of a time reversal process and a consecutiv outlier analysis for baseline-free damage diagnosis [J]. Journal of Intelligent Material Systems and Structures,2007,18(4):335-346.
    [158]Sohn H, Farrar C R, Hunter N F, et al. Structural health monitoring using statistical pattern recognition techniques [J]. Transactions-American Society of Mechanical Engineers Journal of Dynamic Systems Measurement And Control,2001,123(4):706-711.
    [159]Park S, Inman D J, Yun C. An outlier analysis of MFC-based impedance sensing data for wireless structural health monitoring of railroad tracks [J]. Engineering Structures, 2008,30(10):2792-2799.
    [160]Liew K M, Wang Q. Application of wavelet theory for crack identification in structures [J]. Journal of Engineering Mechanics,1998,124(2):152-157.
    [161]孙增寿,韩建刚,任伟新.基于曲率模态和小波变换的结构损伤位置识别[J].地震工程与工程振动.2005,25(4):44-49.
    [162]Xiang J, Liang M.Wavelet-Based Detection of Beam Cracks Using Modal Shape and Frequency Measurements [J]. Computer-Aided Civil and Infrastructure Engineering,2012, 27(6):439-454.
    [163]Jiang X, Ma Z J, Ren W X. Crack Detection from the Slope of the Mode Shape Using Complex Continuous Wavelet Transform [J]. Computer-Aided Civil and Infrastructure Engineering, 2012,27(3):187-201.
    [164]严平,李胡生,葛继平,等.基于模态应变能和小波变换的结构损伤识别研究[J].振动与冲击.2012,31(1):121-126.
    [165]Barnoski M K, Jensen S M. Fiber waveguides:a novel technique for investigating attenuation characteristics [J]. Applied Optics,1976,15(9):2112-2115.
    [166]Rogers A J. Polarization-optical time domain reflectometry:A technique for the measurement of field distributions [J]. Applied Optics,1981,20(6):1060-1074.
    [167]Horiguchi T, Shimizu K, Kurashima T, et al. Development of a distributed sensing technique using Brillouin scattering [J]. Journal of Lightwave Technology,1995,13(7): 1296-1302.
    [168]Cotter D. Stimulated Brillouin scattering in monomode optical fiber [J]. Journal of Optical Communications,1983,4(1):10-19.
    [169]Horiguchi T, Kurashima T, Tateda M.Tensile strain dependence of Brillouin frequency shift in silica optical fibers [J]. Photonics Technology Letters, IEEE,1989,1(5): 107-108.
    [170]Ohno H, Naruse H, Kihara M, et al. Industrial applications of the BOTDR optical fiber strain sensor [J].Optical fiber technology,2001,7(1):45-64.
    [171]Bao X. Optical fiber sensors based on Brillouin scattering [J]. Optics and Photonics News,2009,20(9):40-45.
    [172]Kwon I, Baik S, Im K, et al. Development of fiber optic BOTDA sensor for intrusion detection [J]. Sensors and Actuators A:Physical,2002,101(1):77-84.
    [173]Bernini R, Fraldi M, Minardo A, et al. Identification of defects and strain error estimation for bending steel beams using time domain Brillouin distributed optical fiber sensors [J]. Smart materials and structures,2006,15(2):612.
    [174]Enckell M, Glisic B, Myrvoll F, et al. Evaluation of a large-scale bridge strain, temperature and crack monitoring with distributed fibre optic sensors [J]. Journal of Civil Structural Health Monitoring,2011,1(1-2):37-46.
    [175]Glisic B, Inaudi D. Development of method for in-service crack detection based on distributed fiber optic sensors [J]. Structural Health Monitoring,2012,11(2): 161-171.
    [176]Murayama H, Kageyama K, Naruse H, et al. Distributed strain sensing from damaged composite materials based on shape variation of the Brillouin spectrum [J]. Journal of intelligent material systems and structures,2004,15(1):17-25.
    [177]Zhang D, Xu H, Shi B, et al. Brillouin power spectrum analysis for partially uniformly strained optical fiber [J].Optics and Lasers in Engineering,2009,47(9):976-981.
    [178]Feng X, Zhou J, Sun C, et al. Theoretical and Experimental Investigations into Crack Detection with BOTDR Distributed Fiber Optic Sensors [J]. Journal of Engineering Mechanics,2013,
    [179]Kim S, Lee J, Kwon I. Structural monitoring of a bending beam using Brillouin distributed optical fiber sensors [J].Smart Materials and Structures,2002,11(3): 396-403.
    [180]Chui C K. An introduction to wavelets [M].San Diego:Academic,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700