交直流混合系统可用输电能力的评估与计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着智能电网的建设和电力市场的竞争日益激烈,电力系统越来越接近于其极限运行,这给电力系统的安全稳定运行带来了严峻的挑战。电网可用输电能力是电力市场环境下的一项重要技术指标,其计算的准确性、快速性对电力系统的可靠运行、市场交易各方的利益分配具有至关重要的影响。随着大区电网互联和高压直流输电的广泛应用,亟需研究关于交直流混合电网输电能力的理论和方法。本论文在充分调研已有研究成果的基础上,从输电能力的定义和计算要求出发,对交直流混合系统可用输电能力的评估与计算模型和方法等问题展开深入研究,主要工作如下:
     首先考虑直流系统接入对交流系统的影响,建立了交直流混合系统静态可用输电能力评估的数学模型,并提出了基于蒙特卡罗模拟的评估方法。综合考虑不确定性因素、.直流系统及其灵活的控制方式对交流系统的影响,通过对交流系统输电能力的数学模型进行改造,完善目标函数和约束条件,提出了包含直流系统的混合电网可用输电能力评估模型,并基于蒙特卡罗方法对静态可用输电能力进行评估,提出了有效蒙特卡罗模拟次数的概念和基于核函数的可用输电能力概率分布密度估计。在计算环节,考虑到系统的安全性与经济性,将最优潮流模型应用到重复潮流法的每次求解潮流中。在不考虑系统输电裕度的情况下,可用输电能力在数值上等于最大输电能力减去现有输电协议所占用的输电能力,因此对可用输电能力的评估所提模型和方法对于最大输电能力的评估同样适用。
     然后针对传统蒙特卡罗模拟方法计算耗时的缺点,提出了基于广义蒙特卡罗方法的交直流混合系统可用输电能力或/和最大输电能力的评估方法。在评估方法的选取过程中,针对多次蒙特卡罗方法模拟需要做大量潮流计算,非常耗时以及相应可用输电能力或/和最大输电能力评估指标受极端值影响严重的特征,提出了将传统蒙特卡罗模拟方法和重采样法、并行计算以及稳健性统计方法相结合的广义蒙特卡罗方法,这类方法能显著提高交直流混合电网的输电能力评估效率,不但为可用输电能力或/和最大输电能力评估的实时化奠定基础,而且也为蒙特卡罗方法在其他领域的使用提供了方法支撑。
     接着,提出了适用于交直流混合系统动态可用输电能力计算的最优潮流法。针对交直流混合电网可用输电能力计算中考虑暂态稳定约束的必要性及复杂性,在静态可用输电能力计算的基础上,通过引入影响暂态稳定性的微分代数约束,提出了适用于交直流混合系统动态可用输电能力计算的最优潮流法,并且针对最严重故障计算可用输电能力。
     最后,提出了基于非线性分岔理论的交直流混合系统可用输电能力的计算模型。在借鉴传统电压稳定分析的非线性分岔方法的基础上,考虑将负荷作为参数,通过扩张系统方法计算得到鞍结分岔和霍普夫分岔分别对应的静态和动态可用输电能力。从理论上验证了直接法确定鞍结分岔和霍普夫分岔与最优化方法的等价性,指出了相应方法的优劣,为快速、准确的可用输电能力计算提供理论依据和算法支撑。
Under the competitive power market environment and in the smard grid era, the power grid has been extensively used and operated close to its limit. This results in a new challenging task for power system engineers in managing the security of the power system. Available Transfer Capability (ATC) is a significant technical index in the power market environment. The precise and fast computation or evaluation of ATC is crucial to reliable operation of the power system and fair distribution of the power market participants'benefits. Along with the interconnection of bulk power grid and extensively used of high voltage direct current (HVDC) in modern transmission network, there is an urgent need to study the theory and methods on ATC assessment problems arising from AC/DC interconnection modes of bulk power grid. Based on thoroughly researching of the existing literature, this dissertation deeply focuses on the computation and evaluation problems of ATC in AC/DC hybrid systems from the definition and computation requirements of ATC, the main aspects are as following.
     Considering the uncertainties, DC system and its flexible control modes, and their effects on the AC system, a novel mathematical model is constructed to assess ATC in the AC/DC hybrid systems. The objective function and corresponding constraints are modified according to the electricity transfer profile selected and the control and operation of DC systems. Because of time and space varying of ATC, the probabilistic methods are suitable for ATC evaluation. The non-sequential Monte Carlo simulation based methods are presented to calculate the five-number summary and other statistical indices of ATC for the long time transfer capability assessment of the network. Effective numbers of Monte Carlo simulations can be obtained by the given acceptable error and the confidence level. A kernel density estimation based method is proposed to approximate the probability density function of ATC. In the process of calculation, the optimal power flow model is added into the repeated power flow method to ensure both safe and economical operation. In general, the ATC is the difference between the Total Transfer Capability (TTC) and the Existing Transfer Capability (ETC) without considering system margins since various operating margins can be accounted for separatedly. When using such a definition, all the models and methods applicable to evaluation of ATC are also applicable to the evaluation of the TTC.
     In order to avoid too many times of Monte Carlo simulations and promote the efficiency of the assessment, generalized Monte Carlo methods are proposed to deal with the stochstic behavior of the power system by incorporating the traditional Monte Carlo method and resampling, parallel computing, and robust statistics methods. All of these methods can not only establish the basis for realtime assessment of ATC/TTC, but also provide methodology support for applications of Monte Carlo method in other fields.
     Based on the analysis to the traditional modeling of available transfer capability, one method is proposed to calculate ATC for AC/DC hybrid power grid considering transient stability constraints. The optimal power flow (OPF) model is employed to solve the problem. In this method, different kinds of constraints including voltage limit, transient stability limit, generator operation limit, etc. can be considered comprehensively. Some contingency states are considered. Furthermore, the flexible control functions of DC systems were involved in the calculation by rationality and security principles.
     Numerical bifurcation analysis techniques are very powerful and efficient in physics, biology, engineering, and economics. Power system engineering has become a classical application field of bifurcation theory since1990's. Local bifurcations are readily evident in power systems as important elements of voltage instability. Apart from considering the static limits, application of bifurcation analysis would be a novel idea in the computation of dynamic ATC. By integrating the saddle-node bifurcation (SNB) and Hopf bifurcation (HB) into the ATC model, both the static and transient security are considered. For ATC determination, the static and dynamic ATC corresponding to SNB and HB respectively and they are obtained by the extended systems with respect to specific singular points. Furthermore, the direct method and the optimization method to determine the bifurcation point are compared and the equivalency of them is proved from a mathematical viewpoint. All of these can act as theoretical and technical support for fast and accurate computation of ATC.
引文
[1]D.C. Huang, Y.B. Shu, J.J. Ruan, et al. Ultra High Voltage Transmission in China:Developments, Current Status and Future Prospects [J]. Proceedings of IEEE,2009,97(3):555-583
    [2]郭剑波,武守远,荆平等.提高电网输送能力的技术措施[J].电力设备,2005,6(10):4-7
    [3]EPRI (USA). Transfer Capability Evaluation (TRACE) Program. http://www.epri.com/attachments/285770_1007242_080902.pdf
    [4]杨慎林,李华强,邸弢.基于电压稳定约束下的交直流系统可用传输能力计算[J].四川电力技术,2008,31(5):31-34
    [5]李国庆,姚少伟,陈厚合.基于内点法的交直流混合系统可用输电能力计算[J].电力系统自动化,2009,33(3):35-39,45
    [6]North American Electricity Reliability Council (NERC).Long Term AFC/ATC Task Force—Final Report, April.2005, NERC Report.
    [7]Federal Energy Regulatory Commission (FERC). Mandatory Reliability Standards for the Calculation of Available Transfer Capability, Capacity Benefit Margins, Transmission Reliability Margins, Total Transfer Capability, and Existing Transmission Commitments and Mandatory Reliability Standards for the Bulk-Power System. Docket No. RM08-19-000, et al., Order 729. November 24,2009. Washington, DC 20426.
    [8]Landgren G L, Terhune H L, Angel R K. Transmission Interchange Capability Analysis by Computer [J]. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(6):2405-2414
    [9]NERC. Transmission Transfer Capability:A Reference Documents for Calculating and Reporting the Electric Power Transfer Capability of Interconnected Electric Systems. Princeton, New Jersey,1995
    [10]NERC. Available Transfer Capability Definitions and Determination, Princeton, New Jersey, U.S.A. Availability Transfer Capability Working Group (ATCWG) of the North American Electric Reliability Council (NERC) Task Force Report, Jun 1996
    [11]Federal Energy Regulatory Commission (FERC). Open Access Same-Time Information System and Standards of Conduct. Docket No. RM 95-9-000, Order 889, Washington,1996
    [12]North American Electric Reliability Council (NERC), Available Transfer Capability Definitions and Determination, June,2000
    [13]Tian Y, Gross G. OASISNET:An OASIS Network Simulator [J]. IEEE Transactions on Power Systems,1998,13(4):1251-1258
    [14]Ejebe G C, Tong J, Waight J G, et al. Available Transfer Capability Calculations [J]. IEEE Transactions on Power Systems,1998, 13(11):1521-1527
    [15]李国庆,董存.电力市场下区域间输电能力的定义和计算[J].电力系统自动化,2001,25(2):6-9
    [16]王成山,王兴刚,魏炜,等.输电系统可用输电能力研究[J].电力系统及其自动化学报,2005,17(5):42-49
    [17]汪峰,白晓民.基于最优潮流方法的传输容量计算研究[J].中国电机工程学报,2002,22(11):35-40
    [18]李卫星,李志民,郭志忠,等.考虑经济性收益最大的可用输电能力计算[J].电力系统自动化,2004,28(20):7-11
    [19]Wenjuan Liu, Lie Wang, Qiulan Wan. Calculation of Available Transfer Capability Considering Economic and Emission Dispatch[C]. The 3rd International Conference on Electric Utility Deregulation, Reconstructing and Power Technologies, DRPT 2008, Nanjing, China, April 6-9,2008
    [20]孙欣,夏清.基于交易空间的可用传输容量计算方法[J].电力系统自动化,2009,33(10):11-15
    [21]张强.静态条件下输电能力计算及可用输电能力决策研究[D].济南:山东大学,2007
    [22]王成山,王兴刚.考虑静态电压稳定约束并计及负荷和发电机出力不确定性因素的概率最大输电能力快速计算[J].中国电机工程学报,2006,26(16):46-51
    [23]王成山,王兴刚,张沛.考虑静态电压稳定约束并计及设备故障概率的TTC快速计算[J].中国电机工程学报,2006,26(19):7-12
    [24]潘雄,徐国禹.基于最优潮流并计及静态电压稳定性约束的区域间可用输电能力计算[J].中国电机工程学报,2004,24(12):86-91
    [25]Y. Cheng, T. S. Chung, C. Y. Chung, et al. Dynamic Voltage Stability Constrained ATC Calculation by a QSS Approach [J]. International Journal of Electrical Power and Energy Systems,28(6):408-412, July 2006
    [26]刘明波,夏岩,吴捷.计及暂态稳定约束的可用传输容量计算[J].中国电机工程学报,2003,23(9):28-33
    [27]袁越,久保川淳司,佐佐木博司等.考虑暂态稳定约束的可用输电能力计算[J].电力系统自动化,2004,28(10):34-39
    [28]李国庆,郑浩野.一种考虑暂态稳定约束的可用输电能力计算的新方法[J].中国电机工程学报,2005,25(15):20-25
    [29]高亚静.考虑不确定性因素的电网可用输电能力的研究[D].北京:华北电力大学,2008
    [30]郑雅楠.电力经济系统决策中不确定性问题的研究[D].北京:华北电力大学,2011
    [31]李庚银,高亚静,周明.可用输电能力评估的序贯蒙特卡罗仿真法[J].中国电机工程学报,2008,28(25):74-79
    [32]高亚静,周明,李庚银,等.基于马尔可夫链和故障枚举法的可用输电能力计算[J].中国电机工程学报,2006,26(19):41-46
    [33]Rodrigues A B, Da Silva M G. Probabilistic Assessment of Available Transfer Capability Based on Monte Carlo Method with Sequential Simulation[J]. IEEE Transactions on Power Systems,2007,22(1):484-492
    [34]丁平,周孝信,严剑峰,等.考虑合理安全原则的大型互联电网在线传输极限计算[J].中国电机工程学报,2010,30(22):1-6
    [35]唐国栋,李华强,肖玲,程超.交直流系统可用传输能力的评估[J].电力系统保护与控制,2010,38(2):12-17+39
    [36]卢锦玲,蔡红艳,周明.交直流混合系统可用输电能力评估[J].电网技术,2011,35(4):29-34
    [37]Guohong Wu, Orie Sakamoto, Noyuki Uchida. Increase of Power Transmission Capacity in Multi-Machine Power Systems with Introduction of Superconducting Generator [A]. In:Proceedings of IEEE 1st Transmission and Distribution Conference and Exhibition 2002:Asia Pacific [C]. Yokohama, Japan.2002:376-381
    [38]Du Z B, Zhang Y, Wu Z G. A New Index of Available Transfer Capability Based on Generalized Entropy [A]. In:Proceedings Sixth International Conference on Advances in Power System Control, Operation and Management [C]. Hong Kong, China:2003:230-235
    [39]赵晶晶,魏炜,王成山,等.基于电网分区的分布式输电能力计算[J].中国电机工程学报,2008,28(7):1-6
    [40]周明,冉瑞江,李庚银.风电并网系统可用输电能力的评估[J].中国电机工程学报,2010,30(22):14-21
    [41]王兴刚.考虑静态电压稳定约束的概率最大输电能力快速计算研究[D].天津:天津大学,2007
    [42]M. H. Gravener and C. Nwankpa. Available Transfer Capability and First Order Sensitivity[J]. IEEE Transactions on Power Systems,1999, 14(2):512-518
    [43]Ou Y, Singh C. Assessment of Available Transfer Capability and Margins [J]. IEEE Transactions on Power Systems,2002,17(2):463-468
    [44]Flueck AJ, Hsiao-Dong Chiang, Shah K S. Investigating the Installed Real Power Transfer Capability of a Large Scale Power System Under a Proposed Multiarea Interchange Schedule Using CPFLOW[J]. IEEE Transactions on Power Systems,1996,11(2):883-889
    [45]Kin M K, Kim D Y, Yoon Y T, et al. Determination of Available Transfer Capability Using Continuation Power Flow with Fuzzy Set Theory [J]. IEEE 2007 Power Engineering Society General Meeting, Jun, 2007:1-7
    [46]陈妍,黄民翔.基于信赖域内点法的静态ATC计算[J].电力系统及其自动化学报,2005,17(5):71-74
    [47]Weixing Li, Xiaoming Mou. A Comprehensive Approach for Transfer Capability Calculation Using Benders Decomposition [C]. The 3rd International Conference on Electric Utility Deregulation, Reconstructing and Power Technologies, DRPT 2008, Nanjing, China, April 6-9,2008
    [48]李国庆,陈厚合.改进粒子群优化算法的概率可用输电能力研究[J].中国电机工程学报,2006,26(24):18-23
    [49]刘皓明,严正,倪以信等.快速计算电网可用输电能力的交流灵敏度方法[J].电力系统自动化,2003,27(19):11-15
    [50]Greene S, Dobson I, Avarado F L. Sensitivity of Transfer Capability Margins with a Fast Formula[J]. IEEE Transactions on Power Systems, 2002,17(1):34-40
    [51]Gao Yajing, Li Gengyin, Zhou Ming. Available Transfer Capacity Evaluation Based on Sensitivity Analysis [C].16th Power Systems Computation Conference, PSCC 2008, Glasgow, Scotland, July 14-18,2008
    [52]Ghawghawe N D, Thakre K L. Application of Power Flow Sensitivity Analysis and PTDF for Determination of ATC[A].2006 International Conference on Power Electronic, Drives and Energy Systems[C], New Delhi, India, Dec.2006:1-7
    [53]Wu Yuankang. A Novel Algorithm for ATC Calculations and Applications in Deregulated Electricity Markets[J]. International Journal of Electrical Power and Energy Systems,2007,29:810-821
    [54]Mozafari B, Ranjbar A M, Shirani A R, et al. A Comprehensive Method for Available Transfer Capability Calculation in a Deregulated Power System[C]. International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, HongKong, China, April,2004, 2:680-685
    [55]Luo X, Patton A D, Singh C. Real Power Transfer Capability Calculations Using Multi-Layer Feed-Forward Neural Networks[J]. IEEE Transactions on Power Systems,2000,15(2):903-908
    [56]Seema N. Pandey, Nirved K. Pandey, Shashikala Tapaswi, et al. Neural Network-Based Approach for ATC Estimation Using Distributed Computing[J]. IEEE Transactions on Power Systems,2010,25(3):1291-1300
    [57]Jain T, Singh S N, Srivastava S C. Adaptive Wavelet Neural Network-Based Fast Dynamic Available Transfer Capability Determination [J]. IET Generation, Transmission and Distribution,2010,4 (4):519-529
    [58]王俊,蔡兴国.差分进化算法在考虑暂态稳定约束的最大输电能力计算中的应用[J].电网技术,2010,34(3):96-99
    [59]Khairuddin A B, Ahmed S S, Mustafa M W, et al. A Novel Method for ATC Computations in a Large-Scale Power System[J]. IEEE Transactions on Power Systems,2004,19(2):1150-1158
    [60]Xiaojiao Tong, Felix F. Wu, and Liqun Qi. Available Transfer Capability Calculation Using a Smoothing Pointwise Maximum Function[J]. IEEE Transactions on circuits and systems—Ⅰ:regular papers,2008,55(1):462-474
    [61]Mojgan Hojabri, hashim Hizam, Norman Mariun and Senan Mahmod Abdullah. Krylov Subspace Methods for Available Transfer Capability Margins Calculations. Proceedings of 2009 IEEE Student Conference on Research and Development (SCOReD 2009), UPM Serdang, Malaysia, Nov.16-18,2009
    [62]F. Xia and A. P. S. Meliopoulos. A Methodology for Probabilistic Simultaneous Transfer Capability Analysis [J]. IEEE Transactions on Power Systems,1996,11(3):1269-1278
    [63]郑雅楠,周明,李庚银.基于信息熵的可用输电能力枚举评估方法[J].电网技术,2011,35(11):107-113
    [64]Tsai C Y, Lu C N. Bootstrap Application in ATC Estimation[J]. IEEE Power Engineering Review,2001,21(2):39-42
    [65]Chang R F, Tsai C Y, Su C L, et al. Method for Computing Probability Distributions of Available Transfer Capability[J]. IEE Proceedings Generation, Transmission and Distribution,2002,149(4):427-431
    [66]Ying X, Song Y H. Available Transfer Capability (ATC) Evaluation by Stochastic Programming [J]. IEEE Power Engineering Review,2000, 20(9):50-52
    [67]肖颖,宋永华,孙元章.基于混合随机算法的可用输电能力计算[J].电力系统自动化,2002,26(13):25-31,37
    [68]Kulyos Audomvongseree and Akihiko Yokoyama, Consideration of an Appropriate TTC by Probabilistic Approach [J]. IEEE Transactions on Power Systems,2004,19 (1):375-383
    [69]Ou Y, Singh C. Calculation of Risk and Statistical Indices Associated with Available Transfer Capability[J]. IEE Proceedings on Generation, Transmission and Distribution,2003,150(2):239-244
    [70]B.S. Gisin, M.V. Obessis, J.V. Mitsche. Practical Methods for Transfer Limit Analysis in the Power Industry Deregulated Environment [J]. IEEE Transactions on Power Systems,2000,15(3):955-960
    [71]NEXANT. TRACE. http://www.nexant.com/products/PCA/tracel.html
    [72]PTI. PSS_MUST. http://www.pti-us.com/pti/software/must/index.cfm
    [73]BSI. SC-ATC. http://www.bigwood-systems.com/sc-atc.shtml
    [74]张强,韩学山,马志波等.电网输电能力综合评价系统的开发[J].山东电力技术,2007,6:3-6
    [75]Chung C Y, Wang Lei, Howell F, et al. Generation Rescheduling Methods to Improve Power Transfer Capability Constrained by Small-Signal Stability [J]. IEEE Transactions on Power Systems,2004,19(1):524-530
    [76]D. Inagaki and S. Kawamoto, Enhancement of ATC by Nonlinear Generator Control for Power System Considering Voltage Dip and Partial Loss of Load, Proc.of ICEE2007, no.437, Hong Kong,2007
    [77]Y. Xiao, Y. H. Song, C.-C. Liu, and Y. Z. Sun. Available Transfer Capability Enhancement Using FACTS Devices[J]. IEEE Transactions on Power Systems, 2003,18(1):305-312
    [78]张立志,赵东梅.考虑FACTS配置的电网输电能力计算[J].电网技术,2007,31(7):26-31
    [79]M.A. Khaburi, M.R. Haghifam. A Probabilistic Modeling Based Approach for Total Transfer Capability Enhancement Using FACTS Devices[J]. International Journal of Electrical Power and Energy Systems,2010,32:12-16
    [80]F. Wang and G. B. Shrestha. Allocation of TCSC Devices to Optimize Total Transfer Capability in a Competitive Power MarketfA]. In Proc.2001 IEEE PES Winter Meeting[C],2001,1:587-593
    [81]A shwani Kunar, Srivastava S C, Singh S N. Available Transfer Capability Assessment in a Competitive Electricity Market Using a Bifurcation Approach [J]. IEE Proceedings on Generation, Transmission and Distribution,2004,151 (2):133-140
    [82]Zhou Ming, Gao Yajing, Li Gengyin. Study on Improvement of Available Transfer Capability by Demand Side Management[C]. The 3rd International Conference on Electric Utility Deregulation, Reconstructing and Power Technologies, DRPT 2008, Nanjing, China, April 6-9,2008
    [83]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004
    [84]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003
    [85]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004
    [86]Ambriz-Perez H, Acha E, Fuerte-Esquivel C R. High Voltage Direct Current Modeling in Optimal Power Flows[J]. International Journal of Electrical Power and Energy Systems,2008,30(3):157-168
    [87]胡金磊,张尧,李聪.交直流电力系统概率潮流计算[J].电网技术,2008,32(18):36-40
    [88]邱革非,束洪春,于继来.一种交直流电力系统潮流计算实用新算法[J].中国电机工程学报,2008,28(13):53-57
    [89]庄慧敏,肖建.AC/DC系统的一类微分代数模型[J].中国电机工程学报,2007,27(34):33-38
    [90]刘崇茹,张伯明.交直流混合输电系统灵敏度分析[J].电力系统自动化,2007,31(12):45-49
    [91]周家启,陈炜骏,谢开贵,等.高压直流输电系统可靠性灵敏度分析模型[J].电网技术,2007,31(19):18-23
    [92]刘红超,李兴源,郝巍等.交直流互联电力系统非线性模态分析[J].电力系统自动化,2006,30(18):8-12,26
    [93]任震,黄雯莹,冉立.高压直流输电系统可靠性评估[M].北京:中国电力出版社,1996
    [94]任震,谌军,黄雯莹.大型电力系统可靠性评估的模型及算法[J].电力系统自动化,1999,23(5):25-27
    [95]石文辉,别朝红,王锡凡.大型电力系统可靠性评估中的马尔可夫链蒙特卡洛方法[J].中国电机工程学报,2008,28(4):9-15
    [96]丁明,李生虎.可靠性计算中加快蒙特卡罗仿真收敛速度的方法[J].电力系统自动化,2000,24(12):16-19,35
    [97]Kunder P. Power System Stability and Control[M].北京:中国电力出版社,2001
    [98]李文沅著,周家启等译.电力系统风险评估:模型、方法和应用[M].北京:科学出版社,2006
    [99]Fishman, George S. Monte Carlo:Concepts, Algorithms, and Applications [M]. 1996, Springer-Verlag, New York
    [100]Armando M, Leiteda S, Joao G C C. Transmission Capacity:Availability, Maximum Transfer and Reliability[J]. IEEE Transactions on Power Systems, 2002,17(8):843-849
    [101]A. Antoniou, W.S. Lu. Practical Optimization:Algorithms and Engineering Applications[M]. New York:Springer,2007:92-95
    [102]R. D. Zimmerman, C. E. Murillo-Sfanchez, and R. J. Thomas. Matpower: Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education [J]. IEEE Transactions on Power Systems,2011,26(1): 12-19
    [103]Simon J L, Resampling:the New Statistics [R]. Arlington, VA:Resampling Stats, Inc.1997
    [104]Efron B, Tibshirani R. J. An Introduction to the Bootstrap[M]. Monographs on Statistics and Applied Probability, London:Chapman and Hall,1993:141-150
    [105]Wasserman, L. All of Nonparametric Statistics [M]. New York:Springer 2006
    [106]Efron B. Bootstrap Methods:Another Look at the Jackknife [J]. The Annals of Statistics,1979,7(1):1-26
    [107]谢益辉,朱钰.Bootstrap方法的历史发展和前沿研究[J].统计与信息论坛,2008,23(2):90-96
    [108]Drago C, Zoran R. Some Asymptotic Behavior of the Bootstrap Estimates on a Finite Sample [J]. Statistical Papers,1990,31(1):41-46
    [109]D. Eadline. High Performance Computing For Dummies (Sun and AMD Special Edition) [M]. Wiley Publishing, Inc., Indianapolis, Indiana,2009.
    [110]S. Rajasekaran and J. Reif. Handbook of Parallel Computing:Models, Algorithms and Applications [M]. Taylor & Francis Group, LLC,2008
    [111]Alvarado F L. Parallel Solution of Transient Problems by Trapezoidal Integration [J]. IEEE Transactions on Power Apparatus and Systems,1979, 98(3):1080-1090
    [112]吉兴全,王成山.电力系统并行计算方法比较研究[J].电网技术,2003,27(4):22-26
    [113]The Math Works. Parallel Computing ToolboxTM 4 User's Guide [M]. The Math Works Inc,2010. www.mathworks.com/contact_TS.html
    [114]P. J. Huber, E. Ronchetti. Robust Statistics [M],2nd ed., John Wiley & Sons, Inc.2009
    [115]T. Kim and H. White. On More Robust Estimation of Skewness And Kurtosis[J], Finance Research Letters 1,2004,65-70
    [116]IEEE Reliability Test System Task Force of the Applications of Probability Methods Subcommittee, IEEE Reliability Test System[J], IEEE Transactions on Power Apparatus and Systems,1979,98(6):2047-2054
    [117]IEEE Reliability Test System Task Force of Applications of Probability Methods Subcommittee, IEEE Reliability Test System-96[J]. IEEE Transactions on Power Systems,1999,14(3):1010-1020
    [118]Y. Xia, K. W. Chan, and M. Liu, Direct Nonlinear Primal-Dual Interior Point Method for Transient Stability Constrained Optimal Power Flow [J], IEE Proceedings Generation, Transmission and Distribution,2005,152(1):11-16
    [119]Sauer P W. Alternatives for Calculating Transmission Reliability Margin (TRM) in Available Transfer Capability[C]. HICSS '98 Proceedings of the Thirty-First Annual Hawaii International Conference on System Sciences. Washington DC, USA:IEEE,1998:8
    [120]Benjamin Jansen. Interior Point Techniques in Optimization [M]. Kluwer Academic Publishers,1997
    [121]Bakirtzis A G, Biskas P N, Zoumas C E, et al. Optimal Power Flow by Enhanced Genetic Algorithm [J]. IEEE Transactions on Circuits Systems,2002, 17(2):229-236
    [122]Cai H R, Chung C Y, Wong K P. Application of Differential Evolution Algorithm for Transient Stability Constrained Optimal Power Flow [J]. IEEE Transactions on Power Systems,2008,23(2):719-728
    [123]刘明波,阳曾.含暂态能量裕度约束多故障最优潮流计算[J].中国电机工程学报,2007,27(34):12-18
    [124]韦化,杨育德,李啸骢.多预想故障暂态稳定约束最优潮流[J].中国电机工程学报,2004,24(10):91-96
    [125]刘崇茹,张伯明,孙宏斌.交直流系统潮流计算中换流变压器分接头的调整方法[J].电网技术,2006,30(9):22-27
    [126]刘崇茹,张伯明.交直流输电系统潮流计算中换流器运行方式的转换策略[J].电网技术,2007,31(9):18-21
    [127]R.D. Zimmerman, C.E. Murillo-Sanchez, and R.J. Thomas. Matpower's Extensible Optimal Power Flow Architecture [A]. Power and Energy Society General Meeting[C]. Calgary, Canada,2009 IEEE:1-7
    [128]H. B. Keller. Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems[A]. in Applications of Bifurcation Theory [M]. P. H. Rabinowitz, ed., Academic Press, New York,1977,359-384
    [129]W. Govaerts, Numerical Methods for Bifurcations of Dynamical Equlibria [J]. SIAM, Philadelphia,2000
    [130]W. Govaerts, Numerical Bifurcation Analysis for ODEs [J]. Journal of Computational and Applied Mathematics,2000,125:57-68
    [131]H.B. Keller. Lectures on Numerical Methods in Bifurcation Problems [M]. Tata Institute of Fundamental Research, Lectures on Mathematics and Physics, Springer-Verlag, New York 1987
    [132]杨忠华.非线性分歧:理论和计算[M].北京:科学出版社,2007
    [133]W. Govaerts, Computation of Singularities in Large Nonlinear Systems [J]. SIAM Journal on Numerical Analysis,1997,34:867-880
    [134]E.J. Doedel, J.P. Kernevez, AUTO:Software for Continuation Problems in Ordinary Differential Equations with Applications [R]. California Institute of Technology, Applied Mathematics,1986
    [135]E.J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, et al. AUTO 2000:Continuation and bifurcation software for ordinary differential equations [R], tech. rep., Caltech,2002
    [136]Kuznetsov, Yu.A. and V.V. Levitin. CONTENT:A Multiplatform Environment for Continuation and Bifurcation Analysis of Dynamical Systems [J], Centrum voor Wiskunde en Informatica, Kruislaan 413,1098 SJ Amsterdam, The Netherlands,1997
    [137]A. Dhooge, W.Govaerts and Yu.A. Kuznetsov, MATCONT:A Matlab Package for Numerical Bifurcation Analysis of ODEs [J]. ACM Transactions on Mathematical Software,2003,29:141-164
    [138]A. Dhooge, W.Govaerts, Yu.A. Kuznetsov, et al. Cl_matcont:A Continuation Toolbox in Matlab [J]. Symposium on Applied Computing Proceedings of the 2003 ACM:161-166
    [139]R. Seydel, Numerical Computation of Branch Points in Nonlinear Equations [J], Numeric Mathematics.1979,33:339-352
    [140]G. Moore and A. Spence. The Calculation of Turning Points of Nonlinear Equations [J]. SIAM Journal on Numerical Analysis.1980,17:567-576
    [141]B. Werner and A. Spence, The Computation of Symmetry Breaking Bifurcation Points [J]. SIAM Journal on Numerical Analysis.1984,21:388-399
    [142]Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory [M]. Springer,2004, 3rd edition.
    [143]J. Guckenheimer, M. Myers and B. Strumfels, Computing Hopf Bifurcations [J]. SIAM Journal on Numerical Analysis,1997,34(1):1-21
    [144]D. Roose, An Algorithm for the Computation of Hopf Bifurcation Points in Comparison with Other Methods [J]. Journal of Comptutional and Applied Mathematics.1985,12 & 13:517-529
    [145]A. Griewank and G. Reddien, The Calculation of Hopf Points by a Direct Method [J]. IMA, Journal of Numerical Analysis.1983,3:295-303
    [146]Ye R S. A New Approach for the Computation of Hopf Bifurcation Points [J]. Applied Mathematics and Mechanics,2000,21 (2):1300-1307
    [147]Aronovich G V, Kartvelishvili N A. Application of Stability Theory to Static and Dynamic Stability Problems of Power Systems [J]. In Proceedings of the Second All-Union Conference Theoretical and Applied Mechanics, L. I. Sedov Ed Moscow,1965, English translation,1968, NASA TT F-53, Part 1:15-26
    [148]C. A. Canizares, On Bifurcations, Voltage Collapse and Load Modeling[J]. IEEE Transactions on Power Systems,1995,10(1):512-522
    [149]C. A. Canizares and S. Hranilovic, Transcritical and Hopf bifurcations in AC/DC systems [J]. Proceedings of Bulk Power System Voltage Phenomena III-Voltage Stability, Security, and Control, Davos, Switzerland,105-114,22-26 August 1994
    [150]Jin Lu, Chih-Wen Liu, and James S. Thorp, New methods for Computing a Saddle-Node Bifurcation Point for Voltage Stability Analysis [J]. IEEE Transactions on Power Systems,10(2):978-989, May 1995
    [151]庄慧敏,肖建.交直流系统电压稳定性的Hopf分岔分析[J].高电压技术,2009,35(3):699-704
    [152]N. Ji, Y. J Gao, M, Zhou and G. Y. Li. A Novel Approach on ATC Determination for AC-DC Transmission Systems [C]. in Proceeding of 2009 PES General Meeting,1-8
    [153]童小娇,刘春平,周任军.考虑静态安全性和鞍结分岔稳定性的ATC的计算[J].湖南大学学报(自然科学版),2009,36(8):48-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700