用户名: 密码: 验证码:
沥青路面粘弹性响应分析及裂纹扩展研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青路面的力学行为机理和各种裂纹是沥青路面理论与实践研究前沿之一。开展沥青路面力学行为及裂纹产生机理、裂纹扩展行为的研究可以更加全面地描述路面的力学行为,进一步理解路面损伤与早期破坏的原因,并为沥青路面的设计与养护提供指导。本文对沥青路面力学行为和疲劳裂纹的扩展作了数值与试验研究。主要内容如下
     (1)利用沥青混合料的热粘弹本构关系,考虑沥青路面各层之间的接触状态,对降温条件下的沥青路面的温度应力响应进行了有限元分析。研究了初始温度、降温幅度、降温速率、面层厚度、基层模量、基层与面层温缩系数等对温度应力响应的影响。
     (2)对沥青路面在移动行车荷载下的动力响应进行了有限元分析。引入无反射边界条件,消除了有限元方法由于模型尺寸的有界给动力分析结果带来的不良影响,考虑了面层材料的粘弹属性;分析了基层模量、基层厚度、层间接触状态、材料阻尼、行车速度、轮胎接地压力等因素的影响。
     (3)提出了一种无单元伽辽金方法同有限元方法的耦合方法——过渡单元耦合方法。介绍了无单元伽辽金同有限元常用的耦合方法,并对其中两种常用的耦合方法:过渡单元法和配点法作了重点阐述,讨论了其理论基础和其耦合方法的线性一致性问题。在过渡单元耦合法的基础上,提出了简化的过渡单元耦合方法,并通过数值算例证明了简化的过渡单元耦合方法的有效性。
     (4)对无单元伽辽金方法在裂纹扩展中的应用进行了研究,介绍了无单元法求取裂纹尖端应力强度因子的围线积分法和面积积分方法,并对其实现过程作了说明。对基于无单元伽辽金方法的裂纹扩展模拟的实现进行了重点研究,具体说明了其扩展准则,扩展增量的选取,几何形状更新方法。并通过数值算例验证了无单元伽辽金方法在断裂力学和裂纹扩展方面的应用。
     (5)通过预切口沥青混凝土小梁的三点弯曲疲劳实验,研究了预切口沥青混凝土小梁的疲劳破坏特征,研究了预切口三点弯曲小梁的疲劳寿命和裂纹扩展路径。并通过自编的无单元伽辽金/有限元耦合裂纹扩展模拟程序对预切口小梁疲劳实验进行了数值模拟,验证了程序的有效性。结果表明,随着预切口裂纹偏离加载中点距离的增加,相同集中作用力下,裂纹的起裂角增大,小梁的疲劳寿命增大。随着应力水平的增大,疲劳寿命下降。试验结果表明,由于沥青混凝土材料颗粒的不均匀性,裂纹扩展路径通常沿着集料颗粒边界扩展而很少切断颗粒。
     (6)通过无单元伽辽金/有限元耦合方法模拟了沥青路面结构中裂纹的扩展路径。在开裂路面的综合参数研究中详细评价了不同的路面结构组合、超载和荷载相对裂纹的位置的影响。荷载的位置连同沥青面层和基层刚度对裂纹的扩展有很大的影响,计算出了裂纹增长的方向,且表明随着裂纹长度的增加其扩展方向会发生改变。路面结构(厚度和刚度)的不同组合对沥青路面表面裂纹的扩展行为有较大的影响。
The study on the asphalt pavement mechanics behavior in service and the asphalt overlay’s crack propagation is a popular and advanced topic in the asphalt pavement researches. The exploring on the mechanics behavior and crake expanding performance of asphalt pavement will contribute to a better understand on working state of the asphalt pavement, which is the base for further discovery on the causes of the immature damage, and can guide the asphalt pavement design and rehabilitation. The thesis makes the numerical and test study on the asphalt pavement’s mechanics behavior and the crack propagation. The main works in the thesis are as following:
     (1)Based on the visco-elasticity of the asphalt concrete, the thermal stress responses of the pavement are studied considering the contact mechanics of the interface by the finite element method. Further, the influence of the initial temperature, the cooling range, the cooling rate, the overlay’s thickness and the base module on the temperature stress response is analyzed.
     (2)The dynamic response of the asphalt pavement under the moving wheel loads is analyzed using the finite element method. The non-reflective boundary is introduced to avoid the disturbance for the limit size of the finite element model’s domain which would reflect the wave at the model’s boundary, and the visco-elasticity of the asphalt concrete is taken into account too. The influence of the base module, the base’s thickness, the contact condition of the interface, the damping, the velocity of the wheel loads is studied.
     (3)The coupling method combining the element free Galerkin method (EFGM) and the finite element method (FEM) is discussed. The usual coupling methods are addressed, while two widely used methods-interface elements approach and collocation approach-are presented in detail on its theory bases and the linear consistency. A simplified transition element method is represent based on traditional transition element method, which is proved valid by the numerical sample.
     (4)The application of EFGM on the crack propagation is addressed. Two methods-contour integral and area integral- are introduced to calculate the stress intensity factor (SIF) of the crack tip, and their implements are explained. And the crack propagation modeling attracts much attention, especially on the crack criterion, the selection of the crack increment, the refreshment of the geometry. Some samples on the crack propagation simulation work have been offered. The application of EFGM in the field of Crack Mechanics and Crack Propagation is proved to be available by numerical case studies.
     (5)The fatigue characteristic, fatigue life and crack propagation path of the pre-sawed asphalt concrete beam have been studied by the three-point bending fatigue test. Furthermore, the test has been numerical simulated with the program based on the coupling of EFGM and FEM. The result of the test and simulation shows that, the fatigue life ascends with the increase of the distance between the loading point and the sawed crack. And the fatigue life descends with the increase of the stress level. The crack propagation path abides certain rule in general. And the test demonstrates that the path propagates along the boundary of the aggregate nearly not splits the particles.
     (6)The crack propagation path of asphalt pavement under wheel loads is firstly simulated by the coupling of EFGM and FEM method interiorly. The influences of the overlay thickness, the base modules, the overloads, the loading positions are evaluated in detail by parameter analysis. The loading position and the module of overlay and base heavily influence the crack propagation path. The SIFs are calculated along with the crack propagating. The crack angles are also analyzed, and the results show that the crack angle will change with the crack propagating. The various combinations of depth and rigidity will make different crack propagation behavior of asphalt pavement.
引文
[1]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社, 1997
    [2]刘立新.沥青混合料粘弹性力学及材料学原理.北京:人民交通出版社, 2006
    [3]郑键龙.沥青路面温度收缩开裂的热粘弹特性研究.长安大学博士学位论文, 2001
    [4]黄志义,王金昌,朱向荣.含裂缝沥青混凝土路面的粘弹性断裂分析.中国公路学报, 2006, 19(2): 18-23
    [5]关宏信,郑键龙.沥青路面结构的粘弹性有限元方法.长沙交通学院学报, 2001, 17(1): 51-56
    [6]祝彦知,程楠.竖向荷载作用于半无限体内部时的粘弹性解.公路交通科技, 2006, 23(12): 26-32
    [7]关宏信,郑键龙,张起森.行车荷载作用下沥青路面粘弹性应力响应规律分析.中外公路, 2006, 26(2): 44-47
    [8]吴赣昌,凌天清.半刚性基层温缩裂缝的扩展机理分析.中国公路学报, 1998, 11(1): 21-28
    [9]吴赣昌.层状路面结构温度应力分析.中国公路学报, 1993, 6(4): 1-8
    [10]吴赣昌,张淦生.沥青路面温缩裂缝的应力强度分析.中国公路学报, 1996, 9(1): 37-44
    [11]郑键龙,田小革,应荣华.沥青混合料热粘弹性本构模型的实验研究.长沙理工大学学报(自然科学版), 2004, 1(1): 1-7
    [12]田小革,应荣华,郑键龙.沥青混凝土温度应力试验及其数值模拟.土木工程学报, 2002, 35(2): 25-30
    [13]郑键龙,张起森.半刚性基层沥青路面表面裂缝的热效应分析.长沙交通学院学报, 1992, 8(2): 1-11
    [14]郑键龙,周志刚,应荣华.沥青路面温度应力数值分析.长沙交通学院学报, 2000,17(1): 29-32
    [15]周志刚,李宇峙.气温和交通荷载对低温缩裂的影响.长沙交通学院学报, 1996, 12(l): 34-40
    [16]杨学良,刘伯莹.沥青路面温度场与结构耦合的有限元分析.公路交通科技, 2006, 23(11): 1-4
    [17] Farouki O T, Rolt J, Laboratory study of the mechanical properties of sand/sulphur/bitumen mixes. Transport and Road Research Laboratory, 1986
    [18] Mushule N. Behavior of recycled asphalt pavements at low temperatures. Canadian Journal of Civil Engineering, 1991, 18(3): 428-435
    [19] Noureldin A S. Influence of stress levels and seasonal variations on in situ pavement layer properties. Transportation Research Record, 1994, 1448(10): 16-24
    [20] Epps A. Design and analysis system for thermal cracking in asphalt concrete. Journal of Transportation Engineering, 2000, 126(4): 300-307
    [21] Huang Y H. Pavement Analysis and Design. New Jersey: Prentice Hall, 1993
    [22] A T Papagiannakis. Formulation for viscoelastic response of pavement under moving loads. J. of Transp. Engrg. 1996, 122(2):140-145
    [23] Zia Zafir. Dynamic pavement strain histories from moving traffic load. J of Transp.Engrg, 1994, 120(5): 821-842
    [24]胡小弟,孙立军.不同车型非均布轮载作用力对沥青路面结构应力影响的三维有限元分析.公路交通科技, 2003, 20(1): 1-5
    [25]郝大力,王秉纲.路面结构动力响应分析.长安大学学报(自然科学版), 2002, 22(3): 9-13
    [26]周志刚,张起森,郑键龙.加筋材料阻止沥青路面反射裂缝的桥联增韧的有限元分析.土木工程学报, 2000, 33(1): 94-100
    [27]周志刚,张起森,郑键龙.交通荷载作用下土工格栅防止沥青路面开裂的桥联效应.中国公路学报, 1999,12(3): 27-35
    [28]胡长顺,马骉.超薄水泥混凝土路面荷载应力分析.交通运输工程与信息学报,2003, 1(1): 107-112
    [29]黄晓明,刘玉荣,邓学钧等.旧水泥混凝土道面加铺层有限元分析方法.中国公路学报, 1996, 9(1): 30-36
    [30]邓学钧,李昶.水平荷载作用下的路面结构应力.岩土工程学报, 2002, 24(4): 427-431
    [31] Yoder E, M Witczak. Principles of Pavement Design. John Wiley and Sons, inc., New York, 1975
    [32] Center for Research and Contract Standardization in Civil and Traffic Engineering (CD-ROW). Surface Cracking in Asphalt Layers, Report of the working Group, Record 4, The Netherlands, 1990
    [33] Paris P C, Erdogan F. A Critical Analysis of Crack Propagation Laws. Transactions of the ASME, Journal of Basic Engineering, Series D, 1963, 85 (3): 528-534
    [34] Majidzadeh K, L O Talbert, M Karakouzian. Development and Field Verification of A Mechanistic Structural Design System in Ohio. Proceedings, Fourth International Conference Structural Design of Asphalt Pavements, The University of Michigan, Ann Arbor, Michigan, 1977: 402-408
    [35] R A Schapery. A Theory of Crack Growth in Visco-Elastic Media. Report MM 2764-73-1, Mechanics and Materials Research Center, Texas A&M University, 1973
    [36] R A Schapery. A Theory of Crack Initiation and Growth in Visco-Elastic Media, Part I: Theoretical Development, Part II: Approximate Methods of Analysis, Part III: Analysis of Continuous Growth. International Journal of Fracture, 1975, 11(1): 141-159; 11(3): 369-388; 11(4): 549-562
    [37] R A Schapery. A Method for Predicting Crack Growth in Nonhomogeneous Visco-Elastic Media. International Journal of Fracture, 1978, 14 (3): 293-309
    [38] M M J Jacobs. Crack Growth in Asphaltic Mixes. Ph.D. Dissertation, Faculty of Civil Engineering, Delft University of Technology, Delft, 1995
    [39] Molenaar A A A. Structural Performance and Design of Flexible Pavements andAsphalt Concrete Overlays. Ph .D. Dissertation, Faculty of Civil Engineering, Delft University of Technology, Delft, 1983
    [40] Lytton R L, Shanmugham U, Garrett B D. Design of Asphalt Pavements for Thermal Fatigue Cracking. Report FHWA/TX-83-284-4, Texas Transportation Institute, Texas A&M University, 1983
    [41] Lytton R L, Uzan J, Fernando E G, et al. Development and Validation of Performance Prediction Models and Specifications for Asphalt Binders and Paving Mixes. Report No. SHRP-A-357, Strategic Highway Research Program (SHRP), National Research Council, Washington, D .C, 1993
    [42] T W Hsu, K H Tseng. Effect of Rest Periods on Fatigue Response of Asphalt Concrete Mixtures. Journal of Transportation Engineering, ASCE, 1996, 122(4): 316-322
    [43] Tayebali A A, Deacon J A, Coplantz J S, et al. Monismith. Fatigue Response of Asphalt-aggregate Mixes. Report No. SHRP-A-404, Strategic Highway Research Program (SHRP), National Research Council, Washington, D .C., 1994
    [44] Mobasher B, Mamlouk M S, H M Lin. Evaluation of Crack Propagation Properties of Asphalt Mixtures. Journal of Transportation Engineering, ASCE, 1997, 123(5): 405-410
    [45] Roque R, Zhang Z, B Sankar. Determination of Crack Growth Rate Parameters of Asphalt Mixtures Using the Superpave IDT. Journal of the Association of Asphalt Paving Technologists, 1999,68: 404-433
    [46] Tinggang Zhang, Lutfi Raad. Numerical Methodology in Fatigue Analysis: Basic Formulation. Journal of Transportation Engineering, ASCE, 1999, 125(6): 552-559
    [47] Tinggang Zhang, Lutfi Raad. Numerical Methodology in Fatigue Analysis: Applications. Journal of Transportation Engineering, ASCE,2001,127(1): 59 -66
    [48] Jacob Uzan, Arich Sides, Mordechai Perl. Viscoelasoplatic Model for Predicting Performance of Asphaltic Mixtures. Transportation Research Record, 1985, 1043(11):78-88
    [49] Dauzats M, Rampal A. Mechanism of Surface Cracking in Wearing Courses. Proceedings, Sixth International Conference on the Structural Design of Asphalt Pavements, The University of Michigan, Ann Arbor, Michigan, July 1987: 232-247
    [50] M A Castell, A R Ingraffea, L H Irwin. Fatigue Crack Growth in Pavements. Journal of Transportation Engineering, ASCE, 2000, 126(4): 283-290
    [51] Myers L A, R Roque, B Birgisson. Propagation Mechanisms for Surface Initiated Longitudinal Wheel Path Cracks. In 80th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2001, Paper No.01-0433
    [52] B Birgisson, B Sangpetngam, R Roque. Prediction of the Viscoelastic Response and Crack Growth in Asphalt Mixtures using the Boundary Element Method. In 81st Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2002
    [53] Murthy N Guddati, Zhen Feng, Kim Y R. Towards a Micromechanics Based Procedure to Characterize Fatigue Performance of Asphalt Concrete. In 81st Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2002
    [54] E Schlangen, Van Mier. Experimental and Numerical Analysis of Micromechanics of Fracture of Cement-based Composites. Cement and Concrete Composites, 1992, 14(2): 105-118
    [55] B Sangpetngam, B Birgisson, R Roque. Development of an Efficient Hot Mix Asphalt Fracture Mechanics Based Crack Growth Simulator. In 82nd Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2003
    [56] Lim I L, Johnston I W, S K Choi. A Numerical Model for Simulation of Fracture Propagation in Rock. Edit by Li Huai-heng. Application of Computer Methods in Rock Mechanics. Proceedings of International Symposium on Application of Computer Methods in Rock Mechanics and Engineering, Xi'an, China, May 24-28, 1993: 397-404
    [57]李云鹏,王芝银.岩体裂隙扩展过程的数值模拟.工程地质学报, 1995, 3(4): 48-53
    [58]吴枝根.裂隙扩展过程的有限元仿真及动态跟踪技术.西安矿业学院硕士学位论文, 1997
    [59]杨庆生,杨卫.断裂过程的有限元模拟.计算力学学报, 1997, 14(4): 407-412
    [60]杨庆生,孙艳丰.裂纹扩展过程的数值模拟.铁道学报, 1997, 19(5): 116-120
    [61]杨庆生,杨卫.界面裂纹的路径选择与数值模拟.力学学报, 1997, 29(3): 355-358
    [62]寇晓东,周维垣.应用无单元法追踪裂纹扩展.岩石力学与工程学报, 2000, 19(1): 18-23
    [63]李卧东,王元汉,陈晓波.无单元法在断裂力学中的应用.岩石力学与程学报, 2001, 20 (4): 462-466
    [64]袁振,李子然,吴长春.无单元法模拟复合型疲劳裂纹的扩展.工程力学, 2002, 19 (1): 25-28
    [65] B Chiaia, A Vervuurt, J G M. Van Mier. Lattice Model Evaluation of Progressive Failure in Disordered Particle Composites. Engineering FractureMechanics, 1997, 57(2-3): 301-318
    [66] E Schlangen, E J Graboczi. Fracture Simulations of Concrete Using Lattice Models: Computational Aspects. Engineering Fracture Mechanics, 1997, 57(23): 319-332
    [67]杨强,程勇刚,张浩.基于格构模型的岩石类材料开裂数值模拟.工程力学, 2003, 20 (1): 117-120
    [68] Sha Qing-Lin. The Cracking of Bituminous Surfacing on Semi-Rigid Road base in China. Australian Road Research, 1988, 18(2): 97-106
    [69]沙庆林.高速公路沥青路面早期破坏现象及预防.北京:人民交通出版社, 2001
    [70]周富杰.防治反射裂缝的措施及其分析.同济大学博士学位论文, 1998
    [71]曹东伟,胡长顺.旧水泥混凝土路面沥青加铺层力学分析.西安公路交通大学学报, 2001, 21(1): 1-5
    [72]刘益河,张起森,李志勇.沥青路面温度应力的光弹性研究.中国公路学报, 1991,4(4): 20-28
    [73]张起森,郑键龙,刘益河.半刚性基层沥青路面的开裂机理.土木工程学报, 1992, 25(2): 13 -21
    [74]张肖宁,王哲人,王端宜.计算沥青路面低温缩裂的能量判据及应用.中国公路学报, 1990, 3( 3): 11-17
    [75]张肖宁,韩传岱,朱希岭.沥青混合料低温抗裂性能评价方法的研究.中国公路学报, 1993, 6(1): 3-9
    [76]周志刚,李宇峙.气温和交通荷载对低温缩裂的影响.长沙交通学院学报, 1996, 12 (1): 34-39
    [77]周志刚,张起森.结构层组合对路面裂缝扩展的影响.中国公路学报, 1997, 10(2): 5-10
    [78]罗睿,黄晓明,陆原,张望.基层对层间连续路面应力强度因子影响的研究.东南大学学报, 2001, 31(3): 61-64
    [79]罗睿,黄晓明.沥青路面表面裂缝应力强度因子计算方法研究.公路交通科技, 2002, 19(1): 12-15
    [80]陆辉.轮载作用下沥青路面结构三维非线性有限元分析方法的研究.同济大学博士学位论文, 2001
    [81]孙立军,张宏超,刘黎萍,胡小弟.沥青路面初期损坏特点和机理分析.同济大学学报, 2002, 30 (4): 416-421
    [82]田小革.沥青混合料的低温低频疲劳特性研究.同济大学博士学位论文, 2001
    [83]郑键龙,张起森.半刚性基层沥青路面表面裂缝的热效应分析.长沙交通学院学报, 1992, 8( 2): 1-11
    [84]郑键龙. Burgers粘弹性模型在沥青混合料疲劳特性分析中的应用.长沙交通学院学报, 1995, 11(3): 32-42
    [85]郑键龙,应荣华,张起森.沥青混合料热粘弹性断裂参数研究.中国公路学报, 1996, 9( 3): 20-28
    [86]郑键龙,周志刚,应荣华.沥青路面温度应力数值分析.长沙交通学院学报, 2001,17(1): 29-32
    [87]关宏信,郑键龙.沥青路面结构的粘弹性有限元方法.长沙交通学院学报, 2001, 17(1): 51-56
    [88]吕松涛,田小革,郑键龙.沥青混合料粘弹性参数的测定及其在本构模型中的应用.长沙交通学院学报, 2005, 21(1): 37-42
    [89]邓敏姿,唐丛一,周升平.沥青混凝土低温粘弹性破坏准则.中外公路, 2001, 21(5): 64-66
    [90]郝培文,张登良,胡西宁.沥青混合料低温抗裂性能评价指标.西安公路交通大学学报, 2000, 20(3): 1-5
    [91]彭达仁,张起森.含垂直界面有限裂纹层状介质的断裂分析.长沙交通学院学报, 1997, 13(2): 45-53
    [92]彭妙娟,张登良,夏永旭.半刚性基层沥青路面的断裂力学计算方法及其应用.中国公路学报, 1998, 11(2): 30-38
    [93]毛成.沥青路面裂纹形成机理及扩展行为研究.西南交通大学博士论文, 2004
    [94]郝文化,叶裕明,刘春山等. ANSYS土木工程应用实例.中国水利水电出版社, 2005
    [95] Zheng Jianlong, Zhang Qisen, The Nolinear Analysis of Low Temperature Shrinkage Cracking in Ashpalt Pavements. Proceedings of the Asian Pacific Conf. On computational Mechanics, Hong Kong, 1991
    [96]郑键龙.沥青路面温度收缩开裂的热粘弹特性研究.长安大学博士学位论文, 2000
    [97] Dimonte Guy, Nelson Don, Weaver Sam. Comparative study of viscoelastic properties using virgin yogurt. Journal of Rheology, 1998, 42(4): 727-742
    [98] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech., 1992, 10: 307-318
    [99] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods. International Journal for Numerical Method in Engineerring, 1994, 37 (2): 229-256
    [100] Dolbow J., Belytschko T. Numerical integration of the Galerkin weak form in meshfree methods. Computational Mechanics,1999, 23: 219-230
    [101] Belytschko T, Krongauz Y, Organ Detal. Smoothing and acclerated computations in the element free Galerkin method. Journal of Computational and Applied Mathematics, 1996,74: 111-126
    [102] Krongauz Y, Belytschko T. EFG approximation with discontinuous derivatives. International Journal for Numerical Method in Engineerring, 1998, 41: 1215-1233
    [103] Lu Y Y, Belytschko T, Tabbara M. Element-free Galerkin methods for wave propagation and dynamic fracture. Computer Methods in Applied Mechanics and Engineering, 1995, 126: 131-157
    [104] Belytschko T, Tabbara M. Dynamic fracture using element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1996, 39: 923-938
    [105] Belytschko T, Organ D, Krongauz Y. A Coupled finite element-element free Galerkin method. Computational Mechanics, 1995, 17(3): 186-195
    [106] Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods. Mathematics of Computation, 1981, 37:141-158
    [107] Organ D. Numerical solutions to dynamic fracture problems using the element-free Galerkin methods. Northwestern University, 1996
    [108] Erdogan F, Sih GC. On the crack extendion in plates under plate loading and transverse shear. Journal of Basic Engineering, 1963, 85: 519-525
    [109] Sih GC. Strain energe density factor applied to mixed mode crack problems. International Journal of Fracture, 1974, 10: 305-321
    [110] I. Kaljevic, S. Saigal. An improved element free Galerkin Formulation. Int. J. Numer. Methods Engrg., 1997, 40: 2953-2974
    [111] Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite elements. Computer Methods in Applied Mechanics and Engineering, 1996, 131: 133-145
    [112] Q Z Xiao, M Dhanasekar. Coupling of FE and EFG using collocation approach. Advances in Engineering Software, 2002, 33(7): 507-515
    [113] Johnson G R. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations. Nuclear Engineering Design, 1994, 150: 265-274
    [114] Belytschko T, Xiao S P. A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering 2004, 193: 1645-1669
    [115] Hegen D. Element free Galerkin methods in combination with finite element approaches. Computer Methods in Applied Mechanics and Engineering, 1996, 135: 143-166
    [116] Rabczuk T, Belytschko T. Application of mesh free methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(14): 19-49
    [117] Attary S W, Heinstein M W, Swegle J W. Coupling of smoothed particle hydrodynamics with the finite element method. Nuclear Engineering and Design, 1994, 150: 199-205
    [118] Belytschko T, Lu Y Y, Gu L, et al. Element-free Galerkin methods for static and dynamic fracture. International Journal of Solids and Structures, 1995, 32(17): 2547-2570
    [119] Belytschko T, Tabbara M. Dynamic fracture using element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1996, 39(6): 923-938
    [120] M Fleming, Y A Chu, B Moran, et al. Enrichment element free methods for crack tip field. Internatinal Journal for Numerical Methods in Engineering., 1997, 40(10): 1483-1504
    [121] Krysl P, Belytschko T. The element-free Galerkin method for dynamic propagation of arbitrary 3-D cracks. Internatinal Journal for Numerical Methods in Engineering, 1999, 44(6): 767-800
    [122]陈建,吴林志,杜善义.采用无单元法计算含边沿裂纹功能梯度材料板的应力强度因子.工程力学, 2000, 17(5): 19-144
    [123]杨晓翔,范家齐,匡震邦.求解混合型裂纹应力强度因子的围线积分法.计算结构力学及其应用, 1996, 13(1): 84-86
    [124] Muskhelishvili N I. Some basic proplems of the mathematical theory of elasticity. Groningen: Noordhoff, 1963: 164-166
    [125]沈成康.断裂力学.上海:同济大学出版社, 1996, 190-195
    [126]刘乃琦,顾书吉,徐朝寅.计算机图形技术基础.北京:电子科技大学出版社, 1994, 78
    [127] S H Lee, Y C Yoon. Numerical prediction of crack propagation by an enhanced element-free Galerkin method. Nuclear Engineering and Design, 2004, 227(3): 257-271
    [128] Majidzadeh K, Kauffman E M, Ramsamooj D V. Application of Fracture Mechanics in Analysis of Pavement Fatigue. Asphalt Paving Technologists, 1971, 40: 227-246
    [129] J Rosier. Mixed mode fatigue crack propagation in pavements structures under traffic load. Reflective Cracking in Pavements, London, 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700