湿式摩擦离合器油路流场及摩擦片瞬态温度场分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过热是湿式多片摩擦离合器最常见的故障之一,在工程实践中受到广泛的关注。研究发现,离合器过热故障不仅在接排过程中会发生,在空转状态下也会发生,主要是由于摩擦片与对偶片分离不彻底产生滑摩会导致润滑油油温过高而影响正常工作。因此,研究离合器空转状态和接排过程的发热因素对解决离合器过热失效问题具有重要的工程意义。
     本文研究来源于重庆市科技攻关计划项目。针对船用齿轮箱中的湿式多片摩擦离合器,运用数值仿真方法研究空转状态油路结构的流场和接排过程摩擦片的瞬态温度场,进而为设计低发热、高寿命、高可靠的离合器打下基础。本文的主要研究工作如下:
     ①综合考虑离合器的结构和使用工况,以油路中摩擦片间隙、喷油孔直径、润滑油入口流速、润滑油温度等为可变参数,建立了湿式多片摩擦离合器油路流场的参数化有限元分析模型。
     ②利用ANSYS/FLOTRAN软件对离合器油路进行流场分析,研究湿式多片摩擦离合器的油路结构对摩擦片间润滑油压力分布的影响,基于仿真结果提出油路结构改进方案,并进行对比分析。
     ③针对离合器的不同使用工况,进行油路的流场分析,得出不同工况下润滑油的油压云图和流速矢量图;进而研究入口流量和润滑油温度对摩擦片间润滑油压力分布的影响,并与试验结果进行比较。
     ④构建了带径向油槽和螺旋油槽的摩擦片三维实体模型和瞬态传热有限元模型,分析了离合器接排过程,推导了摩擦片热流密度的计算公式,计算了摩擦片的对流换热系数。
     ⑤应用ANSYS软件分析了离合器接排过程中摩擦片的瞬态温度场,得出接排过程中摩擦片的温度云图及最高温度随时间变化曲线,并研究了油槽宽度对摩擦片温度分布的影响。
Overheating --- one of the most common causes of the failures of wet multi-plate friction clutches is concerned widely in the engineering practice. With study, it can be found that the clutch overheating failures happen not only in engaging process, but also in disengaged operation. Every time the friction plates and mating plates cannot separate absolutely, the lubricant’s overheating caused by the slipping friction between the friction plates and mating plates will happen, and the clutch’s normal work will be affected. Therefore, it has very important engineering values to research the heating factors of clutches in the process of engaging and disengaged operation to reduce overheating failures.
     The topic of this thesis is supported by scientific and technological project of Chongqing. Using numerical simulation method to study 3-D flow field of oil way and transient temperature field of friction plates of wet multi-plate friction clutches, the base of designing clutches with low-heat, long-life, high-reliability can be founded. The research work in this thesis can be summarized as follows:
     1) With comprehensive consideration of the structure and operating conditions of the clutch,the clutch friction plate clearance, squirt diameter, the lubricant velocity of clutch inlet and the lubricant temperature are set as variables , and then the parameterized finite model of oil way is established.
     2) The flow field of clutch is analyzed by the software of ANSYS/FLOTRAN, the influence of oil way structure of wet multi-plate friction clutch on the lubricant pressure distribution in the clearances between the friction plates is studied. Based on the result of simulation, the improved structure of oil way is given, and then the comparative analysis is carried out.
     3) According to the different operating conditions of clutch, the lubricant pressure contour and lubricant velocity vector graph are given after the flow field of clutch is analyzed. And then the distribution of lubricant pressure in the clearance of plates influenced by the inlet velocity and lubricant temperature can be studied, and compared with the test result.
     4) The friction plate solid and transient heat transfer finite model with spiral and radial oil groove is established, the engagement process of clutch are analyzed, the formula for calculating the heat flux is derived, and the convective heat transfer coefficient of friction plate is calculated.
     5) The transient temperature field of friction plate is analyzed by the software of ANSYS, the temperature contour and the curves of maximum temperature-time history of friction plate are given. And then the influence of the size of groove width on temperature distribution of friction plate is explored.
引文
[1]张毅.离合器及机械变速箱[M].北京:化学工业出版社, 2005.
    [2]任奇武,邢帮学.工程机械主离合器打滑故障的诊断与排除[J].建筑机械化, 2008, (2):69-70.
    [3]王兴华.离合器的常见故障[J].工程机械与维修, 2006, (8):142-143.
    [4]孙冬野,秦大同,杨亚联,等.湿式多片制动器瞬态温度场有限元分析[J].中国公路学报, 1998, 11(4): 116-120.
    [5]高晓敏,张协平,吴凡,等.摩擦片表面沟槽对离合器动态特性影响的研究[J].传动技术, 2001, (3):10-13.
    [6] Ho S C, Chern Lin J H, Ju C P. Effect of fiber addition on mechanical and tribological properties of a copper/phenolic-based friction material[J]. Wear, 2005, 258(5-6): 861-869.
    [7] Ho S C, Chern Lin J H, Ju C P. Effect of carbonization on mechanical and tribological behavior of carbonized copper-phenolic based friction material friction material[J]. Carbon, 2005, 258(11-12): 1764-1774.
    [8]谢伯元,张琦,鲁毅飞,等.紧急制动摩擦片的摩擦因数研究[J].农业机械学报, 2006, 37(12): 33-35.
    [9] Par Marklund, Roland Larsson. Wet clutch friction characteristics obtained from simplified pin on disc test[J]. Tribology International, 2008, 41(9-10): 824–830.
    [10]孟永钢,王东华.通过激光纹理加工改善湿式摩擦离合器的摩擦特性[J].中国机械工程, 2008, 19(8): 883-885.
    [11]刘宝运,洪跃,金士良.沟槽对湿式离合器摩擦副啮合性能的影响[J].润滑与密封, 2008, 33(2): 90-93.
    [12]孟庆睿,侯友夫.摩擦片表面沟槽对调速起动影响的数值模拟[J].润滑与密封, 2008, 33(8): 36-40.
    [13]周建钊,张辅荃.离合器摩擦片的温升分析[J].机械设计与研究, 1998, (1): 50-52.
    [14] Jen Tien-Chen, Nemecek Daniel James. Thermal analysis of a wet-disk clutch subjected to a constant energy engagement[J]. International Journal of Heat and Mass Transfer, 2008, 51(7-8): 1757-1769.
    [15]蔡丹,魏宸官,宋文悦.离合器片表面温度的测量与表面应力的计算[J].车辆与动力技术, 2000, 80(4): 7-11.
    [16]李非雪,张文明,方湄.测量湿式多片制动器摩擦表面的温度分布[J].矿山机械, 2000, (12): 56-58.
    [17]李非雪,张文明,方湄.湿式多片制动器摩擦片温度分布规律[J].北京科技大学学报, 2001, 23(6): 539-542.
    [18] LI J Y, BARBER J R. Solution of transient thermoelastic contact problems by the fast speed expansion method [J]. Wear, 2008, 265(3-4): 402-410.
    [19] Zagrodzki P, Samuel A T. Generation of Hot Spots in a Wet Multi-disk Clutch during Short-Term Engagement[J]. Wear, 2003, 254(5-6): 474-491.
    [20] Ji-Hoon Choi, Finite element analysis of transient thermoelastic behaviors in disk brakes[J]. Wear, 2004, 257(1-2): 47-58.
    [21] Zhao Shuangmei, Hilmas G E, Dharani L R. Behavior of a composite multi-disk clutch subjected to mechanical and frictionally excited thermal load[J]. Wear, 2008, 264(11-12): 1059-1068.
    [22] ZHAO S M, HILMAS G E, DHARANI L R. Numerical simulation of wear in a C/C composite multi-disk clutch [J]. Carbon, 2009, 47(9): 2219-2225.
    [23] Par Marklund, Rikard Ma ki, Roland Larsson, et al. Thermal influence on torque transfer of wet clutches in limited slip differential applications. Tribology International, 2007, 40(5): 876–884.
    [24]胡宏伟,周晓军,庞茂,等.基于B样条小波的离合器温度场有限元分析[J].浙江大学学报(工学版), 2009, 43(1): 143-147.
    [25]蔡丹,魏宸官,宋文悦.湿式摩擦离合器翘曲变形研究[J].北京理工大学学报, 2000, 20(4): 449-451.
    [26]庄山光,王成国,王海庆,等.盘形制动摩擦表面温升研究[J].机械工程学报, 2003, 39(2): 150-154.
    [27]王立勇,马彪,李和言,等.湿式换挡离合器摩擦片磨损规律研究[J].北京理工大学学报, 2008, 28(4): 324-328.
    [28] SELEZNEV V. Numerical simulation of a gas pipeline network using computational fluid dynamics simulators [J]. Zhejiang Univ Sci A, 2007, 8(5): 755-765.
    [29] ZHANG Xiaobin, GAN Zhihua, QIU Limin. Computational fluid dynamic simulation of an inter-phasing pulse tube cooler[J]. Journal of Zhejiang University SCIENCE A, 2008, 9(1): 93-98.
    [30]杜爱民,段亮,田永祥.四气门汽油机进气道流动特性的CFD分析[J].同济大学学报(自然科学版), 2009, 37(2): 249-252.
    [31]徐尚龙,李涤尘,卢秉恒.基于细胞沉积的人工骨微管设计及三维流场分析[J].机械工程学报, 2005, 41(4): 154-157.
    [32]王鹰鹏,宋新伟,应纯同.基于传统轴流泵设计理论的人工心脏泵及其数值模拟[J].北京生物医学工程, 2007, 26(2): 113-116.
    [33]袁新明,贺治国,毛根海.用RNG k ?ε紊流模型对截止阀三维紊流流动的数值模拟[J].流体机械, 2006, 34(2): 34-38.
    [34]傅新,杜学文.阀口高速流动中的气穴观测与流场分析[J].液压与气动, 2006, (7): 29-31.
    [35] Gertzos K P, Nikolakopoulos P G, Papadopoulos C A. CFD Analysis of Journal Bearing Hydrodynamic Lubrication by Bingham Lubricant[J]. Tribology International, 2008, 41(12): 1190-1204.
    [36]彭娅玲,张志国,陈汝刚,等. CFD辅助船舶艉部水润滑轴承设计的研究[J]. 2008, 33(5): 72-76.
    [37]祝效华,余志祥. ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社, 2004.
    [38]倪栋,段进,徐久成.通用有限元分析ANSYS7.0实例精解[M].北京:电子工业出版社, 2003.
    [39]林丽,刘卫华.基于FLUENT的迷宫密封机理研究[J].中国机械工程, 2007, 18(18): 2183-2186.
    [40]王淼,刘振侠,黄生勤. FLUENT在汽车外形设计中的应用[J].机械设计与制造, 2005, 4(4): 71-73.
    [41]蔡忆昔,蔡继业.基于Fluent软件的直喷柴油机螺旋进气道设计[J].农业机械学报, 2006, 37(6): 1-4.
    [42]陈锦,杨晶,尹少武,等.基于CFX软件的氮化硅反应炉内热过程的数值模拟[J].北京科技大学学报, 2005, 7(6): 710-715.
    [43]黄钢,杨其国,李宇峰,等. CFX-TASCflow在汽轮机通流设计中的应用[J].热力透平, 2004, 33(2): 77-81.
    [44]缪旭弘,钱德进,姚熊亮,等.基于ABAQUS声固耦合法的水下结构声辐射研究[J].船舶力学, 2009, 13(2): 319-324.
    [45] Liang H, He Y, Mei Z. 3D-FE modeling method of splitting spinning[J]. Computational Materials Science, 2008, 42(4): 643-652.
    [46] Muhammad N S Hadi, B C Bodhinayake. Non-linear finite element analysis of flexible pavements[J]. Advances in Engineering Software, 2003, 34(11-12): 657-662.
    [47]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社, 2004.
    [48]张昭顺,崔桂香.流体力学[M].北京:清华大学出版社, 1999.
    [49] ANSYS Inc. Release 10.0 documentation for ANSYS [M]. USA, ANSYS Inc., 2005
    [50]王凤岐.现代设计方法及其应用[M].天津:天津大学出版社, 2008.
    [51]徐灏.机械设计手册(第二版)[M].北京:机械工业出版社, 2000.
    [52]李洁明,祁新娥.统计学原理[M].上海:复旦大学出版社, 2007.
    [53]杨世铭,陶文铨.传热学(第4版)[M].北京:高等教育出版社, 2006.
    [54]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社, 2001.
    [55]陶文铨.计算传热学[M].北京:科学出版社, 2000.
    [56]周建钊,张辅荃.离合器摩擦片的温升分析[J].机械设计与研究, 1998, 1:50~52
    [57]林腾蛟,李润方,杨成云,等.湿式摩擦离合器瞬态热传导过程数值仿真[J].机械科学与技术, 2003, 22(1): 39-41.
    [58]郑毅,刘文宝.干片式离合器摩擦片失效对机械性能的影响[J].中国设备工程, 2004, 5:36-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700