光纤光栅传感器在结构健康监测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于光纤光栅具有质量轻、空间分辨率高、易于组成准分布式网络等独特的优点,使得基于光纤光栅传感系统的结构健康监测技术与应用研究逐渐成为当前研究者们共同关注的新热点,在大型航空及土木结构的健康监测研究领域中有着广阔的应用前景。本文将光纤Bragg光栅(Fiber Bragg Grating, FBG)和长周期光纤光栅(Long Period Fiber Grating,LPFG)应用于航空及土木结构健康监测中,分别对航空复合材料典型结构拉伸断裂状态监测、极端环境对复合材料的影响监测以及土木结构中的钢筋锈蚀监测、沥青路面状态监测进行研究,实现对航空及土木结构健康状态的实时在线监测。
     本文的研究内容主要分为以下几个方面:
     (1)对FBG和LPFG进行理论分析,推导了光纤光栅的耦合方程,为光栅传感特性的研究提供了理论基础。对FBG和LPFG的传感特性进行了仿真,给出栅长选择的基本依据和相应的传感灵敏度系数。此外,对LPFG横向负载方向敏感特性进行实验分析,得到其变化规律。
     (2)对声发射及碳纤维复合材料断裂理论进行分析,通过FBG传感监测系统分别对碳纤维复合材料拉伸试件、碳纤维复合材料整体结构件内部断裂和裂纹扩展瞬间的声发射应变响应信号进行采集、分析,获得CFRP结构内部断裂及裂纹扩展情况,实现对CFRP结构断裂情况的监测,同时,对极端环境下FBG传感系统的可靠性进行了验证实验。
     (3)基于光滤波器边缘滤波效应的FBG动态解调系统,针对薄板结构受振动、冲击响应情况,分别提出基于上述系统的FBG薄板结构振动、冲击监测方法。实验结果表明,该系统对振动、冲击信号的响应效果较好,可实现对待测结构振动、冲击状态的监测,具有较高的分辨力,能满足信号采集的要求。
     (4)研究混凝土结构中钢筋的锈蚀机理和LPFG的折射率敏感特性,提出了基于锈蚀环境折射率变化的分阶段监测方法,设计了基于LPFG折射率特性的钢筋锈蚀传感器,并对其进行埋入验证实验。同时,基于LPFG对横向负载的敏感特性,设计了可实现钢筋360°锈蚀情况监测的钢筋锈蚀传感器,并在埋入实验研究中取得了良好的效果。
     (5)将FBG和LPFG用于沥青路面内部应变及动水压力监测领域,利用FBG对应变、LPFG对横向负载及弯曲的敏感性,设计制作了基于LPFG横向负载特性的沥青路面压力传感器、基于FBG应变特性的沥青路面压力传感器及基于LPFG弯曲特性的动水压力传感器,并各自进行了实验验证,取得了良好的效果。
According to the unique advantages of light weight, high spatial resolution, easy to form thequasi-distributed network and so on, Fiber Grating has made the structural health monitoringtechnology based on fiber sensing into a new hot spot focused by the current domestic andinternational researchers, with the great application prospect in the field of aviation and civilstructure health monitoring. This dissertation aims to research on the application of fiber gratingin aviation and civil structural health monitoring, including the fracture monitoring for CFRPcomposite structure, the impact of extreme environment on the FBG-based tensile strainmonitoring for CFRP composite structure, the monitoring for reinforcing bar corrosion inconcrete and the monitoring for asphalt pavement. All these work provides theoretical andpractical preparation for promoting the availability of the structural health monitoringtechnology.
     The main achievements are described as follows:
     (1) Theoretical analysis of FBG and LPFG is achieved, and the coupled equations of the fibergrating is derived, providing a theoretical basis for the sensing characteristic of the fiber grating.By the spectrum and sensing characteristic simulation of FBG and LPFG, the basis of the gatelength selection and the sensitivity coefficients are given. The sensitivity of LPFG resonancepeak amplitude changing with transverse load and its direction correlation is researched byexperimental analysis.
     (2) Based on the analysis of acoustic emission and CFRP composite fracture theory, the strainresponse signals of the CFRP composite tensile specimen and the overall CFRP compositestructure induced by the internal fractures and cracks are acquired by FBG sensing monitoringsystem. The internal fracture and the expansion of crack have been got. At the same time, thereliability of FBG sensing system in extreme environments is verified.
     (3) High speed demodulation system based on the filtering effect of the optical filter is studiedin order to research dynamic signal monitored by FBG sensor. The methods of the FBG vibrationand impact monitoring are proposed for the thin plate. The experimental results show that theresponse effects of the system for vibration and impact monitoring are good and have a highresolution, which can meet the requirements of the signal acquisition.
     (4) Base on the mechanism of steel corrosion in reinforced concrete and the refractive indexcharacteristic of LPFG, a corrosion monitoring method in stages is proposed and a LPFG rebar corrosion sensor is designed to detect the changes of refractive index around rebar in concretecaused by chloride and liquid rust. Meanwhile, a LPFG rebar corrosion sensor which canmonitor the corrosion status at360°is designed, and the buried experiment is achieved well.
     (5) Introducing FBG and LPFG into the area of the strain and hydrodynamic pressure inasphalt pavement, a LPFG transverse load effect-based pressure sensor, a FBG straineffect-based pressure sensor and a LPFG bending effect-based hydrodynamic pressure forasphalt pavement are designed respectively. The experiments have been done and the goodresults have been obtained.
引文
[1] Jan D, Achenbach. Structural health monitoring-What is the prescription. MechanicsResearch Communications,2009,36(2):137-138.
    [2]董晓马,智能结构的损伤诊断及传感器优化配置研究,[博士学位论文],南京:东南大学,2006.
    [3]国家自然科学基金委员会工程与材料科学部,机械与制造科学,学科发展战略研究报告(2006-2010),科学出版社,2006,105-129.
    [4]陶宝祺,熊克,袁慎芳等,智能材料结构,北京:国防工业出版社,1997.
    [5]杜善义,冷劲松,王殿富,智能材料系统和结构,北京:科学出版社,2001.
    [6]袁慎芳,结构健康监控,北京:国防工业出版社,2007,1-30.
    [7] Mehta P K, Burrous R W. Building durable structures in the21st Century, ConcreteInternational,2001,23(3):57-63.
    [8]姜德生,何伟,光纤光栅传感器的应用概况,光电子.激光,2002,13(4):420-430.
    [9] Sauro L, Jason L, Speyer. Application of a fault detection filter to structural healthmonitoring, Automatica,2006,42(7):1199-1209.
    [10] Tmickens, Schulz M, Sundaresan M et al. Structural health monitoring of an aircraft joint,Mechanical Systems and Signal Processing,2003,17(2):285-303.
    [11]芦吉云,光纤光栅在智能结构动态监测中的应用研究,[博士学位论文],南京:南京航空航天大学,2009.
    [12]熊海贝,李志强,结构健康监测的研究现状,结构工程师,2006,22(5):86-90.
    [13] Holger SPECKMANN, Henrik ROESNER. Structural Health Monitoring: A Contribution tothe Intelligent Aircraft Structure.9th European Conference on NDT, Berlin (Germany),2006(17).
    [14] Goggin P. Challenges for SHM transition to future aerospace systems. Structural HealthMonitoring2003: From Diagnostics&Prognostics to Structural Health Management:Proceedings of the4th International Workshop on Structural Health Monitoring, StanfordUniversity, Stanford, CA,2003,30-41.
    [15] Dimitry Gorinevsky, Grant A. Gordon, Shawn Beard, Amrita Kumar, Fu-Kuo Chang. Designof Integrated SHM System for Commercial Aircraft Applications.5th InternationalWorkshop on Structural Health Monitoring, Stanford, CA,2005,1-8.
    [16] Goggin P. Challenges for SHM transition to future aerospace systems. Structural HealthMonitoring2003: From Diagnostics&Prognostics to Structural Health Management:Proceedings of the4th International Workshop on Structural Health Monitoring, StanfordUniversity, Stanford, CA,2003,30-41.
    [17] Paul D. Samuel, Darryll J. Pines. A review of vibration-based techniques for helicoptertransmission diagnostics. Journal of Sound and Vibration,2005,282(1-2):475-508.
    [18] David M. Blunt, Jonathan A. Keller. Detection of a fatigue crack in a UH-60A planet gearcarrier using vibration analysis. Mechanical Systems and Signal Processing,2006,20(8):2095-2111.
    [19] R.B. Randall. Detection and diagnosis of incipient bearing failure in helicopter gearboxes.Engineering Failure Analysis,2004,11(2):177-190.
    [20] Sohn, H., Farrar, C. R., Hemez, F., Czarnecki, J. J., Shunk, D.,Stinemates, D., and Nadler, B.(2003). A review of structural health monitoring literature:1996-2001. Los Alamos NationalLaboratory Report, LA-13976-MS.
    [21] Keith A. Schweikhard, W. Lance Richards, John Theisen, et al. Flight Demonstration of X-33Vehicle Health Management System Components on the F/A-18Systems Research Aircraft,NASA/TM-2001-209037. Dryden Flight Research Center, December2001.
    [22] S R Hunt, I G Hebden. Validation of the Eurofighter Typhoon structural health and usagemonitoring system. Smart Materials&Structures,2001,10(3):497-503.
    [23] Dvorak GJ. Composite materials: Inelastic behavior, damage, fatigue and fracture.International Journal of Solids and Structures,2000,37(1-2):155-170.
    [24] Post, N.L., Case, S.W. and Lesko, J.J.. Modeling the variable amplitude fatigue ofcomposite materials: A review and evaluation of the state of the art for spectrum loading.International Journal of Fatigue,2008,30(12):2064-2086.
    [25] Zhu S., Mizuno M., Kagawa Y. and Mutoh Y. Monotonic tension, fatigue and creep behaviorof SiC-fiber-reinforced SiC-matrix composites: a review. Composites Science andTechnology,1999,59(6):833-851.
    [26] P. J. Withers, J. Bennett, Y.–C. Hung and M. Preuss. Crack opening displacements duringfatigue crack growth in Ti-SiC fiber metal matrix composites by X-ray tomography.Materials Science and Technology,2006,22(9):1052-1058.
    [27] Vikram K. Kinra, Atul S. Ganpatye and Konstantin Maslov. Ultrasonic Ply-by-Ply Detectionof Matrix Cracks in Laminated Composites. Journal of Nondestructive Evaluation,2006,25(1):39-51.
    [28] A. Chukwujekwu Okafor, Navdeep Singh and Navrag Singh. Acoustic Emission Detectionand Prediction of Fatigue Crack Propagation in Composite Patch Repairs Using NeuralNetworks. AIP Conference Proceedings,2007,894:1532-1539.
    [29] Andrea Bernasconi, Michele Carboni and Lorenzo Comolli. Monitoring of fatigue crackgrowth in composite adhesively bonded joints using Fiber Bragg Gratings. ProcediaEngineering,2011,10:207-212.
    [30]沈真,杨胜春,飞机结构用复合材料的力学性能要求,材料工程,1997,S1:248-252.
    [31]益小苏,复合材料结构整体化技术研究进展,航空科学技术,2011,2:4-8.
    [32]岳广全,整体化复合材料壁板结构固化变形模拟及控制方法研究,[博士学位论文],哈尔滨:哈尔滨工业大学,2010.
    [33]张纪奎,郦正能,程小全,王军,复合材料整体结构在大型民机上的应用,航空制造技术,2007(9):30-43.
    [34]余寿文,王建祥,大飞机研制中的若干复合材料力学问题,力学与实践,2007,29(5):1-20.
    [35] Ball R.E., Atkinson D.B. Designing for survivability [military aircraft]. Aerospace America,2005,43(11):32-37.
    [36] David C. Jones, S. Spandana Pulla, Y. Charles Lu. Mechanical Properties of PolymerComposites Used in Oxidizing Environments: A Review. SAE International Journal ofMaterials and Manufacturing,2010,3(1):63-70.
    [37] César Juárez, Alejandro Durána, Pedro Valdeza, Gerardo Fajardoa. Performance of “Agavelecheguilla” natural fiber in portland cement composites exposed to severe environmentconditions. Building and Environment,2007,42(3):1151-1157.
    [38] M.B. Ruggles-Wrenn, D.T. Christensen, A.L. Chamberlain, J.E. Lane, T.S. Cook. Effect offrequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix compositeat1200℃. Composites Science and Technology,2011,71(2):190-196.
    [39] F.B. Boukhoulda, L. Guillaumat, J.L. Lataillade, E. Adda-Bedia, A. Lousdad. Aging-impactcoupling based analysis upon glass/polyester composite material in hygrothermalenvironment. Materials&Design,2011,32(7):4080-4087.
    [40]赵爱国,王克然,张卫方,樊立伟,陶春虎,300M钢锻件中的裂纹扩展机理,机械工程材料,2003,27(4):21-23.
    [41]丁传富,300M钢在门坎值附近疲劳裂纹扩展行为的研究,航空学报,1992,13(8):456-460.
    [42]路民旭,郑修麟,300M钢腐蚀疲劳裂纹萌生的超载特性,金属学报,1993,29(11):496-503.
    [43]吕宝桐,郑修麟,300M钢的疲劳始裂寿命,机械科学与技术,1998,17(3):453-454.
    [44]刘俊洲,300M超高强度钢元件疲劳特性的研究,材料工程,1991,13(4):20-23.
    [45] G. Somerville.The design life of structures.Edi. Blackie and Son Ltd.,1992.
    [46] Report of the National Materials Advisory Board. Concrete durability-A multibillion dollaropportunity,Publication No.NM.AB-437,National Academy of Science Washington. DC,1987:94.
    [47]吴文操,钢筋混凝土结构腐蚀监测无线传感器研究,[博士学位论文],南京:南京航空航天大学,2007.
    [48]吴瑾,程吉昕,海洋环境下钢筋混凝土结构耐久性评估,水利发电学报,2005,24(1):69-73.
    [49]吴瑾,海洋环境下钢筋混凝土结构锈裂损伤评估研究,[博士学位论文],南京:河海大学,2003.
    [50]佘建初,李卓球,宋显辉,钢筋锈蚀导致混凝土结构失效的机理与检测技术,武汉理工大学学报(信息与管理工程版),2004,26(3):41-44.
    [51] Leonid Chernin Dimitri V. Val, and Konstantin Y. Volokh. Analytical modelling ofconcrete cover cracking caused by corrosion of reinforcement. Materials and Structures,2010,43(4):543-556.
    [52] Mehta P K, and Burrous R W. Building durable structures in the21st century. ConcreteInternational,2001,23(3):57-63.
    [53] Parthiban Thirumalai and Ravi R. Potential monitoring system for corrosion of steel inconcrete. Adances in Engineering Software,2006,37(6):375-381.
    [54] Podel Rob B. Test methods for on site measurement of resistivity of concrete-a RILEMTC-154tehnical recommendation. Constuction and Building Materials,2001,15(2-3):125-134.
    [55] Raupach M and Schiebl P. Macrocell sensor systems for monitoring of the corrosion risk ofthe reinforcement in concrete structures. NDTE international,2001,34(6):435-442.
    [56] Simen J T and Andringa M M. Wireless sensors for monitoring corrosion in reinforceddconcrete members. Proceedings of SPIE,2004,5391:587-596.
    [57] Grattan SKT, Basher PAM. Fibre bragg grating sensors for reinforcement corrosionmonitoring in civil engineering structures. Journal of Physics,2007,76(1):0120181-7.
    [58] Casas Joan R, Cruz Panlo J S. Fiber optic sensors for bridge monitoring. Journal of BridgeEngineering,2003,8(6):362~373.
    [59] Aesushi Sehi, Hisakazu Katakura. A hetero-core structured fiber optic pH sensor.Analystica Chimica Acata,2007,582:154-257.
    [60] Fuhr P L, Huston D R. Embedded fiber optic sensors for bridge deck chloride penetrationmeasurement. Optical Engineering,1998,37(4):1221-1228.
    [61] The People's Republic of China Ministry of Communications. the Statistics Report ofhighway and waterway transport,2005.
    [62] Zhi Suo and Wing Gun Wong. Analysis of fatigue crack growth behavior in asphaltconcrete material in wearing course. Construction and Building Materials,2009,23(1):462-468.
    [63] Robert Y. Liang and Jian Zhou. Prediction of fatigue life of asphalt concrete beams. Int JFatigue,1997,19(2):117–124.
    [64] Tao XIE, Yanjun QIU, Zezhong JIANG, LAN Bo. Study on Crack Propagation Behavior ofAsphalt Concrete under Uniaxial Compression Load by Using CT. Key EngineeringMaterials,2007,348-349:289-292.
    [65] Bor-Wen Tsai, John T. Harvey, Carl L. Monismith. Two-Stage Weibull Approach for AsphaltConcrete Fatigue Performance Prediction. Journal of the Association of Asphalt PavingTechnologists,2004,73:623-655.
    [66] Martin Herold, Dar Roberts. Spectral characteristics of asphalt road aging and deterioration:implications for remote-sensing applications. Applied Optics,2005,44(20):4327-4334.
    [67]李金生,基于FBG技术的沥青路面应变传感器开发与性能研究,[硕士学位论文],哈尔滨:哈尔滨工业大学,2007.
    [68]刘树龙,光纤Bragg光栅在沥青路面性能健康监测中的试验研究,[硕士学位论文],南京:南京航空航天大学,2011.
    [69] A K Apeagyei, W G Buttlar, and H Reis. Assessment of low-temperature embrittlement ofasphalt binders using an acoustic emission approach. Insight-Non-Destructive Testing andCondition Monitoring,2009,51(3):129-136.
    [70] Injun Song, Dallas Little, Eyad Masad, Robert Lytton. Comprehensive Evaluation ofDamage in Asphalt Mastics Using X-ray CT, Continuum Mechanics and Micromechanics.Journal of the Association of Asphalt Paving Technologists,2005,74:885-920.
    [71] Benedetto, A.Pensa, S. Indirect diagnosis of pavement structural damages using surfaceGPR reflection techniques. Journal of Applied Geophysics,2007,62(2):107-123.
    [72] Pan Baofeng, Shao Longtan, Tong Yu, et al. Development and ap2p lication of experimentapparatus for road material. International Conference on Transportation Engineering2007,American Society of Civil Engineers,2007:1493-1498.
    [73]李少波,张宏超,孙立军,动水压力的形成与模拟测量,同济大学学报,2007,35(7):915-918.
    [74]高俊启,陈昊,季天剑,刘宏月,沥青路面动水压力光纤传感测量研究,传感器与微系统,2009,28(9):59-61.
    [75]王赫喆,工程化光纤光栅传感器及其在路面结构中的测试研究,[硕士学位论文],哈尔滨:哈尔滨工业大学,2006.
    [76] Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in Optical Waveguides Application toReflection Filter Fabrication. Applied Physics Letters,1978,32(10):647-649.
    [77] Kawasaki B S, Hill K O, Jonhnson D C et al. Narrow-Band Bragg Reflectors in OpticalFibers. Optics Letters,1978,3(2):66-68.
    [78] Torben Storgaard-Larsen, Siebe Bouwstra, Otto Leistiko. Opto-mechanical accelerometerbased on strain sensing by a Bragg grating in a planar waveguide. Sensors and Actuators A:Physical,1996,52(3):25-32.
    [79] Dong L, Cruz J L, EekieLR et al. Chirped Fiber Bragg Gratings Fabricated Using EtchedTapers. Optical Fiber Technology,1995,1(4):363-368.
    [80] Xie W X, Douay M, Bernage P et al. Second order diffraction efficiency of Bragg gratingswritten within germanosilicate fibres. Optics Communications,1993,101(1-2):85-91.
    [81] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie.Long-Period fiber gratings as band-rejection filters. J. Lightware Technol.,1996,14(1):58-65.
    [82] V. Bhatia, A.M. Vengsarkkar,Optical fiber long-period grating sensors,Opt.Lett.,1996,21:692-694.
    [83] T. Erdogan, Fiber grating spectra, J. of Lightwave Technol.,1997,15(8):1277-1294.
    [84] T. Erdogan,Cladding-mode resonances in short and long period fiber grating filters, J. Opt.Soc.Am. A,1997,14(8):1760~1773.
    [85] D. D. Davis, T. K. Gaylord, E. N. Glytsis, et al., Long-period fibre grating fabrication withfocused CO2laser pulses, Electronics Lett.,1998,34(3):302~303.
    [86] D.D. Davis, T.K. Gaylord, E.N. Glytsis, et al., CO2laser-induced long-period fibre gratings:spectral characteristics cladding modes and polarization independence, Elextron. Lett.,1998,34(14):1416~1417.
    [87]姜德生,方炜炜,Bragg光纤光栅及其在传感中的应用,传感器世界,2007,7(3):22~26.
    [88]舒睿俊,光纤Bragg光栅动态应变传感技术的研究,[硕士学位论文],杭州:浙江大学,2006.
    [89] V. Bhatia, D. Camphbell, R. O. Claus, et al. simultaneous strain and temperaturemeasurement with long-period gratings. Opt. Lett,1997,22(9):648-650.
    [90]王义平,饶云江,冉曾令,一种新颖的长周期光纤光栅可调增益均衡器,光学学报,2003,23(8):970-973.
    [91] R. Kashyap, R.Wyatt, R.J.Campbell. Wideband gain flattened erbium fiber amplifier using aphotosensitive fiber blazed grating. Electron. Lett,1993,29(2):154-156.
    [92] K.O.Hill et al. Efficient mode conversion in telecommunication using externally writtengratings. Electron.Lett,1990,26(16):1270-1272.
    [93] K. A. Ahmed. Simultaneous mode selection and pulse compression of gain-switched pulsesfrom a F-P laser using a40-mm chirped optical fiber grating. IEEE Photonics TechnologyLetters,1995,7(2):158-160.
    [94] J. A. R. Williams. Fiber dispersion compensation using a chirped infiber Bragg grating. Lett,1994,30:985-987.
    [95] Y. Liu, J. A. R. Williams, L. Zhang, I. Bennion. Phase shifted and cascadcd long-period fibergratings. Optics Communications,1999,164(1-3):27-31.
    [96]吴朝霞,吴飞,光纤光栅传感原理及应用,2011.
    [97]余有龙,谭华耀,基于干涉解调技术的光纤光栅传感系统,光学学报,2001,21(8):987-989.
    [98]吴飞,基于光纤光栅的多力参数测量及信号分析技术的研究,[博士学位论文],秦皇岛:燕山大学,2007.
    [99]吴朝霞,基于光纤光栅的桥梁多参数传感技术及系统研究,[博士学位论文],秦皇岛:燕山大学,2006.
    [100] Davis M A, Keysey A D. All-fiber Bragg grating strain sensor demodulation techniqueusing a wavelength-division coupler. Electron Lett,1994,30(1):76-78.
    [101] Patrick H J, Kersey A D. Fiber Bragg grating sensor demodulation system using in fiberlong period grating fibers. Proc. SPIE,1996,2838:60-65.
    [102] Jackson D A, Ribeiro A B L, Reekie L et a1. Simple Multiplexing Scheme for a Fiber-optic Grating Sensor Network.0pt.Lett,1993,18(14):1192-1194.
    [103] Ning Y N, Meldrum A, Shi W J et al. Bragg Grating Sensing Instrument Using a TunableFebry-Perot Filter to Detect Wavelength Variations. Meas Sci.&Technol,1998,9(6):599-606.
    [104] Kersey A D, Berkoff T A,Morey W W. High-resolution fiber-grating based strain sensorwith interferometric wavelength-shift detection. Electron Lett,1992,28(3):236-238.
    [105] KerseyA D, Berkoff T A. Dual wavelength fiber interferometer with wavelength selectionvia fiber Bragg grating elements. Electron Lett,1992,28(13):1215-1216.
    [106] Hill K O. Photosensitivity in Optical Fiber Waveguides: Application to Reflection FilterFabrication. Applied Physics Letters,1978,32(10):647-649.
    [107] Meltz G. Formation of Bragg gratings in optical fibers by a transversal holographic method.Optics Letters,1989,15(14):823-825.
    [108] Yariv A. Coupled-Mode Theory for Guided-wave Optics. IEEE Journal of QuantumElectronics,1973, QE-9(9):919-933.
    [109]张志鹏,光纤传感器原理,北京:中国计量出版社,1991.
    [110] Kogelnik H. Filter Response of Nonuniform Almost-Periodic Structures. Bell SystemTechnical Journal,1976,55(1):109-126.
    [111]叶培大等,光波导技术基本理论,北京:人民邮电出版社,1981.
    [112] M.S.Sodna等著,连汉雄等译,非均匀光波导,北京:人民邮电出版社,1982.
    [113] Fang Xie, Shulian Zhang, Yan Li et al. Multiple in-fiber Bragg gratings sensor with agrating scale. Measurement,2002,31(2):139-142.
    [114]恽斌峰,布拉格光纤光栅传感器理论与实验研究,[博士学位论文],南京:东南大学,2006,5.
    [115]吕昌贵,光纤布拉格光栅传输特性理论分析及其实验研究,[博士学位论文],南京:东南大学,2005,6
    [116]何万迅等,长周期光纤光栅模式与耦合的研究,光学学报,2003,23(3):303-306.
    [117]欧启标,长周期光纤光栅的理论及其传感应用研究,[硕士学位论文],桂林:广西师范大学,2005.
    [118]王彦,长周期光纤光栅在智能结构中的应用研究,[博士学位论文],南京:南京航空航天大学,2008.
    [119] Kin-tak Lau, Libo Yuan, Li-min Zhou et al. Strainmonitoring in FRP laminates and concretebeams using FBG sensors. Composite Structures,2001,51(1):9-20.
    [120] Yu Fan, Mojtaba Kahrizi. Characterization of a FBG strain gage array embedded incomposite structure. Sensors and Actuators A: Physical,2005,121(2):297-305.
    [121] Othonos A, Lee X, Measure R M. Superimposed Multiple Bragg Gratings. ElectronicsLetters,1994,30(23):1972-1973.
    [122]毕卫红,李卫,傅广为,分布式光纤光栅实现应变和温度的同时测量,光电子·激光,2003,14(8):827~834.
    [123] Jeong. H and Oh. K. Theoretical Analysis of Cladding-Mode Waveguide Dispersion and ItsEffects on the Spectra of Long-Period Fiber Grating. Journal of Lightwave Technology,2003,21(8):18-38.
    [124] Zhang, Zijia, Shi, Wenkang. Characteristics of the transmission spectrum of the longperiod fiber gratings based on the coupling of core mode to the higher order cladding modes.Chinese Optics Letters,2003,1(10):573-575.
    [125] Su, Wen-Yueh, Chern, Gia-Wei, Wang, Lon A. Analysis of Cladding-Mode Couplings for aLensed Fiber Integrated with a Long-Period Fiber Grating by Use of the Beam-PropagationMethod. Applied Optics,2002,41(31):6576-6584.
    [126]王义平,新型长周期光纤光栅特性研究,[博士学位论文],重庆:重庆大学,2003.
    [127]胡爱姿,新型长周期光纤光栅部分特性及应用研究,[博士学位论文],重庆:重庆大学,2004.
    [128] Ryu, Hyung Suk, Park, Yongwoo, Oh, Seong Tae, Chung, Youngjoo, Kim, Dug Young.Effect of asymmetric stress relaxation on the polarization-dependent transmissioncharacteristics of a CO2laser-written long-period fiber grating. Optics Letters,2003,28(3):155-157.
    [129] Han, Young-Geun, Kim, Gilhwan, Lee, Kwanil, Lee, Sang Bae, Jeong, Chang Hyun, Oh,Chi Hwan, and Kang, Hee Jeon. Bending sensitivity of long-period fiber gratings inscribedin holey fibers depending on an axial rotation angle. Optics Express,2007,15(20):12866-12871.
    [130] Zhu, T, Rao, Y J, Wang, J L. All-fiber dynamic gain equalizer based on a twistedlong-period grating written by high-frequency CO2laser pulses, Applied Optics,2007,46(3):375-378.
    [131] Wang, Yiping, Wang, Dong Ning, Jin, Wei, and Rao, Yunjiang. Asymmetrictransverse-load characteristics and polarization dependence of long-period fiber gratingswritten by a focused CO2laser. Applied Optics,2007,46(16):3079-3086.
    [132] B. L. Bachim, T. K. Gaylord.Polarization-dependent loss and birefringence in long-periodfiber gratings. Applied Optics,2003,42(34):6816-6823.
    [133]孙丽莉,玻璃纤维增强树脂基复合材料的细观破坏研究,[博士学位论文],济南:山东大学,2009.
    [134] Ettore Barbieri, Michele Meo. A Meshless Cohesive Segments Method for Crack Initiationand Propagation in Composites. Appl Compos Mater,2011,18(1):45–63.
    [135] J. Andersons, S. Tarasovs, et al. Finite fracture mechanics analysis of crack onset at a stressconcentration in a UD glass/epoxy composite in off-axis tension. Composites Science andTechnology,2010,70(9):1380-1385.
    [136] Supti Sadhukhan, Tapati Dutta, Sujata Tarafdar. Crack formation in composites through aspring model. Physica A,2011,390(4):731-740.
    [137] D. P. Myriounis, E. Z. Kordatos, S. T. Hasan, T. E. Matikas. Crack-Tip Stress Field andFatigue Crack Growth Monitoring Using Infrared Lock-In Thermography in A359/SiCpComposites. Strain,2011,47: e619–e627.
    [138] H. Hu, C. H. Lee, C. B. Wu, W. J. Lu,.DETECTION OF MATRIX CRACKS INCOMPOSITE LAMINATES BY USING THE MODAL STRAIN ENERGY METHOD.Mechanics of Composite Materials,2010,46(2):117-132.
    [139] P. Maimí, P. P. Camanho, J. A. Mayugo, A. Turon. Matrix cracking and delamination inlaminated composites. Part II: Evolution of crack density and delamination. Mechanics ofMaterials,2011,43:194-211.
    [140] Jacob Aboudi, Michael Ryvkin. Dynamic stresses created by the sudden appearance of atransverse crack in periodically layered composites. International Journal of EngineeringScience,2011,49:694-710.
    [141]赵丽滨,彭雷,张建宇,秦田亮,梁宪珠,常海峰,黄海,复合材料π接头拉伸力学性能的试验和计算研究,复合材料学报,2009,26(2):181-186.
    [142] Blakea J I R, Shenoia R A, House J. Progressive damage analysis of tee joints withviscoelastic inserts. Composites: Part A,2001,32(5):641-653.
    [143] Apalak M K, Gunes R, Turaman M O. Thermal and geometrically non-linear stressanalyses of an adhesively bonded composite tee joint. Composites: Part A,2003,34(2):135-150.
    [144] Dharmawan F, Thomson R S, Li H. Geometry and damage effects in a composite marineT-joint. Composite Structures,2004,66(1-4):181-187.
    [145] Marcadon V, Nadota Y, Roy A. Fatigue behavior of T-joints for marine applications.International Journal of Adhesion&Adhesives,2006,26(7):481-489.
    [146]张国利,T型整体壁板制件RFI工艺性能的研究,[硕士学位论文],天津:天津工业大学,2003.
    [147]张斌,材料结构宏观三维断裂和微观破坏行为研究,[博士学位论文],南京:南京航空航天大学,2005.
    [148] Rui-Hua Hu, Min-young Sun, Jae-Kyoo Lim. Moisture absorption, tensile strength andmicrostructure evolution of short jute fiber/polylactide composite in hygrothermalenvironment. Materials and Design,2010,31(7):3167-3173.
    [149] Wenbin Yang, Litong Zhang, Laifei Cheng, Yongsheng Liu, Laifei Cheng, Weihua Zhang.Oxidation Behavior of C/SiC Composite with CVD SiC-B4C Coating in a Wet OxygenEnvironment. Applied composite materials,2009,16(2):83-92.
    [150] Mahato,P.K., Maiti,D.K. Aeroelastic analysis of smart composite structures inhygro-thermal environment. Composite Structures,2010,92(4):1027-1038.
    [151] Melcher, R.J., Johnson, W.S.. Mode I fracture toughness of an adhesively bondedcomposite–composite joint in a cryogenic environment. Composites Science andTechnology,2007,67(3-4):501-506.
    [152] Bergeret, A., Ferry, L., Ienny, P.. Influence of the fibre/matrix interface on ageingmechanisms of glass fibre reinforced thermoplastic composites (PA-6,6, PET, PBT) in ahygrothermal environment. Polymer Degradation and Stability,2009,94(9):1315-1324.
    [153] Tsai,Y.I., Bosze,E.J., Barjasteh,E., Nutt,S.R.. Influence of hygrothermal environment onthermal and mechanical properties of carbon fiber/fiberglass hybrid composites. CompositesScience and Technology,2009,69(3-4):432-437.
    [154] Pérez-Pacheco, E., Moreno-Chulim, M., Valadez-González, A., Rios-Soberanis. Effect ofthe interphase microstructure on the behavior of carbon fiber/epoxy resin model compositein a thermal environment. Journal of Materials Science,2011,46(11):4026-4033.
    [155] Bankim C. Ray. Adhesion of glass/epoxy composites influenced by thermal and cryogenicenvironments. Journal of Applied Polymer Science,2006,102(2):1943-1949.
    [156] Yong Zhao,Yanbiao Liao. Discrimination methods and demodulation techniques for fiberBragg grating sensors. Optics and Lasers in Engineering,2005,1(41):1-18.
    [157] Jung-Ryul Lee, Hiroshi Tsuda, Nobuyuki Toyama.Impact wave and damage detectionsusing a strain-free fiber Bragg grating ultrasonic receiver. NDT&E International,2007,40:85-93.
    [158]宋剑飞,邵理阳,张阿平等.一种新型FBG动态应变解调系统.光电子激光,2007,8(11):924~926.
    [159]王义平,饶云江,冉曾令,一种新颖的长周期光纤光栅可调增益均衡器,光学学报,2003,23(8):970-973.
    [160]廖延彪,黎敏,田芊,长周期光栅-新兴的光纤光栅传感器,激光与红外,1997,27(6):371-374.
    [161] A. Poursaee, C.M. Hansson. Potential pitfalls in assessing chloride-induced corrosion ofsteel in concrete. Cement and Concrete Research,2009,39(5):391-400.
    [162]攀云昌,曹兴国,陈怀荣,混凝土中钢筋腐蚀的防护与修复,北京:中国铁道出版社,2001.
    [163] Ming-Te Liang, Ji-Jie Lan. Reliability analysis for the existing reinforced concrete pilecorrosion of bridge substructure. Cement and Concrete Research,2005,35(3):540-550.
    [164] Frédéric Duprat. Reliability of RC beams under chloride-ingress. Construction andBuilding Materials,2007,21(8):1605-1616.
    [165] H.S. Wong, Y.X. Zhao, A.R. Karimi et al. On the penetration of corrosion products fromreinforcing steel into concrete due to chloride-induced corrosion. Corrosion Science,2010,52(7):2469-2480.
    [166] Dong Chen, Sankaran Mahadevan. Chloride-induced reinforcement corrosion and concretecracking simulation. Cement&Concrete Composites,2008,30(3):227-238.
    [167]陈月顺,钢筋混凝土锈胀裂缝的演化过程研究,[博士学位论文],武汉:华中科技大学,2006.
    [168]张明辉,耿欧,混凝土中钢筋腐蚀监测技术研究现状及发展趋势,混凝土,2007,2:26-28.
    [169]周智,土木工程结构光纤光栅智能传感元件及其监测系统,[博士学位论文],哈尔滨:哈尔滨工业大学,2003.
    [170] Bernard S., Jr. Covino, Stephen D. Cramer, ASM Handbook, Volume13C. Corrosion. ASMInternational,2003.
    [171] Nabi Yúzer, Fevziye Akōz, Nihat Kabay. Prediction of time to crack initiation in reinforcedconcrete exposed to chloride. Construction and Building Materials,2007,22(6):1-8.
    [172] S.G.Millard, D.Law, J.H.Bungey. Environmental influences on linear polarizationcorrosion rate measurement in reinforcrd concrete. NDT&International,2001,34:409-417.
    [173] Andrade C., Alonso C., Rodriguez J., Garcia M.. Cover cracking and amount of rebarcorrosion: Importance of the current applied accelerated tests. Concrete Repair,Rehabilitation and Protection, Dundee: E and FN Spon, Dundee UK,1996:263-274.
    [174] Wang Yan, Liang Da-kai, Ou Qi-biao et al. Fiber grating sensor for measurement ofsolution refractive index and concentration. Transducer and Microsystem Technologies,2007,26(7):24-26.
    [175] Gaspar M. Rego, Jose′L. Santos, Henrique M. Salgado. Refractive index measurementwith long-period gratings arc-induced in pure-silica-core fibres. Optics Communications,2006,259(2):598–602.
    [176] Joo Hin Chong, Ping Shum, H. Haryono et al. Measurements of refractive index sensitivityusing long-period grating refractometer. Optics Communications,2006,229(1-6):65–69.
    [177] H.J.Patrick, A.D.Kersey, F.Bucholtz. Analysis of the response of long period fiber gratingsto external index of refraction. J.Lightwave Technol,1998,16(9):1606-1612.
    [178] S W.James, S Khaliq, R P.Tatam. OFS2002:15th Optical Fiber Sensors Conferencetechnical digest,2002:127-130.
    [179] R. Falciai, A.G. Mignani, A. Vannini. Long period gratings as solution concentrationsensors, Sensors and Actuators B,2001,74(1-3):74-77.
    [180] Zhao Hong-xia, Ding Zhi-qun, Wang Jin-xia et al. A higher sensitively concentrationsensor using long-period fiber grating. Journal of Optoelectronics·Laser,2009,20(6):742-744.
    [181]卢剑涛,沥青路面应力计算与分析,[博士学位论文],武汉:武汉大学,2004.
    [182]刘立杰,阳宏毅,沥青路面车辙形成机理及应力影响分析,中外公路,2007,27(5):71-73.
    [183]姚百恕,孔兆辉,结构参数的变化对沥青路面应力、位移分布规律的影响,东北公路,2001,24(4):27-30.
    [184]高俊启,陈昊,季天剑,刘宏月.沥青路面动水压力光纤传感测量研究,传感器与微系统,2009,28(9):59-61.
    [185]李少波,张宏超,孙立军.动水压力的形成与模拟测量,同济大学学报(自然科学版),2007,35(7):915-918.
    [186]庄继德,汽车轮胎学,北京:北京理工大学出版社,1997.
    [187] Ernest O. Doebelin. Measurement Systems Application and Design. Publishing House ofElectronics Industry,2007.
    [188] LIU H W. Material mechanics. Publishing House of Higher Education,2002.
    [189] Rao Y J, Wang Y P, Ran Z L, et al. Characteristics of novel long-period fiber gratingswritten by focused high-frequency CO2laser pulses. Asia-Pacific Optical and WirelessCommunications2001, Proc. SPIE,2001,4581:327-333.
    [190]王彦,梁大开,周兵,基于长周期光纤光栅微弯特性的智能结构振动监测,仪器仪表学报,2008,29(6):1154-1158.
    [191]赵洪霞,鲍吉龙,陈莹,弯曲曲率对长周期光纤光栅透射谱特性的影响,中国激光,2008,35(5),722-725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700