空间碎片双层板防护结构撞击极限研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天事业的发展,空间碎片环境日益恶化,空间碎片对在轨航天器的威胁越来越严重。对航天器进行空间碎片防护设计成为时代的必需和今后发展的必然趋势,我国航天事业特别是载人航天及空间交会对接等一系列航天活动的发展对航天器进行有效的空间碎片防护设计提出了迫切的要求。
     空间碎片与航天器的相对撞击速度大约在1km/s到16km/s范围内,空间碎片防护的重点是与航天器的碰撞概率极高的直径小于1厘米的微小碎片,其平均质量密度约为2.8g/cm3,与铝或铝合金接近。
     双层板防护结构,也被称为Whipple防护结构,包含前、后两层板,前板代表防护屏,后板代表航天器的舱壁,其常用材料为铝或铝合金,是最基本的防护措施,也是国际空间站广泛采用的防护方案。
     撞击极限用于描述防护结构在空间碎片撞击下处于临界失效的状态,撞击极限的研究是防护方案设计中进行空间碎片撞击风险评估时不可缺少的一个环节,而国内目前还缺乏相关的撞击特性数据,尚未开发出工程可用的完整的撞击极限方程。
     本文以空间碎片防护结构设计为工程背景,以抵御毫米级空间碎片的双层板防护结构为研究对象,根据双层板防护结构在不同撞击参数条件下呈现撞击极限分段特征,在对各段撞击效应进行分析的基础上,按防护结构前板和后板在各段的损伤破坏过程与机理,分别建立力学模型获得了空间碎片撞击双层板防护结构为防止后板失效所需要的后板极限厚度函数关系式,建立了三个速度段的撞击极限方程。进行的主要工作如下:
     研究了不同速度下的撞击现象,根据双层板防护结构在不同撞击速度下呈现撞击极限分段特征,在对各段撞击效应进行分析的基础上,提出了不同速度段撞击极限方程的建立方法。
     根据弹道段弹丸撞击前板后一般在前板形成单个剪切孔且质量不发生改变的特点,基于能量守恒定律,研究了弹丸穿透前板后的剩余速度,得到了弹丸撞击半无限体后板成坑的坑深,采用半无限体靶板坑深与有限厚靶板极限厚度之间的关系建立了弹道段撞击极限方程。
     根据破碎段弹丸撞击前板后形成含固体颗粒的碎片云的特点,认为碎片云颗粒撞击半无限体后板成坑深度由最大碎片成坑深度及其它小碎片成坑深度组合而成,基于对碎片云成坑的研究,建立了半无限体后板成坑深度的无量纲表达式,进而建立了破碎段撞击极限方程。分析的同时还建立了最大碎片直径的无量纲表达式。
     根据液化/气化段弹丸撞击前板后形成的碎片云由气化或液化的粒子构成的特点,假设后板所受载荷为均匀分布,基于板的弯曲理论,采用瑞次法获得简支圆板承受部分均布载荷作用下位移的近似解,通过对板的极限分析,建立了液化/气化段撞击极限方程。
     探讨了双层板结构撞击极限研究时的分段问题。采用量纲分析法建立了适用于不同材料的弹丸初始破碎速度的无量纲经验表达式。
     本文通过分段建立力学模型以反映双层板防护结构在不同速度范围内具有不同撞击效应的物理力学过程,利用已有关于成坑、穿孔等基础性研究成果,分别建立了三个速度段的撞击极限方程,其预测结果与实验结果吻合较好。所取得的研究成果,为风险评估和防护设计工程应用提供了技术基础,揭示了撞击效应的物理力学过程和机理,也为开发研制新型多层防护结构提供了超高速撞击特性研究的理论基础,具有一定的工程应用价值和理论指导意义。
With the development of human's space technology and activities, the space debris environment is getting more and more deteriorated, which results in a great threaten to the safety of on-orbit space vehicles. The severe situation of space debris environment makes it necessary and inevitable to design shielding for spacecraft. Furthermore, the development and activities of the nation's space technoloty, espetially those on manned spacecraft and spacecraft rendezvous, propose an urgent demand to design effective shielding for spacecraft against space debris.
     The relative impact velocity between space debris and spacecraft is about 1km/s to 16km/s. Due to their numerousness and the resulting high probability of collision, the emphasis of shielding design is small space debris with diameter less than 1cm, whose mass density is about 2.8g/cm3, which is close to that of aluminium or aluminium alloy.
     The most basic shielding structure is dual-wall shielding structure, which is also widely adopted in the International Space Station. Dual-wall shielding structure, also called Whipple shielding structure, consists of a front wall and a rear wall, which represent the bumper and the module of spacecraft respectively. Generally, the materials of dual-wall shielding structure are aluminium or aluminium alloy.
     Ballistic limit is used for decribing shielding structure's critical status between failure and not failure when subjected to the impact of space debris. To access the space debris impact risk in designing shielding structure, it's necessary and inevitable to obtain the shielding structure's ballistic limit. Nevertheless, there exists no complete ballistic limit equations domistically that can be applied in engineering, due to the lack of relative data of impact characteristic.
     This paper takes space debris shielding design as the engineering application background, takes dual-wall shielding structure against space debris of millimeters as research object. Due to the characteristic that the ballistic limit of dual-wall shielding structure can be divided into different sections under different parameters, based on analysis on the impact effects of different ranges, by considering the damage process and mechanism of the front and rear wall under different ballistic limit ranges, this paper establishes a mechanical model for the different ballistic limit ranges of dual-wall shielding structure under impacts by space debris. As a result of the models, this paper obtains the functional relation of critical thickness to prevent the failure of the rear wall when impacted by space debris, establishes the ballistic limit equations for the three velocity ranges. The main contents of the paper are as follows:
     The paper studies the impact phenomenon under different velocities and observes the characteristic of dual-wall shielding structure that the ballistic limit can be divided into different sections under different impact velocity ranges. Based on the individual analysis of impact effects under different ballistic limit ranges, the paper proposes the modelling method to establish the ballistic limit equations for different velocity ranges.
     In the ballistic range, semi-infinite plate subjected to impact by projectile is investigated. Base on conservation of energy and the feature that after impacting the front wall, the projectile will not change its mass and a hole is generated in the front wall, the remnant velocity of the projectile after perforating the front wall is investigated, as a result of which the paper obtains the crater depth of the rear semi-infinite plate. Making use of the relation between crater depth of semi-infinite plate and critical thickness of rear wall, the paper establishes the ballistic limit equation in the ballistic range.
     In the shatter range, the debris cloud is analyzed. Due to the feature that the debris cloud consists of solid particles, the crater depth of the semi-infinite rear wall is decomposed into two parts, one caused by the largest particle and one caused by the rest cloud particles. Base on the analysis of debris cloud cratering, the paper gives a non-dimensional expression for crater depth of semi-infinite rear wall. As sequence, the paper establishes the ballistic limit equation for shatter range. At the same time, the paper also gives the non-dimensional expression of the diameter of the largest debris particle.
     In the melt/vaporize range, debris cloud after impact consists of gas or liquid particles. For simplification, the paper assumes that the rear wall is subjected to uniform load when impacted by the debris cloud. Base on bending theory of plates and by Rize method, the paper obtains the approximate displacement of simple-supported circle plate subjected to partial uniform load. Afterward, the paper establishes the ballistic limit equation for melt/vaporize range through the analysis of the plate.
     The paper also studies the division of velocity ranges for the ballistic limit analysis of dual-wall structures. Using dimensional analysis, the paper establishes a non-dimensional empirical expression for fragmentation-initiation velocity of the projectile, which is valid for different projectile materials.
     By dividing into different sections, the paper establishes mechanical models for different ballistic limit ranges to reveal the physical process that dual-wall shielding structure responses differently under impacts of different velocity ranges. Existing basic research results on cratering and perforation are adopted. As a result, the paper establishes the ballistic limit equations for the three velocity ranges, the predictions of which agree well with experimental data. The research findings of the paper has some significant meanings and is valuable in engineering applications and providing theoretical guidelines. It provides technical foundation for risk assessment and shielding design applications. It reveals the physical process and mechanism of impact effects. And for developing new multilayer shielding structure, it also provides theoretical foundations for studying the hypervelocity impact characteristics.
引文
1.刘静.航天空间环境——空间碎片及其应用研究.北京大学.博士论文2004.
    2.曲广吉,韩增尧.航天器空间碎片被动防护技术研究的总体构思.航天器工程. 2005,14: 1-7.
    3.庞宝君,韩增尧.建立空间碎片防护设计工程体系提高航天器在轨安全能力.中国第三届空间碎片会议文集. 2005.
    4. Interagency Working Group on Orbital Debris. Report on Orbital Debris. National Security Council, Washington, D.C., January, 1989.
    5. Johnson N L. Environmentally-Induced Debris Sources. Advances in Space Research. 2004, 34(5): 993-999.
    6. Anz-meador PD. Density and Mass Distributions of Orbital Debris. Acta Astronautica. 1996, 38(12): 927-936.
    7.朱毅麟.空间碎片环境近况.中国空间技术. 1996, (6): 19-28.
    8. Johnson N L. Environmentally-Induced Debris Sources. Advances in Space Research. 2004, 34(5): 993-999.
    9. Anz-meador P D. Density and Mass Distributions of Orbital Debris. Acta Astronautica. 1996, 38(12): 927-936.
    10.都亨.空间碎片行动计划近期工作设想及今后工作展望.中国航天. 2003, 11: 13-15.
    11. Whipple F L. Meteorites and Space Travel. The Astronomical Journal. 1947, 52: 131.
    12. Olshaker A E. Experimental Investigation in Lead of the Whipple‘Meteor Bumper’. Journal of Applied Physics, 1960, 31(12): 2118-2120.
    13. Rodriguez D. Meteoroid Shielding for Space Vehicles. Aerospace Engineering, 1960, 20: 55-66.
    14. Maiden C J, Gehring J Wand MeMillan A R. Investigation of Fundamental Mechanism of Damage to Thin Targets by Hypervelocity Projectiles. General Motors Defense Research Laboratories, Report No. GM-DRL-TR63-225, September, 1963.
    15. Maiden C J, McMillan A R. An Investigation of the Protection Afforded aSpacecraft by a Thin Shield. AIAA Journal, 1964, 2(11): 1992-1998.
    16. Riney T D, Halda E J. Effectiveness of Meteoroid Bumpers Composed of Two Layers of Distinct Materials. AIAA Journal, 1968, 6(2): 338-344.
    17. Cour-Palais B J. Meteoroid Protection by Multiwall Structures. AIAA Paper No.69-372,1969.
    18. Christiansen E. Evaluation of Space Station Meteoroid/Debris Shielding Materials. Final Report No. 87-163, Eagle Engineering Inc., Houston, Texas, September, 1987.
    19. Coronado A R, Gibbins M N, Wright M A, Stern P H. Space Station Integrated Wall Design and Penetration Damage Control. Report No. D180-30550, The Boeing Aerospace Company, Seattle, Washington, July, 1987.
    20. Schonberg W P, Bean A J, Darzi K. Hypervelocity Impact Physics. NASA-CR-4343, January, 1991.
    21. Schonberg W P, Peck J A. Parametric Investigation of Multi-Wall Structural Response to Hypervelocity Cylindrical Projectile Impact. Computers and Structures. 1993, 49(4): 719-746.
    22. Schonberg W P, Darzi K. Effect of Projectile Shape and Material on the Hypervelocity Impact Response of Aluminum Dual-Wall Structures. Journal of Aerospace Engineering. 1992, 5(4): 405-424.
    23. Hyde J L. International Space Station Integrated Meteoroid and Debris Threat Assessment, Issue D. Lockheed Martin Space Mission Systems and Services, Report LMES-32316, Johnson Space Center, Houston, Texas, 1996.
    24. Robinson J H, Maldonado J. Hubble Space Telescope Meteoroid/Debris Protection Analysis. NASA-TM-86552, June, 1986.
    25. Swift H F, Russell P A. Evaluation of Meteoroid Damage Potential to the Mariner Mark II Propulsion Module Subsystem. Final Report, Purchase Order No. 5A-865336, The Titan Company, Dayton, Ohio, January, 1990.
    26. Swift H F. Evaluation of Galileo Vehicle Retro Propulsion Module to Meteoric Impact. Final Report, Requisition No. 866746-NP, The Titan Company, Dayton, Ohio, May, 1988.
    27. Lamontagne C G, Manuelpillai G N, Taylor E A, Tennyson R C. Normal and Oblique Hypervelocity Impacts on Carbon Fiber/PEEK Composites. International Journal of Impact Engineering. 1999, 23: 519-532.
    28. Taylor E A, Tsemblis K, Hayhurst C J, Kay L, Burchell M J. Hypervelocity Impacts on Carbon Reinforced Plastic/Aluminum Honeycomb: Comparison with Whipple Bumper Shields. International Journal of Impact Engineering. 1999, 23: 883-894.
    29. Lawrence R J. A Simple Model for the Optimization of Stand-off Hypervelocity Particle Shields. International Journal of Impact Engineering. 1987, 5: 451-461.
    30. Mog R A, Helba M J, Robinson J H. Development and Optimization of a Multibumper Design for Spacecraft Protective Structures. International Journal of Impact Engineering. 1993, 14: 519-530.
    31. Maclay T D, CuIp R D, Bareiss L, Gillespie T G., Kustas F M. Topographically Modified Bumper Concepts for Spacecraft Shielding. International Journal Impact Engineering. 1993, 14: 479-489.
    32. Christiansen E L, Kerr J H, H.M. de la Fuente and Schneider W C. Flexible and Deployable Meteoroid/Orbital Debris Shielding for Spacecraft. International Journal of Impact Engineering. 1999, 23: 125-136.
    33. Hiermaier S, Schafer F. Hypervelocity Impact Fragment Clouds in High Pressure Gas. International Journal of Impact Engineering. 1999, 23: 391-400.
    34. Mullin S A, Couque H, Cour-Palais B G, Grosch D J, Walker J D. Bursting of Shielded Pressure Vessels Subject to Hypervelocity Impact. International Journal of Impact Engineering. 1997, 20: 579-590.
    35. Telitchev I Y, Schafer F, Schneider E, Lambert M. Analysis of the Fracture of Gas-Filled Pressure Vessels Under Hypervelocity Impact. International Journal of Impact Engineering. 1999, 23: 905-920.
    36. Schafer F, Schneider E, Lambert M, Mayseless M. Propagation of Hypervelocity Fragment Clouds in Pressure Gas. International Journal of Impact Engineering. 1997, 20: 697-710.
    37. Christiansen E L, Crews J L et al. Enhanced Meteoroid and Orbital Debris Shielding. International Journal of Impact Engineering. 1995, 17(1-3): 217-228
    38.李清源.哥伦布航天器对轨道碎片撞击危害的设计考虑.强度与环境. 1997, (3): 47-54
    39.闽桂荣,肖名鑫.防止微流星击穿航天器舱壁的可靠性设计.中国空间科学技术. 1986, (6): 45-48.
    40. Alwes D, Sdunnus H. Space Debris Aspects in Design and Operation of a Space craft - the Programmatic of an End-to-End Service. Advances in Space Research. 2004, 34(5): 1264-1269
    41.张伟,庞宝君,邹经湘,张泽华.航天器微流星和空间碎片的防护方案.哈尔滨工业大学学报. 1999, 32(2): 18-22.
    42.张伟,庞宝君,张泽华,邹经湘.航天器空间碎片防护方案的评价方法.中国空间科学技术. 1998, (6): 30-36.
    43. Janovsky R, Kalninsch I, Stichternath A. The Meteoroid and Debris Protection System for the ATV-Spacecraft. Acta Astronautica. 2000, 47(2-9): 281-287.
    44. Thoma K, Schafer F, Hiermaier S, Schneider E. An Approach to Achieve Progress in Spacecraft Shielding. Advances in Space Research. 2004, 34(5): 1063-1075.
    45. Lamber M, Schneider E. Shield Against Space Debris. A Comparison Between Different Shield: The Effect of Materials on Their Performance. International Journal of Impact Engineering. 1995, 17: 477-485
    46. William H J. Ballistic Limit Regression Analysis for Space Station Analysis for Space Station Freedom Meteoroid and Space Debris Protection System.NASA report: 661-001-92-608. 1992.
    47. Schonberg W P, Evans H J, Williamsen J E, Boyer R L, Nakayama G S. Uncertainty considerations for ballistic limit equations. Proceedings of the 4th European Conference on Space Debris, 2005.
    48. Cour-Palais B J. Meteoroid Protection by Multiwall Structures. AIAA Paper No.69-372,1969.
    49. Christiansen E L. Shield Sizing Equations. NASA JSC Memorandum. SN3-90-121, 1990.
    50. Christiansen E L. Whipple Shield Sizing Equations. NASA JSC Memorandum. SN3-91-19, 1990.
    51. Christiansen E L. Performance Equations for Advanced Orbital Debris Shields. AIAA Paper No.92-1462,1992.
    52. Christiansen E L. Ballistic Limit Equations. NASA JSC Memorandum. SN3-91-21, 1990.
    53. Christiansen E L. Design and Performance Equations for Advanced Meteoroid and Debris Shield. International Journal of Impact Engineering. 1993, 14(6-10): 145-156.
    54. Christiansen E L, Kerr J H. Ballistic Limit Equations for Spacecraft Shielding. Int. J. Impact Engng, 2001, 26: 93-104.
    55. Reimerdes H G, N?lke D, Sch?fer F. Modified Cour-Palais/Christiansen Damage Equations for Double-Wall Structures. Int. J. Impact Eng., 2006; 33: 645-654.
    56. Nysmith C R, Summers J L. An Experimental Investigation of the Impact Resistance of Double-Sheet Structures at Velocities to 24,000 Feet Per Second. NASA TN D-1431, 1962.
    57. Nysmith C R. An Experimental Impact Investigation of Aluminium Double-Sheet Structures. AIAA Paper No. 69-375, 1969.
    58. Lundeberg J F, Stern P H and Bristow R J. Meteoroid Protection for Spacecraft Structures. NASA CR-54201, 1965.
    59. Burch G T. Multiplate-Damage Study. Air Force Armament Laboratory Technical Report AFATL-TR-67-116, 1967.
    60. Wilkinson J P D. A Penetration Criterion for Double-Walled Structures Subjected to Meteoroid Impact. AIAA Journal, 1969, 7(10):1937-1943.
    61.管公顺,庞宝君,哈跃等.铝合金Whipple防护结构高速撞击实验研究.爆炸与冲击. 2005, 25 (5): 461-466.
    62. Guan Gongshun, Pang Baojun, Zhang Wei, et. al. Experimental Investigation of Bumper Thickness Effect on Damage of Al-Whipple Shield by Hypervelocity Impact. Proceedings of the Fourth European Conference on Space Debris,Germany, 2005.4
    63.管公顺,张伟,庞宝君.铝球弹丸高速正撞击薄板穿孔研究,高压物理学报,2005,19(2): 132-138.
    64.刘静,王荣兰,张宏博,肖佐.空间碎片碰撞预警研究.空间科学学报. 2004, 24(6): 462-469.
    65.柳森,李毅,黄洁等.用于验证数值仿真的Whipple屏超高速撞击实验结果.宇航学报. 2002, 26(4): 505-508.
    66.柳森,李毅. Whipple防护屏弹道极限参数试验.宇航学报.2004,25(2): 205-207.
    67.张伟,庞宝君,贾斌等.弹丸超高速撞击防护屏碎片云数值模拟.高压物理学报, 2004, 18 (1) :47 - 52.
    68.马文来,张伟,管公顺,庞宝君.椭球弹丸超高速撞击防护屏碎片云数值模拟,材料科学与工艺,2005, 13(3):294-298.
    69.张伟,马文来等.弹丸超高速撞击铝靶成坑数值模拟,高压物理学报,2006.20(1):1-5.
    70.贾斌,盖芳芳,马志涛,庞宝君.5A06铝合金单层板超高速撞击弹道极限分析.材料科学与工艺,2007.15(5):636-639.
    71.徐志宏,汤文辉,罗永,徐金中,冉宪文.改进的粒子间接触算法.第四届全国空间碎片会议,2007.
    72. Ma Zhitao, Jia Bing, Pang Baojun.Comparison of Shielding Performance Between Al-Foam and Solid Aluminum Bumpers with Numerical Simulation. Science and Technology Series,2006,112: 339-344.
    73.张庆明,谈庆明,张德良,郑哲敏.超高速冲击铝双层板的熔化效应.力学学报. 1995, 27(3): 257 - 266
    74.张庆明. LY-12铝合金熔化的临界碰撞速度.北京理工大学学报. 2000, 20(4): 427 - 430.
    75.张庆明,黄风雷.超高速碰撞动力学引论.科学出版社.第一版. 2000.
    76.袁俊刚,曲广吉,孙治国.航天器空间碎片防护结构设计优化技术研究.航天器工程. 2007, 16 (3):54-59.
    77.袁俊刚,曲广吉,孙治国,韩增尧.空间碎片防护结构设计优化理论方法研究.宇航学报. 2007,28(2):243-248.
    78. Kessler D J, Reynolds R C, Anz-Meador P P. Orbital Debris Environment for Spacecraft Designed to Operate in Low Earth Orbit, NASA TM-100471, Houston, Texas. 1988.
    79.钱伟长.穿甲力学.国防工业出版社.第一版. 1984.
    80.张德良,谈庆明等.铝弹丸对铝双层靶的超高速撞击的实验研究.超高速终点效应研究验收报告集.中国科学院力学研究所. 1989.
    81. Rolsten R F, Wellnitz J N, Hunt H H. An Example of Hole Diameter in Thin Plates Due to Hypervelocity Impact. J Appl Phys, 1964, 34(3):556-559.
    82. Maiden C J, McMillan A R, Sennett R E. Thin Sheet Impact. NASA CR-295,Washington, DC, 1965.
    83. Nysmith C R, Denardo B P. Experimental Investigation of the Momentum Transfer Associated with Impact into Thin Aluminum Targets. NASA TN D-5492, 1969.
    84. Schonberg W P. Hypervelocity Impact Penetration Phenomena in Aluminum Space Structures. J Aerospace Eng. 1990,3(3):173-185.
    85. Piekutowski A J. Formation and Description of Debris Clouds Produced by Hypervelocity Impact. NASA CR-4707,1996.
    86. Scott A. Hill. Determination of an Empirical Model for the Prediction of Penetration Hole Diameter in Thin Plates from Hypervelocity Impact. International Journal of Impact Engineering, 2004, 30:303-321.
    87. Forst V C. Meteroid Damage Assessment. NASA SP-8042, 1970.
    88. Sawle D R. Hypervelocity Impact in Thin Sheets, Semi-Infinite Targets at 15 km/s, AIAA Paper No. 69-378, AIAA Hypervelocity Impact Conference, Cincinnati, OH, 1969.
    89. Bruce E. P. Review and Analysis of High Velocity Impact Data. Proceedings of the Fifth Hypervelocity Impact Symposium, 1962.
    90. Bruce E. Velocity Dependence of Some Impact Phenomena. Proceedings of the Comet Halley Micrometeoroid Hazard Workshop, ESA SP-153, 1979:101.
    91. Goodman E H and Liles C D. Particle-Solid Impact Phenomena. Proceedings of the Sixth Hypervelocity Impact Symposium, 1963:543-577.
    92. Dunn W P. On Material Strengths of the Hypervelocity Impact Problem. AIAA Journal, 1966, 4(3):31-38.
    93. Sedgwick R T, Hageman L J, Herrmann R G and Waddell J L. Numerical Investigations in Penetration Mechanics. Int. J. Engng. Sci, 1978, 16:859-869.
    94. Christman D R. Target Strength and Hypervelocity Impact. AIAA Journal, 1966, 4(10):1872-1874.
    95. Summers J L and Charters A C. High-speed Impact of Metal Projectiles in Targets of Various Materials. Proceedings of the Third Hypervelocity Impact Symposium, 1959.
    96. Sorenson N R. Systematic Investigation of Crater Formation in Metals. Proceedings of the Fifth Hypervelocity Impact Symposium, 1962.
    97. Herrmann W and Jones A H. Correlation of Hypervelocity Impact Data. Proceedings of the Fifth Hypervelocity Impact Symposium, 1962.
    98. Cour-Palais B G. Experience Related to Apollo and Skylab. Orbital Debris, NASA CP-2360, 1982.
    99.向家琳.金属材料可压缩性效应对超高速碰撞中厚靶成坑的影响.中国科学院力学研究所硕士论文, 1990.
    100.孙庚辰,谈庆明等.金属厚靶超高速碰撞开坑实验.第四届全国爆炸力学会议论文集,合肥, 1990.
    101. Cour-Palais B G. Hypervelocity impact investigations and meteroid shielding experience related to Apollo and Skylab. Orbital debris. NASA CP-2360, 1985.
    102. Goldsmith W, Finnegan SA. Penetration and Perforation Processes in Metal Targets at and above Ballistic Velocities. Int. J. Mech. Sci., 1979; 13: 843-866.
    103. Maiden C J, Mcmillan A R, Sennett R E, Gehring J W. Experimental Investigations of Simulated Meteoroid Damage to Various Spacecraft Structures. NASA, CR-65222, 1965.
    104. Hayashida K B, Robinso J H. Double-Plate Penetration Equations. NASA, TM-2000-209907, 2000.
    105. Cohen L J. A Debris Cloud Cratering Model. Int. J. Impact Eng., 1995; 17: 229-240.
    106. Sokolov V G, Christiansen E L, Gorbenko AV, Feldstein VA, Romanchenkov VP, Panichkin NG, Yachlakov YV, Zinchenko LV. The Effects of Thin Deployable Construction Elements of the International Space Station on the Probability of Its Hull Penetration by Meteoroids and Orbital Debris. Int. J. Impact Eng., 2001; 26:725-734.
    107. Schonberg W P, Bean A J, Darzi K. Hypervelocity Impact Physics. NASA Contractor Report 4343, 1991.
    108. Christiansen E L. Meteoroid/Debris Shielding. NASA, TP-2003-210788, 2003.
    109. Kinslow R.High-Velocity Impact Phenomena. New York, Academic Press, 1970.
    110. Baňuelos J S C. Ballistic Limit Equation for Hypervelocity Impact on Composite-Orthotropic Materials.Houston: Rice University, UMI Number-3122459,2003.
    111. Hoppkins A K, Lee T W, Swift H F. Material Phase Transformation Effects upon Performance of Spaced Bumper Systems. J. Spacecraft and Rockes, 1972,(9): 342-345.
    112. Swift H F, Hopkins A K. The Effects of Bumper Material Properties on the Operation of Spaced Meteoroid Shields. J. Spacecraft and Rockes, 1970,7(1): 73-77.
    113. Nysmith R C. A Discussion of the Modes of Failure of Bumper-Hull Structures with Application to the Meteoroid Hazard. TN D-6039, NASA, 1970.
    114. Gogolev V M, Mirkin V G, Yablokova G I. Approximate Equation of State for Solids. Zhurnal Prikladnoi Mikhanikii Tekhnukeskoi Fiziki, 1963,5:93-98.
    115. Pikutowski A J. Fragmentation-Initiation Threshold for Spheres Impacting at Hypervelocity. Int J Impact Engng, 2003, 29:563-574.
    116. Grady D E, Kipp M E. Impact Failure and Fragmentation Properties of Metals. SANDIA, SAND98-0387,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700