直接空冷凝汽器喷雾降温系统流动传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决夏季高背压运行影响汽轮机安全问题,保证机组出力,空冷发电厂采用喷雾降温的方法作为尖峰度夏措施。本文对空冷凝汽器喷雾降温的关键问题进行了研究。
     建立适用于低雷诺数条件下空气在翅片间的流动及传热的物理数学模型。分析钎焊蛇形铝翅片的钢制扁平管空气侧流动换热特性,发现蛇形翅片扁平基管后部存在的涡流区使翅片强化换热的作用减弱,对影响空气侧传热和流动性能的因素进行了分析。
     运用计算流体力学的方法,采用多孔介质模型对电厂空冷凝汽器风机和A型框架空气侧流场进行了三维计算,得到了空冷单元内部的速度、温度和压力的分布。
     在准确描述蛇形翅片扁平管和空冷凝汽器单元空气侧流动换热特性的数学模型基础上,采用自底向上的方法,利用翅片通道细部计算结果获取整根翅片管的温度分布,尝试提出解决空冷凝汽器传热这类多尺度问题的方法。
     分析了喷雾冷却的理论过程,指出绝热饱和温度是喷水使空气达到饱和湿空气状态的最低温度,并给出了编程计算绝热饱和温度的方法。
     建立了液滴蒸发的数学物理模型,并对模型进行了求解,分析了液滴在空气中的蒸发寿命,液滴的温度及直径随环境温度和湿度变化的规律。
     基于couple算法,采用κ-ε模型,在综合两相流、传热传质理论并结合实际运行效果的基础上,建立了空冷单元加装喷雾降温系统的数值分析模型,分析了喷雾降温系统对空冷凝汽器的换热影响,表明加装喷雾降温装置的确可以增强空冷凝汽器的换热,提高机组经济性和安全性。得到了影响喷淋冷却系统换热效果的主要因素,结果表明:雾滴与空气接触面积的大小,液滴在换热区停留时间是影响液滴与空气热质交换强弱程度的重要因素。
The higher operating pressure of air cooled power plant greatly affects the safety and power output of steam turbine in summer, so the method of reducing air temperature by spray cooling is used. The key technologics and solution scheme of summer operation were approached in this paper.
     According to the low Reynolds number, the physical model regarding heat transfer and flow characteristic between fins are analyzed. Based on the model, the air-side heat transfer characteristics of the wavy finned flat tube are investigated in detail. The results indicated that the eddy region behind the tube lessen the heat transfer of tube fin. The parameters such as the air velocity and temperature, which affect the airside flow and heat transfer performance, are analyzed. A3D air flow field calculation is carried out, for the air-cooled condenser's air fan and the A-shaped frame-work, in one power plant. The fin side of the condenser tubes is simplified by using a porous medium model. The distribution of velocity, temperature and pressure, within the air-cooled unit, is obtained. On the basis of the accurate physical models regarding flow and heat transfer characteristic between fins and air-condenser unit, using fins model detail calculation to obtain the temperature distribution of the whole finned tube by the bottom-up approach, and try to solve the multi-scale problems such as that ploblems in air-condenser system.
     The theoretical process of spray cooling is analyzed in this paper. The method of calculating the adiabatic saturated temperature by programming is given and the research shows that the adiabatic saturated temperature is the lowest temperature that makes the air saturated by spraying cooling system. Mathematic and Physical model of droplet evaporation is developed and solved. Droplet evaporation time in air condenser is analyzed with the model. The variation rule of the temperature and diameter of droplet with the ambient temperature and humidity is obtained.
     With couple algorithm and k-ε model, applying the heat and mass transfer theory for two-phase of air and water, numerical analysis model of spray cooling system is established. Influence of heat exchanging performance of the direct air cooling island by installing the spray cooling device has been researched and analyzed. Indeed the installation of spray cooling system in the direct air-cooling system can improve heat transfer and enhance the units economic and security. The results show that the important factors of influencing heat exchange are the size of the droplets and air contact area and the residence time of droplets in hot spots.
引文
[1]中国科学院地理科学与资源研究所,陆地水循环与地表过程重点实验室编.噬水之煤——煤电基地开发与水资源研究[M].北京:中国环境科学出版社,2012,35.
    [2]伍小林.我国火力发电厂空气冷却技术的发展现状[J].国际电力,2005,9(1):15-18.
    [3]李育宁,蒋文军,吴栋.电厂空冷技术在我国的发展[J].中国高新技术企业,2008,(11):80-81.
    [4]温高.发电厂空冷技术[M].北京:中国电力出版社,2008,9.
    [5]戴振会,孙奉仲,王宏国.国内外直接空冷系统的发展及现状[J].电站系统工程,2009,25(3):1-4.
    [6]陈祖茂,唐燕萍.空冷系统计算工况的选择[J].2006,35(4):262-268.
    [7]马庆中,张龙英.直接空冷凝结器尖峰冷却系统的研究与应用[J].山西电力,2007(增刊):55-57.
    [8]王文忠,刘振华,梁志福,等.600MW直接空冷机组夏季限负荷的原因及解决措施[J].中国电力,2008,41(1):56-59.
    [9]高增宝.关于空冷机组在夏季炎热期满发的问题[J].电力建设,1998,41(9):28-31.
    [10]张新海.我国空冷机组运行情况的分析及建议[J].山西电力,2009,(增刊):109-112.
    [11]周兰欣,张情,李海宏,等.直接空冷机组空冷单元内喷雾增湿系统纵向双排布置的数值研究[J].电力建设,2010,31(9):98-101.
    [12]Ashwood Andrea C, Shedd Timothy A. Spray Cooling with Mixtures of Dielectric Fluids[C].23rd IEEE SEMI-THERM Symposium,2007:144-148.
    [13]廖义德.高压细水雾灭火系统关键技术及其灭火性能研究[D].华中科技大学博士学位论文.2008.
    [14]魏明锐.二甲基醚发动机喷射雾化的理论和实验研究[D].华中科技大学博士学位论文.2004.
    [15]Hohmann S, Klingsporn M, Renz U. An Improved Model to Describe Spray Evaporation under Diesel-Like Conditions[C]. SAE Paper 950285,1996.
    [16]Delplanque J P, Sirignano W A. Numerical Study of the Transient Vaporization of an Oxygen Droplet at Sub-and Super-Critical Conditions[J]. International Journal of Heat and Mass Transfer, Vol.36, No.2, pp.303-314,1993.
    [17]Rini D, Chen R H., Chow L. Bubble behavior and nucleate boiling heat transfer in saturated FC-72 spray cooling[J].ASME J Heat Transfer 2002,124:63-72.
    [18]石磊.国产空冷单排管流动和传热性能研究[J].电站系统工程,2009,25(2):19-21.
    [19]杨立军,周健,杜小泽,等.扁平管外蛇形翅片空间的流动换热性能数值模拟[J].工程热物理学报,2007,28(1):122-124.
    [20]张凯峰,杨立军,杜小泽,等.空冷凝汽器波形翅片扁平管管束外空气流动传热特性[J].中国电机工程学报,2008,28(26):24-28.
    [21]朱嵩,李敬莎,杨腊腊,等.直接空冷凝汽器翅片散热器流动传热特性[J].电力建设,2011,32(7):63-67.
    [22]张薇,程远达,石磊.翅片间距对单排管性能影响的数值研究[J].华电技术,2009,31(7):18-30.
    [23]石磊,张薇,刘海峰,等.国产空冷单排管流动和传热性能研究[J].电站系统工程,2009,25(2):19-21.
    [24]曾时明.电站直接空冷式翅片管换热和流动规律及空冷单元流场特性数值研究[D].北京交通大学硕士学位论文.2007.
    [25]Feng Lili, Du Xiaoze, Yang Yongping, Yang Lijun. Study on heat transfer enhancement of discontinuous short wave finned flat tube[J]. Science China: E,2011,5(12):3281-3288.
    [26]温娟,唐大伟,张璟,等.空冷岛扁平管外翅片空间的大涡模拟研究[J].工程热物理学报,2011,33(12):2126-2129.
    [27]陆斌,孔德春,陶黎明,等.直接空冷单排管换热器试验研究[J].现代电力,2009,26(6):49-53.
    [28]胡汉波.直接空冷式凝汽器翅片散热器流动传热性能及单元流场特性研究[D].重庆大学,2006.
    [29]徐艳.火电厂直接空冷凝汽器传热性能实验研究[D].华北电力大学硕士学位论文.2011.
    [30]Lijun Yang, Hui Tan, Xiaoze Du, Yongping Yang. Thermal-flow Characteristics of The New Wave-finned Flat Tube Bundles in Air-cooled Condensers[J]. International Journal of Thermal Sciences,2012,53:166-174.
    [31]张树国,赵兴楼,张艳娟.直接空冷凝汽器间断波纹翅片式扁平管的数值研究[J].热力发电,2009,38(7):23-26.
    [32]石磊,李星,周云山,等.直接空冷凝汽器考核工况的全厂数值模拟[J].热力发电,2008,37(3):18-21.
    [33]周文平,唐胜利.空冷凝汽器单元流场的耦合计算[J].动力工程.2007,27(5):766-770.
    [34]周文平.火电厂直接空冷平台的数值模拟[D].重庆大学硕士学位论文.2007.
    [35]J.R.Bredell,D.GKIOger,GD. Thiart.Numerical investigation of fan Performance in a forced draft air-cooled steam condenser[J].APPlied Thermal Engineering.2006,26(8): 846-8521.
    [36]贾宝荣,杨立军,杜小泽,等.导流装置对直接空冷单元流动传热特性的影响[J].中国电机工程学报,2009,29(8):14-19.
    [37]石磊,石诚,黄湘,等.直接空冷凝汽器单元样机流动和传热性能研究[J].热能动力工程,2009,(1):73-76.
    [38]张宛曦.空冷单元及空冷岛流场优化组织与传热强化[D].华北电力大学硕士学位论文.2012.
    [39]WanXi ZHANG, LiJun YANG, XiaoZe DU& YongPing YANG Thermo-flow characteristics and air flow field leading of the air-cooled condenser cell in a power plant [J]. SCIENCE CHINA Technological Sciences,2011,54(9):2475-2482.
    [40]C.J. Meyer, D.G Kroger. Plenum chamber flow losses in forced draught air-cooled heat exchangers[J].Applied Thermal Engineering,1998,18:875-893.
    [41]W. Groenewald,D. G Kroger. Effect of mass transfer on turbulent friction during condensation inside ducts[J]. International Journal of Heat and MassTransfer,1995, 38(18):3385-3392.
    [42]C. A. Salta, D. G Kroger. Effect of inlet flow distortions on fan performance in forced draught air-cooled heat exchangers[J]. Heat Recovery Systems and CHP.1995,15(6): 555-561.
    [43]苏咸伟.火电厂直接空冷凝汽器传热性能实验研究[D].华北电力大学硕士学位论文.2007.
    [44]陶文铨.传热与流动问题的多尺度数值模拟:方法与应用[M].北京:科学出版社,2009,438.
    [45]Cheng Y P,Qu Z QTao W Q,et al. Numerical design of efficient slotted fin surface based on the field synergy principle[J]. Numerical Heat Transfer, Part A,2004,45:517-538.
    [46]Tag W Q, Cheng Y P, Lee T S. The influence of strip location on the pressure drop and heat transfer performance of a slotted fin[J]. Numerical Heat Transfer, Part A,2007,52: 463-480.
    [47]Tag W Q, Cheng Y P, Lee T S.3D simulation on fluid flow and heat transfer characteristics in multistage heat exchanger with slit fins[J]. Heat and mass Transfer,2007, 44:125-136.
    [48]陈继军,尹海宇,郭民臣.发电厂空冷系统尖峰冷却喷水降温过程的分析[J].现代电力,2010,27(3):57-60.
    [49]马庆中,张龙英.直接空冷凝结器尖峰冷却系统的研究与应用[J].山西电力,2007,(143):55-57.
    [50]赵文升,王松岭,荆有印,等.喷雾增湿法在直接空冷系统中的应用[J].动力工程,2008,28(1):64-67.
    [51]李文海.空冷塔散热器表面喷淋装置的应用[C].中国电机工程学会火电分会第二次学术年会,2000,8.
    [52]梁天生,邵爱华,魏晓明,等.燃气轮机压气机进口喷雾冷却系统分析[J].热电技术,2009,(3):45-47.
    [53]SPALDIN G D B. The combustion of liquid fuels[C]. Proceedings of the Fourth International Symposium on Combustion. Pitt sburgh,PA ,USA:The Combustion Institute,1953:847-864.
    [54]Y Sano,R. B. Keey. The Drying of a Spherical Particle Containing Colloidal Material into a Hollow Sphere[J]. Chemical Engineering Science.1982,37(6):881-889.
    [55]H. W. Cheong,G V Jefrreys,C. J. Mumford. A Receding Interface Model for the Drying of Slurry Droplets[J]. A.I.Ch.E. Journal.1986,32(8):1334-1346.
    [56]M. Farid. A New Approach to Modeling of Single Droplet Drying[J]. Chemical Engineering Science.2003,58:2985-2993.
    [57]N.Froessling. Ueber die Verdunstung fallender Tropfen.Gerlands Beitraege zur GeoPhysik.1938,52:170-216.
    [58]W.E.Ranz, W.R.Marshall. Evaporation from Drops, Part I[J]. Chemical Engineering Progress.1952,48(3):141-146.
    [59]W. E. Rant, W. R. Marshall. Evaporation from Drops, Part II[J]. Chemical Engineering Progress.1952,48(4):173-180.
    [60]A. D. Gosman, D. Clerides. Diesel Spray Modeling:A Review[C]. ILASS-Europe Annual Meeting, Florence 1997. Florence, ILASS-Europe,1997:9-11.
    [61]M. Kulmala,T. Vesala,J. Schwarz,et al. Mass Transfer from a Drop. II:Theoretical Analysis of Temperature Dependent Mass Flux Correlation[J]. The International Journal of Heat and Mass Transfer.1995,38:1705-1708.
    [62]R. Clift, J. R. Grace, M. E. Weber. Bubbles,Drops and Particles[M]. New York: Academic Press,1978.
    [63]El Wakil M M, Uyehara O A, Myers F S. A Theoretical Investigation of the Heating-up Period of Injected Fuel Droplets Vaporizing in Air[J]. Technical Note 3179, NACA,1954.
    [64]Abramzon B,Sirignano W A. Droplet Vaporization Model for Spray Combustion Calculations[J]. International Journal of Heat and Mass Transfer,1989,32(9):1605-1618.
    [65]R. H. Charlesworth, W. R. Marshall. Evaporation from Drops Containing Dissolved Solids[J]. Journal of the American Institute of Chemical Engineering.1960,6(1):9-23.
    [66]Raithby GD, Eckert E.R.G The effect of turbulence parameters and support position on the heat transfer from spheres[J]. Int. J.Heat Transfer,1968,11:1233-1252.
    [67]K. K. Kuo. Principles of Combustion[M]. Second Edition. New York:Wiley-Inter Science Publication,2005.
    [68]F. V. Bracco, H. C. Gupta. Two-Phase, Two-Dimensional, Unsteady Combustion in Internal Combustion Engines[C]. SAE Paper.1976,12:114-123.
    [69]W. C. Rivard, J. R. Travis,M. D. Torrey. Numerical Calculation of Two-phase Flow in a Shock Tube[C]. Specialists Meeting on Transient Two-Phase Flow, Canada,1976.61-104
    [70]J. F. Gronews. The Statistical Description of a Spray in Terms of Drop Velocity, Size, and Position[D]. Univ. of Wisconsin.1967:21-25.
    [71]Haselman I C,et al. A Theoretical Model for Two-phase Fuel Injection in Stratified Charge Engines[C]. SAE Paper 780318,1978.
    [72]Williams F A. Combustion Theory[M],2nd ed.:The Benjamin/Cummings Publishing Company,1985.
    [73]Gosman A D, Johns J R. Computer Analysis of Fuel-Air Mixing in D.I. Diesel Engines[C]. SAE Paper 800091,1980.
    [74]于海洋,王志锋,刘兴华,等.发电厂直接空冷系统迎峰度夏措施的数值分析[J].现代电力,2010,27(4):73-77.
    [75]王松岭,刘阳,赵文升,等.喷雾增湿降温法提高空冷机组出力的研究[J].热力发电,2008,37(8):5-8.
    [76]石维柱,安连锁,张学镭,等.直接空冷机组喷淋冷却系统的数值模拟和性能分析[J].动力工程学报,2010,30(7):523-527.
    [77]周兰欣,张情,李海宏,等.直接空冷机组空冷单元内喷雾增湿系统纵向双排布置的数值研究[J].电力建设,2010,31(9):98-101.
    [78]惠雪松,孙会亮,马少帅.直接空冷机组空冷单元内喷雾增湿系统的结构优化[J].东北电力技术,2012,(8):27-31.
    [79]周兰欣,白中华,李富云,等.管型和长宽比对空冷散热器换热特性的影响[J].汽轮机技术,2007,49(6):417-419.
    [80]杨立军,张凯峰,杜小泽,等.空冷凝汽器椭圆翅片椭圆管束外空气的流动与传热特性[J].动力工程,2008,28(6):911-914.
    [81]Patel, V.C.,Rodi, W. and SCheuerer,G. Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review [J]. AIAA J.,1984,23:1308-1319.
    [82]Jones,W.P. and Launder,B.E., The prediction of Laminarization with a Two-Equation Model of Turbulence[J].Int. J. Heat Mass Transfer,1972,15:301-311.
    [83]Jones, W.P. and Launder, B.E., The Calculation of Low-Reynolds-Number Phenomena with a Two-Equation Model of Turbulence[J].Int. J. Heat Mass Transfer,1973,16: 1119-1130.
    [84]Lam,C.K. J. and Bremhost, K., A Modified Form of the k-ε Model for Prediction Wall Temperature [J]. ASME Journal of Fluid Eng.,1981,103:456-460.
    [85]Patankar.S.V and SPalding.D.B. A calculation Procedure for the transient and steady-state behavior of shell and tube heat exehangers. Heat Exehangers.Washington.D.C.1974.155-176.
    [86]肖金平.发电厂直接空冷系统迎峰度夏措施的数值分析[D].华北电力大学硕士学位论文.2009.
    [87]刘达.环境风对直接空冷凝汽器换热影响的研究[D].华北电力大学硕士学位论文.2011.
    [88]李欣,邓斌,陶文铨.翅片管束式管壳式换热器三维数值模拟研究[J].工程热物理学报,2005,26(2):2126-2129.
    [89]杜小泽,杨立军,金衍胜,等.火电站直接空冷凝汽器传热系数实验关联式[J].中国电机工程学报,2008,28(14):32-37.
    [90]英克鲁佩勒.传热和传质基本原理[M].北京:化学工业出版社,2007,394.
    [91]薛殿华.空气调节[M].北京:清华大学出版社,1991.
    [92]刘志刚,刘咸定,赵冠春.工质热物理性质计算程序的编制及应用[M].北京:科学出版社,1992.
    [93]李信真,车刚明,欧阳洁,等.计算方法[M].西安:西北工业大学出版社,2000.
    [94]范志强,陈海平,张学镭.直接空冷系统中喷雾冷却技术的应用[J].东北电力技术,2009,(5):19-21.
    [95]Chow,L. C.,Sehembey,M. S.,and Pais,M. R.1997. High Heat Flux Spray Cooling [J]. Annul.Rev. Heat Transfer,129(8):291-318.
    [96]Yang J.,Chow L.C.,Pais M.R.1996.An Analytical Method to Determine the Liquid Film Thickness Produced by Gas Atomized Sprays[J]. Journal of Heat Transfer,118(2): 255-258.
    [97]Putsch,A.G.,Shedd,T.A.,2006. Adiabatic and diabetic measurements of the liquid film thickness during spray cooling with FC-72[J]. International Journal of Heat and Mass Transfer 49(4),2610-2618.
    [98]Tan ShiWei. Computer simulation of a spray cooling system with fc-72[D],school of mechanical,materials and aerospace engineering in the college of engineering and computer science at the university of central Florida.2001.
    [99]蒋勇,等.喷雾碰壁混合三维数值模拟[J].中国科学技术大学学报,2000,30(3): 334-339.
    [100]夏兴兰.涡流室式柴油机三维燃烧模拟计算与分析[D].江苏理工大学博士学位论文,1998.
    [101]Shin LK, Assanis DN. Implementation of a Fuel Spray Wall Interaction Model in KIVA-II[J].SAE911787.
    [102]Zarling J. Heat and mass transfer from freely falling drops at low temperature. CRREL. ReP.1980,80(18):20-25.
    [103]Chin J S, Lefebvre A H. The Role of the Heat-up Period in Fuel Drop Evaporation. Int. J. Turbo Jet Engines,1985,2:315-325.
    [104]Clayton C, Martin S, Yutaka T. Multiphase flows with droplets and particles. Boca Baton,Fla.:CRCPress,1998.
    [105]Lefebvre A H. Atomization and sprays. NewYork:HemisPhere Publishing Corporation, 1989.
    [106]施明恒,陈永平.多孔介质传热传质分形理论初析[J].南京师大学报(工程技术版),2001,1(1):6-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700