全轮驱动混合动力汽车再生制动系统控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力汽车是传统内燃机汽车与纯电动汽车相结合的一种汽车型式,它继承了电动汽车低排放的优点,又保持了传统汽车优良动力性的长处,因而能显著改善传统内燃机汽车的排放和燃油经济性,增加电动汽车的续驶里程,已成为当今世界清洁汽车开发的重点。
     混合动力汽车突出优点之一就是能够实现再生制动。它能在车辆减速或制动过程中,在保证车辆制动性能的条件下,将车辆动能或位能通过带动电机发电,转化为电能储存在电池中,实现能量回收,同时产生车辆所需全部或部分制动力。既实现了车辆的减速和制动,又有效地降低了整车的燃油消耗和污染物排放。因此,再生制动对混合动力汽车的燃油经济性、排放性和行驶安全性都有直接影响,也是混合动力汽车的关键技术之一。
     制动能量回收效果与车辆的驱动型式密切相关,对于全轮驱动(4WD)车辆,能量回收效果最好;前轮(后轮)驱动车辆,只能回收部分制动能量。本文以全轮驱动混合动力汽车为研究对象,对其再生制动系统控制策略进行了深入的理论研究和系统的建模与仿真分析,取得了如下研究进展和结果:
     1.以ISG型轻度混合动力汽车为基础,进行了全轮驱动混合动力汽车传动系统方案的设计,并根据其特点制订了相应的工作模式。
     2.根据全轮驱动汽车的整车参数和动力性目标,进行了动力传动系统部件(发动机、前后电机、电池、变速器)的选型和参数设计。
     3.分析了传统汽车的制动力分配策略;通过分析前后电机的外特性曲线,得到了前后电机的制动强度外特性曲线,进而在保证制动安全的基础上,提出了一种可最大化回收能量的全轮驱动混合动力汽车再生制动力分配控制策略。
     4.在电机和镍氢电池的性能试验基础上,分析了电机发电效率与电池充电效率之间的变化规律,确定出电池电机联合工作效率优化线;提出在制动过程中实现电池电机联合工作效率优化下的手动变速(MT)换挡策略。
     5.建立了驾驶员模型,建立了全轮驱动混合动力汽车工作模式判断模型,并基于前向建模思想,根据发动机、前后电机和NiMH电池的台架试验数据,采用理论和数值建模相结合的方法,建立了全轮驱动混合动力汽车再生制动系统的前向仿真模型。
     6.提出了再生制动系统的评价指标,并对不同车速和电池荷电状态(SOC)进行了典型制动工况和城市工况下的再生制动仿真分析,结果表明,采用本提出的再生制动系统控制策略能满足整车安全制动和最大化能量回收的要求。
Hybrid Electric Vehicle (HEV) is a new style vehicle, which is combined coventional vehicle with electric vehicle. It is not only keeping low mission of Electric Vehicle, but also inheriting the excellent performance of conventional vehicle. So it can improve mission and fuel economy of conventional vehicle obviously, increase running distance of HEV, become the develping emphases of cleansing vehicle in the world now.
     Regenerative braking is one of the prominent excellent for HEV.When HEV is braking, regenerative braking system will make the motor become a generator for making kinetic energy to electric energy and supplying the whole braking forces or partial braking forces at the same time. Finally, electric energy is saved into the battery pack. Regenerative braking not only realizes the braking and deceleration, but also reduces the oil consuming and mission. So regenerative braking has a direct impact on fuel economy, emission and vehicle security, which is also one of key techniques for HEV.
     Regenerative braking energy effect lies on the driving format of vehicle. For 4WD HEV, the recycle effect is the best, front drive vehicle can but recycle portion energy. Focus on 4WD Hybrid Electric Vehicle. The deeply theoretical researching, system simulation and evaluate are completed in this paper. The main results include:
     1. Based on mild hybrid electric vehicle with ISG, the scheme on power-train of 4WD HEV is designed, and according on its characteristic, the working mode is establishing corresponding.
     2. According on the vehicle parameter and the power goal, the types of dynamical transmission parts (engine、front and rear motor、battery、trasmission) are selected, and their parameters are designed.
     3. The braking force distribution strategy on conventional vehicle is analyzed. The braking intension curve on front and rear motor is gotten according analyzing motor. A regenerative braking force distribution strategy of 4WD HEV is assure, which not only can keep the braking security, but also keep high efficient energy recovery.
     4. Basing on motor and battery experimentation, the changing rules of motor generating and battery charging efficiency are analyzed, a generating optimal working Line with high efficiency combined battery with motor is assured, and manual transmission (MT) shift strategy is proposed which makes motor work in the optimal line during braking.
     5. The driver model is built,the working mode of vehicle is built also.Based on forward modeling idea, according to bench experiment data of the engine、motor and battery, combined with numeric modeling and theory modeling, forward simulation model for regenerative braking system of 4WD hybrid electric vehicle is built.
     6. The evaluation indexes for regenerative braking system are proposed. The regenerative braking system models are simulated and analyzed under the typical braking modes on diffirent state of charge (soc) and speed, and are simulated and analyzed under the city cycles. The simulation results show that the regenerative braking control strategy not only can satisfy vehicle security but also keep high efficient energy recovery.
引文
[1]罗永革,冯樱,何晓春.混合电动汽车的开发前景[J].湖北汽车工业学院学报,2000,14(1):9-10.
    [2]陈清泉,孙逢春.混合动力电动汽车基础[M].北京:北京理工大学出版社,1993.25~60.
    [3]邓涛. CVT混合动力汽车再生制动系统前向建模与仿真[D].重庆大学, 2006. 1~20.
    [4] C.Anderson and E.Pettit.The effects of APU Characteristic on the Design of Hybrid Control Strategies for Hybrid Electric Vehicles [J]. SAE 950493.
    [5]秦大同.混合动力汽车的技术发展与应用[R],2003-5.
    [6]张金柱.丰田第二代混合动力系统(THSⅡ) [J].内燃机,2005.06,6-8.
    [7]范健文,吴彤峰.本田INSIGHT控制策略仿真研究[J].广西工学院学报,2004.9,09-11.
    [8]苏岭.节能与新能源汽车[G].2006.10.
    [9]周杰敏,童毅,欧阳名高.轻度混合动力系统典型瞬态过程仿真分析[J].汽车工程.2003.Vol.25(1):65~69.
    [10]朱敏惠.丰田混合动力技术一瞥[J].发展动态:汽车配件,2002-8,17-18.
    [11]邓琦,皮俊,肖人杰.混合动力车四轮驱动控制策略研究[J].企业技术开发.2006.07.68~70.
    [12]詹讯.轻度混合动力汽车再生制动系统建模与仿真[D].重庆,重庆大学, 2005. 1~60.
    [13] Y. Sasaki A. Mtomo F. Kawahata A. Matui,Toyota Braking System for Hybrid Vehicle with Regenerative System [J], EVS-14,proceeding CD,1997.
    [14] Toyota, Technical Review [J], 2001,Vol.50 No.2 Mar.,2001:33~38.
    [15] Toshifumi Takaoka, Osamu Harada. Highly efficient and super low emission hybrid vehicle [J].
    [16] Yimin Gao,Liping Chen and Mehrdad Ehsani. Investigation of the Effectiveness of Regenerative Braking for EV ang HEV [J]. SAE1999-01-2910.
    [17] Michael Panagiotidis,George Delagrammatikas,etc. Development and use of a regenerative braking model for a parallel hybrid electric vehicle [J]. SAE 2000-01-0995.
    [18] S.R.Cikanek and K.E.Bailey. Regenerative Braking System For Hybrid Electric Vehicle.Proceedings of American control conference [J]. Anchorage.Ak May8-10, 2002. Y.Sasaki, A.Otomo and F.Kawahata, etc. Toyota Braking System for Hybrid Vehicle with Regenerating System [J]. EVS-14, Proceeding CD, 1997.
    [19] Morimasa Hayashida, Kazuyuki Narusawa and Yushi Kamiya.Energy regeneration of City Commuter-car By Ultracapaxitor and Battery [J]. EVS-15,proceeding CD,1998.
    [20] Shuiwen Shen, Alex Serrarens, etc. Coordinated control of a mechanical hybrid drivelinewith a continuously variable transmission [J]. JSAE Review(2001) 453~461.
    [21] Hongwei Gao, Yimin Gao and Mehrdad Ehsani. A Neural Network Based SRM Drive Control Strategy for Regenerative Braking in EV and HEV [J].
    [22] Motomu Hakiai, Toshio Taichi. Braking System of“Eco-Vehicle”[J]. EVS-14, Proceeding CD, 1997.
    [23] Masayuki Soga, Michihito Shimada and Jyun-Ichi Sakamoto, etc. Development of vehicle dynamics management system for hybrid vehicles :ECB system improved environmental and vehicle dynamic performance [J]. JSAE Review (2002).
    [24] Application of Electrically Peaking Hybrid (ELPH) Propulsion System to a Full-Size Passenger Car with Simulated Design Verification [J]. IEEE Transactions on Vehicular Technology, VOL. 48, 1999.
    [25]赵国柱.电动汽车再生制动稳定性研究[D].南京,南京航空航天大学, 2006. 13~21.
    [26]钟绍华,祁俊荣,毛春升.混合动力汽车动力元件的选型与参数设计[J].机械设计与制造. 2007.50-53.
    [27]中国汽车报[N].2004年2月3日.24版.
    [28]蒲斌.混合动力汽车参数设计及电机控制系统仿真. [D].重庆,重庆大学,2003.12-14.20-23.
    [29]张深.直流无刷电动机原理及应用[M].北京.机械工业出版社.2001.
    [30] I.Forster and J.R.Bumby, MIEE.A Hybrid Internal Combustion Engine/Barrery Electric Passenger Car for Petroleum Displacement.Proc.Inst.Mech.Engrs [J].Vol.202NOD1.
    [31]刘钊,黄宗益,李庆.轿车用自动变速器的发展动态.传动技术[J].2000(1):1~8
    [32]葛安林.自动变速器(六)-电控机械式自动变速器(AMT)[J].汽车工程.2001(10):1~4.
    [33]廖健.效率补偿后的金属带无级变速传动系统匹配控制策略[D].重庆.重庆大学.2003.
    [34]杨伟斌,秦大同,杨亚联等.轻度混合动力汽车动力元件的选型与参数匹配[J].重庆大学学报,2003,6-9.
    [35]彭涛,陈全世.并联混合动力电动汽车动力系统的参数匹配[J].汽车工程,2003,39(2):69-73.
    [36]游国平,秦大同.并联式混合动力汽车方案设计与仿真[D].重庆.重庆大学.2007.
    [37]余志生.汽车理论第三版[M].北京.机械工业出版社.2000.
    [38] A.M.Walker, M.U.Lamperth and S.Wilkins. On Friction Braking Demand with Regenerative Braking [J]. SAE2002-01-2581.
    [39] J Conley and N N Clark. Optimal Hybrid Vehicle Design Using Real World Data to Determine Actual Regenerative Braking Energy [J].
    [40]于俊伟.并联混合动力汽车传动系统建模及控制策略研究[D].武汉,武汉理工大学, 2005. 22~40.
    [41]陈飚.电动汽车前向仿真研究[D].武汉,武汉理工大学, 2005. 23~55.
    [42]张威.混合动力城市客车正向建模及仿真软件研究[D],吉林,吉林大学, 2005.7~32.
    [43]胡明辉.混合动力汽车NiMH蓄电池能量管理系统研究[D]重庆大学. 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700