黄、渤海沿岸被动式太阳能建筑热性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在海岛、海岸以及海上城市等海上空间的开发利用中,被动式太阳能建筑能够充分利用得天独厚的太阳能资源,解决海上建筑常规能源供应所带来的一系列技术、经济问题,不仅具有明显的经济效益和环保效益,而且具有深远的社会意义。
     黄、渤海沿岸处于北半球暖温带寒冷地区,属于海洋性兼季风性气候。该地区被动式太阳能建筑的全年热舒适性亟需提高,尤其是夏季室内过热问题普遍存在,是限制被动式太阳能建筑推广应用的症结所在。为此,对黄、渤海沿岸被动式太阳能建筑的热特性及建筑设计方法开展系列研究,将为有效解决海上建筑的能源供应问题和舒适性问题提供科学依据,促进海上空间的开发,具有十分重要的理论意义和工程实用价值。
     基于前人的研究和构想,从兼顾提高冬季保温性能和消除夏季过热的思路出发,提出了内置卷帘和温控风门联合控制的被动式太阳能建筑全年热环境控制措施。其特点是利用集热蓄热墙体内置卷帘进行冬季保温、夏季遮阳;利用不同位置风门的启闭控制通风的流向以加热或冷却房间。设计并建造了采用这种控制措施的原型被动式太阳能实验房,在黄、渤海沿岸海洋性兼季风性气候条件下,分别对不同热环境控制措施下冬季保温性能、夏季隔热降温性能进行对比性实验,研究结果表明,冬季卷帘保温作用可以提高房间舒适性;夏季可以有效消除过热,室内温度基本低于29℃,低于非空调房间可接受的上限温度。
     在最佳控制模式作用下,对上述被动式太阳能实验房的动态热过程进行了实验研究。利用偏相关分析方法,分辨出室内空气温度的诸多耦合影响因素中的主导因素,进而分析了提高建筑热性能的有效途径;量化分析了集热蓄热墙体的蓄放热过程以及建筑内自然对流换热特性;研究结果发现,在本实验条件下,夹层内空气流动处于从层流到湍流的复杂流态。无论是集热蓄热墙还是玻璃盖板,都至少有一半的高度全天处于空气湍流状态。根据Rα数的变化率,空气循环可以划分为起始、稳态循环和消失三个阶段。
     基于动态热网络分析法和频域回归分析方法,首次对卷帘和温控风阀联合控制下的集热蓄热墙式被动太阳能建筑这种特殊形式的建筑,建立了整体建筑全年热过程的动态数学模型。该模型考虑了侧面有开口夹层以及封闭夹层内的热压驱动的自然对流换热、墙体的非稳态导热、太阳辐射和围护结构表面之间的辐射等综合传热过程。采用基于热平衡分析得到的指数形式理论公式确定夹层内空气温度参数。通过模拟结果与实验数据的对比,实验结果与模拟结果之间吻合良好,验证了该数学模型的准确性。
     通过经验证的数学模型,对黄、渤海海岸被动式太阳能建筑热性能的影响因素以及建筑设计的优化进行了进一步分析。模拟分析结果表明,夹层厚度的增加会提高室内空气温度,但也会增加室内空气倒流进夹层的可能性,夹层厚度为0.3m较为适宜;在集热蓄热墙体面积一定的条件下,墙体宽高比为1/4时,有效供热量达到最大。通过与同纬度内陆地区集热蓄热式被动太阳能建筑热性能的对比,分析了改进型被动式太阳能建筑全年热环境控制措施对黄、渤海沿岸地区的适用性。
In the development of offshore spaces like island, coast and offshore cities, passive solar buildings are chosen for fully utilizing advantaged solar energy resource and resolving a series of economical and technological problems caused by the general energy supply for offshore buildings. That leads to obvious economic and environmental profits, and also has significant social meanings.
     Huanghai Sea and Bohai Sea coasts are located at cold area of the South Temperate Zone with ocean and monsoon climate. The annual thermal comfort level of passive solar buildings in this areas needs to be improved, especially the indoor overheat problem commonly exists in summer, which is one of the main reasons blocking the popularization of passive solar buildings. Therefore, study on the thermal performance and building design methods for passive solar buildings in Huanghai Sea and Bohai Sea coasts helps to provide the scientific basis for effectively solving energy supply and thermal comfort problems for offshore buildings, and promote the development of offshore space.
     Based on the former research and thoughts and considering the insulation demand in winter and eliminating the overheat problem in summer, the combined control with both inner rolling blinds and temperature-control vents is proposed to regulate the annual thermal environment in passive solar buildings. The rolling blinds in massive wall can be used for both insulation in winter and shading device in summer. The opening of vents in different places can be control the flow direction for heating or cooling room air. This kind of prototype test cell using above control measurements was designed and built, and the experiments comparing the insulation performance in winter and cooling effect in summer were carried out under ocean climate. The study results show that the use of both inner rolling blinds and temperature-control vents can decrease the radiation heat loss from massive wall and improve indoor thermal comfort in winter, and in summer eliminate indoor over heat. The indoor air temperature is below 29℃at the most of time, lower than the upper temperature limit of nor-air conditioning room. The optimal cooling pattern is dropping down the blinds in daytime and rolling up it at night. The outer vents are open for the whole day and inner vents are automatically controlled.
     Under the optimal operation pattern, the dynamic thermal process of the passive solar house is experimentally studied. The main factor influencing indoor air temperature is distinguished with the partial correlation method, and the improvement of building thermal performance is also analyzed. The heat charge and discharge of massive wall and natural convection characteristics of building are quantitatively discussed. Comparing with the theory of natural convection in the vertical plate, the empirical formula of natural convection coefficient in air gap is obtained.
     Based on dynamic thermal network and Frequency- Domain Regression method, the mathematical model for the whole passive solar building under combined control methods is firstly developed. This model considers the natural convect ions of the open and closed air gaps in the massive wall, transient heat conduction of wall, solar radiation and heat radiation exchange between envelops and so on. The air temperature in the gap can be determined by the exponential formula under heat balance analysis. The natural convection coefficient in open air gap is given from the experiment data. The developed program is iteratively solved. By comparison, the simulated results with the experimental agree well with each other, which validates the availability of mathematical model.
     The parameter analysis and optimal design of passive solar building in ocean climate is further discussed with the validated model. The simulated results illustrate that increasing the thickness of air gap will improve indoor air temperature, and increase the possibility of backflow of indoor air through the vents. The appropriate thickness is 0.3m. Under the fixed surface area of massive wall, the effective heat supply gets to the maximum as the width -height ratio is 1/4. The inner rolling blinds is closed to glass cover can improve the insulation level of close gap at night in winter.
引文
[1]邱大洪,王永学.21世纪海岸和近海工程的发展趋势.自然科学进展,2000,10(11):982-986.
    [2]毕超,王林弟.人类的第二生存空间--海洋.北京:中国环境科学出版社,2002.
    [3]李杰等.海洋空间利用.北京:知识出版社,2002.
    [4]孙维新.大海里安个家--人类生存空间的开发.上海:上海交通大学出版社,2004.
    [5]http://www.unep.org
    [6]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年).北京:中国法制出版社,2006.
    [7]余九如,余丽.论我国太阳能建筑的发展前景.甘肃工业大学学报,1995,21(2):94-97.
    [8]仲继寿.太阳能建筑发展思路.建设科技,2005,11:18
    [9]史蒂文.维.索克莱.太阳能与建筑.北京:中国建筑工业出版社,1980.
    [10]麦克维JC著.方铎荣,王兴国,李希伦泽.太阳能--太阳能应用导论.北京:国防工业出版社,1984.
    [11]苑金生.利用太阳能采暖的技术发展.房材与应用,2002,30(2):47-48.
    [12]罗云俊.中国《可再生能源》出台的背景及影响.第八届科博会中国能源战略高层论坛会刊,北京,2005.
    [13]关畔澄.太阳能建筑.太阳能学报特刊,1999,43-49.
    [14](日)彰国社.国外建筑设计详图图集13-被动式太阳能建筑设计.北京:中国建筑工业出版社,2004.
    [15]Trombe F,Robert J F,Cabanat M et al.Some performance characteristics of the C N R S Solar house collectors.Passive Solar Heating and Cooling Conference Workshop and Proceedings.Albuquerque,New Mexico,1976:201-202.
    [16]苑金生.国外节能建筑对太阳能的利用.节能,1996,5:26-32.
    [17]吕爱民.应变建筑--大陆性气候的生态策略.上海:同济大学出版社,2003.
    [18]陈启高.建筑热物理基础.西安:西安交通大学出版社,1991.
    [19](日)彰国社.太刚能建筑设计指南.北京:中国建筑工业出版社,2004.
    [20]http://szb.dl.gov.cn/dlsz/zrhj.htm
    [21]现代地理学词典.北京:商务印书馆,1990.
    [22]民用建筑热工设计规范GB50176-93(2004年版).北京:中国计划出版社,2004.
    [23]张家诚.中国气候.上海:上海科学技术出版社,1983.
    [24]http://www.designshare.com/index.php/projects.
    [25]Akbarzadeh A,Charters W W S,Lesslie D A.Thermoeirculation characteristics of a Trombe wall passive test cell.Solar Energy,1982,28(6):461-468.
    [26]Ong K S,Chow C C.Performance of a solar chimney.Solar Energy,2003,74(7):1-17.
    [27]Ong K S.A mathematical model of a solar chimney.Renewable Energy,2003,28(7):1047-1060.
    [28]Ban sal N K,Thomas P C.A simple procedure for selection and sizing of indirect passive solar heating systems.Building and Environment,1991,38(4):381-387.
    [29]Bansal N K,Mathur Jyotirmay,Mathur Saniay et al.Modeling of window-sized solar chimneys for ventilation.Building and Environment,2005,40(10):1302-1308.
    [30]Akbari H,Borgers T R.Free convective laminar flow within the Trombe wall channel.Solar Energy,1979,22(2):165-174.
    [31]Chappidi P R,Eno B E.A comparative study of the effect of inlet conditions on a free convection flow in a vertical channel.Journal of Heat Transfer,1990,112(4):1082-1085.
    [32]Borgers T R,Akbari H.Free convective turbulent flow within the Trombe wall channel.Solar Energy,1984,33(3-4):253-264.
    [33]Guohui Gan,Riffat S B.A numerical study of solar chimney for natural ventilation of building with heat recovery.Applied Thermal Engineering,1999,18:1171-1187.
    [34]王德芳,午锁平,喜文华.被动式太阳能采暖房数学模型及模拟计算程序-直接受盗型和集热墙型PSHDC(上篇).甘肃科学学报,1989,1(1):1-8.
    [35]叶宏,葛新石.几种集热-贮热墙式太阳房的动态模拟及热性能比较.太阳能学报,2000,21(4):349-357.
    [36]Rodrigues A M,Piedade A Canhada,Lahellec A et al.Modeling natural convection in a heated vertical channel for room ventilation.Building and Environment,2000,35(5):455-469.
    [37]Chen Q,Peng X,Paassen A H C Van.Prediction of room thermal response by CFD technique with conjugate heat transfer and radiation models.ASHRAE Transaetions,1995,3884:50-60.
    [38]Z Zhai Q,Chen P Haves,J H Klems.On approaches to couple energy simulation and computational fluid dynamics programs.Building and Environment,2002,37(8-9):857-864.
    [39]张寅平,孔祥东等.相变贮能--理论和应用.合肥:中国科技大学出版社.
    [40]Antonopoulos K A,Tzivanidis C.Finite-difference prediction of transient indoor temperature and related correlation based on the building time constant.Energy,1996,20(5):507-520.
    [41]Antonopoulos K A,Tzivanidis C.Time-constant of Greek buildings.Energy,1995,20:789-802.
    [42]Antonopoulos K A,Tzivanidis C.A correlation for the thermal delay of buildings.Renewable Energy,1995,6(7):687--699.
    [43]Antonopoulos K A,Koronaki E.Apparent and effective thermal capacitance of buildings.Energy,1998,23:183-192.
    [44]Antonopoulos K A,Koronaki E.Envelope and indoor thermal capacitance of buildings.Applied Thermal Engineering,1999,19(7):743-756.
    [45]Li Yuguo,Delsante Angelo,Chenb Zhengdong et al.Some examples of solution multiplicity in natural ventilation.Building and Environment,2001,36(7):851-858.
    [46]Onbasioglu Huseyin,Egrican A Nilufer.Experimental approach to the thermal response of passive systems.Energy conversion and management,2002,43(15):2053-2065.
    [47]Afonso Clito,Oliveira Armando.Solar chimneys:simulation and experiment.Energy and Buildings,2000,32(1):71-79.
    [48]Ren M J,Wright J A.A ventilated slab thermal storage system model.Building and Environment,1998,33(1):43-52.
    [49]Yam J,Li Y,Zheng Z.Nonlinear coupling between thermal mass and natural ventilation in buildings.International Joumal of Heat and Mass Transfer,2003,46(7):1251-1264.
    [50]Asan H,Sancaktar Y S.Effects of Wall's thermophysical properties on time lag and decrement factor.Energy and Buildings,1998,28(2):159-166.
    [51]Asan H.Effects of wall's insulation thickness and position on time lag and decrement factor.Energy and Buildings,1998,28(3):299-305.
    [52]杨艺,邓启红,时冰冰.建筑墙体的延时与削弱作用.建筑热能通风空调,2005,24(4):66-70.
    [53]Ormiston S J,Raithby G D,Hollands K G T.Numerical predictions of convection in a Trombe wall system.International Journal of Heat Mass Transfer,1986,29(6):869-877.
    [54]Ziskind G,Dubovsky V,Letan R.Ventilation by natural convection of a one-story building.Energy and Buildings,2002,34(1):91-102.
    [55]Letan R,Dubovsky V,Ziskind G.Passive ventilation and heating by natural convection in a multi-storey building.Building and Environment,2003,38(2):197-208.
    [56]王恒一.太阳房实用技术讲座(1).农村能源,1994,54(2):9-11.
    [57]Givoni B.Ciimate considerations in building and urban design,New York:Van Nostrand Reinhold,1998.
    [58]Hirunlabh J,Kongduang W,Namprakai P et al.Study of natural ventilation of houses by a metallic solar wall under tropical climate.Renewable Energy,1999,18(1):109-119.
    [59]Spencer Scott.An Experiment Investigation of a Solar Chimney Natural Ventilation System.PHD thesis,Canada,2001.
    [60]Sodha M Set al.Solar passive building science& design.New York:Pergamon Press,1986.
    [61]李元哲.被动式太阳房热工设计手册.北京:建筑工业出版社,1993.
    [62]Utzinger D M,Klein S A,Mitchell J W.The effect of air flow rate in collector-storage walls.Solar Energy,1980,25(6):511-519.
    [63]Hsieh Shou Shing,Tsai Jinn Tsong.Transient response of the Trombe wall temperature distribution applicable to passive solar heating system.Energy Conversion and Management,1988,28(1):21-25.
    [64]Smolec W,Thomas A.Theoretical and experimental investigations of heat transfer in a Trombe wall.Energy Conversion and Management,1993,34(5):385-400.
    [65]Nayak J K,Bansal N K,Sodha M S.Analysis of passive heating concept.Solar Energy,1983,30(1):51-69.
    [66]Z Zrikem,E Bilgen.Simplified desing tool for composite Trombe-Mechel wall solar collectors.Sloar &Wind Technology,1988,5(5):517-523.
    [67]Yedder R Ben,Du Z G,Bilgen E.Numerical study of laminar natural convection in composite Trombe wall syatem.Sloar &Wind Technology,1990,7(6):675-683.
    [68]Smolec W,Thomas.Some aspects of Trombe wall heat transfer models.Energy Conversion and Management,1991,32(3):269-277.
    [69]Hirunlabh J,Kongduang W,Namprakai P et al.Study of natural ventilation of houses by a metallic solar wall under tropical climate.Renewable Energy,1999,18(1):109-119.
    [70]Athienitis A K,Ramadan H.Numerical model of a building with transparent insulation.Solar Energyv,1999,67(1-3):101-109.
    [71]建筑工程常用数据系列手册编写组.暖通空调常用数据手册.北京:中国建筑工业出版社,2002.
    [72]彦启森,赵庆珠.建筑热过程.北京:中国建筑工程出版社,1986.
    [73]陈友明,王盛卫.建筑围护结构非稳定传热分析新方法.北京:科学出版社,2004.
    [74]Thermal environmental conditions for human occupancy,ANSI/ASHRAE 55-1992.Atlanta:American Society of Heating,Refrigerating and Air Conditioning Engineers,Inc,1992.
    [75]金招芬,朱颖心.建筑环境学.北京:中国建筑工业出版社,2001.
    [76]丁颖慧.寒冷地区被动式太阳房室内人体舒适性的研究.大连理工大学硕士学位论文,2006,6.
    [77]Luldc N.The transient house heating condition-the building envelope response factor(BER).Renewable Energy,2003,28(4):523-532.
    [78]Busch J F.Thermal responses to the Thai office environment.ASHRAE Trans,1990,96(1):859-872.
    [79]Dear R J,K G Leow,S C Foo.Thermal comfort in the humid tropics:field experiments in air-conditioned and naturally ventilated buildings in Singapore.Biometeorology,1991,34:259-265.
    [80]Karyono T H.Higher PMV causes higher energy consumption in air-conditioned buildings:a case study in Jakarta,Indonesia,in:F-Nicol et al(Eds.),Standards for thermal comfort:Indoor Air Temperature Standards for the 21st Century,London:Chapman &Hall,1993.
    [81]Kwok A G.Thermal comfort in tropical classrooms.ASHRAE Trans,1998,104(1B):1031-1047.
    [82]Wong N H,Feriadi H,Lira P Y et aI.Thermal comfort evaluation of naturally ventilated public housing in Singapore.Building and environment,2002,37(12):1267-1277.
    [83]夏一哉,赵荣义,江亿.北京市住宅环境热舒适研究.暖通空调,1999,29(2):1-5.
    [84]江亿,洪天真.建筑热过程的随机分析,清华大学学报,1994,34(5):93-98.
    [85]三味工作室.世界优秀统计软件SPSS V10.0 for Windows实用基础教程.北京:北京希望电子出版社,2001.
    [86]张文彤.SPSS11统计分析教程.北京:北京希望电子出版社,2002.
    [87]周爽,朱志洪等.社会统计分析-SPSS应用教程.北京:清华大学出版社,2006.
    [88]黄海,罗友丰等.SPSS10.0 for Windows统计分析.北京:人民邮电出版社,2001.
    [89]McAdam s W H.Heat Transmission,3rd ed.New York:McGraw-Hill,1994.
    [90]杨世铭,陶文铨.传热学(第三版)[MI.北京:高等教育出版社,1998.
    [91]王补宣.工程传热传质学[M].北京:科学出版社,2002.
    [92]ASHRAE.Asharae hand book,fundamentals.Atlanta:Ashrae inc,1985.
    [93]章熙民,任泽沛,梅飞鸣.传热学.北京:中国建筑工程出版社,1993.
    [94]中国气象局气象信息中心气象资料室,清华大学建筑技术科学系.中国建筑热环境分析专用气象数据集.北京:中国建筑工业出版社,2006.
    [95](日)望月重,小林浩著.天津大学海工教研室,大连工学院海工教研室合译.海洋建筑物的设计与实例.北京:海洋出版社,1983.
    [96]Bouchair A.Moving air using stored solar energy.Proceedings of 13th National Passive Solar Conference,Cam-bridge,Massachusetts,1988:33-38.
    [97]Bouchair A.Solar chimney for promoting cooling ventilation in Southern Algeria.Building Serv.Eng.Res.Technol,1994,15(2):81-93.
    [98]Chen Z D,P Bandopadhayay,J Halldorsson et al.An experimental investigation of a solar chimney with uniform heat flux.Building and Environment,2003,38(7):893-906.
    [100]Li Yuguo.Analysis of natural ventilation-A summary of existing analytical solutions,Internationl energy,Energy conservation in buildings and community systems,Technical TR12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700