水下结构辐射噪声源快速诊断识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辐射噪声一直是衡量舰船战斗力及生存能力的主要性能之一,是各种声学武器探测的主要目标及破坏其声隐身性能的最主要因素,会直接影响本艇声呐的工作性能,因此降低这类水下航行器的辐射噪声具有重要意义。为了有针对性的开展噪声控制,同时为水下航行器声学设计中的噪声指标提供实际依据,开展噪声源识别定位技术研究,估计水下航行器各噪声源对噪声贡献的大小,以及噪声源的空间分布,然后针对贡献大的源采取降噪措施,可为研制高隐蔽性能的水下航行器提供坚实的技术支撑。因此,研究这类水下结构辐射噪声的快速诊断及识别技术对于其减振降噪、降低辐射噪声,提高自身隐身性能具有十分重要的意义。但是研究这类水下结构辐射噪声存在一定的困难,其中包括如何高效获取测量数据,并研究相应的数据处理算法;如何采用少量水听器完成测量,缩减测量成本;如何综合利用声场中的声压量、振速量,获得更有意义的工程应用等问题。针对水下结构辐射噪声定位识别中存在的这些问题,本文做了如下研究:
     首先简要介绍了水下结构辐射噪声源定位识别的研究背景,概述了水下结构振动辐射噪声的基本特性,回顾总结了噪声源识别与近场声全息技术的发展概况,并对其中的近场声全息技术进行重点论述。针对应用近场声全息技术对水下结构辐射噪声源的识别定位这一目标,详细讨论了现有各种噪声源识别方法的优缺点,在此基础上提出需要解决的问题,确立了本文的研究基础。
     然后,研究Helmholtz方程最小二乘法(HELS)的基本理论,得到振动体辐射声场的近似解,在此基础上推导基于振速测量的HELS方法,并联合基于振速测量的HELS算法和HELS基本算法进行数据处理,针对存在离散非适定性的问题,提出利用正则化方法减小误差影响。通过数值仿真验证,得出该算法在一定条件下可以对声源比较精确的识别,同时声压-振速联合处理算法可以分离相干声源,为了获得一定的声场重建精度,要求测量面与重建面之比至少为1.2,且当声场中存在多个声源时要求两两声源间至少存在3个采样点;在测量信号包含噪声时,必须采用正则化方法才能而得出正确解,比较发现信噪比越低正则化效果越明显;利用声压-振速联合处理方法完全可以从相干声场中较准确的分离出单个声源的各个声场量,尤其对于声场贡献大的声源具有较高的重建精度,拓展了HELS方法的应用范围。
     研究HELS算法在全息测量和重建过程中各参数的选取问题,其中包括适配点位置、基函数个数、采样间隔、测量面位置及大小,通过数值仿真研究了最优化参数的存在性,结合HELS算法的物理机理和数学模型,分析了各个最优参数的合理性,快速获取最优参数,从而为HELS算法在工程中利用小测量面快速有效的应用提供依据。
     研究基于移动框架技术的运动声全息方法,对存在多普勒频移的测量数据进行处理,获得无相对运动时声场的空间分布,并提出其与HELS算法相结合的处理任意形状的运动结构体噪声源识别方法;针对水下测量中存在坐标误差的问题,提出利用MUSIC近场聚焦波束形成对声源的轨迹进行修正,通过一系列的数值仿真研究,得到如下结论:该算法只适用于马赫数小于0.1的情况;当声场为存在多个声源的复杂场时,该组合算法只适用于重建声源频率小于等于2.5kHz的辐射场;仅要求测量面为声源面的1.3倍,为其工程应用提供了方便;利用修正后的坐标数据进行声场重建对幅值重建精度和相位重建精度都有不同程度的改善,有效的解决了测量耗时长的问题。
     研究基于HELS算法局部近场声全息方法的理论与应用,首先从数学的角度证明了利用一系列球面波函数的加权和近似声场的完备性,为HELS算法在外推声场中的应用提供了坚实的理论基础;其次详细的给出了该算法的外推过程和声场重建步骤;最后对应用该组合算法时的参数选择和重建声场的准确性进行研究,仿真分析测量面大小和声场外推区域选取的问题,并与常规声场重建方法进行比较。通过分析得出存在最小测量面既可以保证一定的声场重建精度又节约工程成本;外推数据的点数不超过实际测量数据的点数。在小测量孔径条件下,基于HELS算法的Patch NAH的声场重建性能远优于常规NAH,有较高的工程应用价值。
     最后,开展水下噪声源近场定位识别方法试验研究,探讨基于本文方法的噪声源定位识别的可行性和准确性。介绍消声水池现有的硬件平台,设计完成全套水听器阵列与采集系统,实验方法和实施过程。在此基础上,在消声水池内以球形声源为研究对象,进行噪声源定位识别的实验研究,完成实验室内实验数据采集;在松花湖内以圆柱形和鱼唇形发射换能器为研究对象进行试验研究,完成外场实验的数据采集;最后对实验结果分析表明:本文方法是可行的和准确的,为其在工程应用打下基础。
The radiation noise always has been one of the main performances which measure thecombat effectiveness and survivability of the ship, which is the main detection objective of avariety of passive sonar and acoustic weapons, the most important factor in destructing itssound stealth performance, directly affect the performance of the ship’s sonar station, thusreducing this type radiation noise of underwater vehicle is significant. In order to carry out thenoise control and provide the actual basis for the noise indicators of the underwater vehicle’sacoustic design, carry out the research of the technology of noise sources identificationlocation. Estimate the size of these noises contribution of the every noise source in theunderwater vehicle and the space distribution of the noise sources, then for the largercontribution of the noise source take the noise reduction measures, and provide the a solidtechnical support for developing the underwater vehicles which has a high hiddenperformance. Therefore the study of this quick diagnosis and recognition technology of suchunderwater structures has a significant meaning for reducing the vibration and the noise andimproving their stealth ability. But there has some difficulties in researching such underwaterstructures, which included how to efficiently obtain measurement data, and study thecorresponding data processing algorithms; how to complete measurements by using fewerhydrophones to reduce measurement costs; how to obtain more meaningful engineeringapplications and other issues by utilizing the sound pressure and the vibration velocity of thesound field. Do the following research for these questions in the underwater structures’ noisesource location identification.
     At first, briefly describes the research background in the underwater structures’ noisesource location identification, overview its basic characteristics, reviewed and summarizedthe development of the noise source identification and near-field acoustic holographytechnology, and particularly focused on the near-field acoustic holography technology. Forthe underwater large structures’ noise source location identification by using NAH, discussedin detail advantages and disadvantages of the existing noise source identification methods,proposed the need to solve the problem in this situation, and established the basis for thisstudy.
     Then studied the basic theory of the Helmholtz equation least squares (HELS),obtained the approximation solution of the vibrating body acoustic field, on this basis, derivedHELS method based on velocity measurements, and combining HELS algorithms based on velocity measurements and HELS basic algorithm for data processing, for the existenceproblem of dispersion non-posed, proposed utilizing regularization method to reduce theeffect of errors. By numerical simulation, obtained this algorithm can accurately identify thesource under a certain conditions, while the sound pressure-velocity joint processingalgorithms can separate coherent sound sources, in order to obtain a certain reconstructionaccuracy of the sound field, required the ratio of the measure surface and the reconstructionsurface at least1.2, and here required at least three sampling points between the two sourceswhen there are multiple sound sources; In the measurement signal including the noise, it musttake the regularization method to derive the correct solution, after comparison found that ithas obvious effect when decreased SNR; It can accurately separate each amount of soundfield of a single sound source by using sound pressure-velocity joint approach from thecoherent sound field, especially for the larger contribution of the source to the sound fieldwhich has a more reconstruction precision. Due to the basic algorithm based on soundpressure measurements reconstruct the vibration velocity has a lower accuracy, it is moreappropriate to analyze the sound pressure in the sound field separation and extended theapplication scale of HELS algorithm.
     Research the selection of the parameters for holographic measurement andreconstruction process in HELS algorithm, including the adaptation points’ position, thenumber of basis functions, the sampling interval, the location and size of the measuringsurface, studied the existence of optimal parameters by numerical simulation, combined withphysical mechanisms of HELS algorithms and mathematical models, analyzed the rationalityof each optimal parameters, quickly obtained optimal parameters, so as to provide the basisfor the HELS algorithm applying the engineering quickly and efficiently with the smallermeasurement surface.
     Research the movement acoustic holography method based on mobile frameworktechnology,processed the measurement data which exists Doppler frequency shift, obtainedthe spatial distribution of the sound field with no relative movement, combining with HELSproposed noise source identification methods of movement structures for handling thearbitrary shape; For coordinates errors in underwater measurement, utilized MUSIC near-fieldfocused beamforming correcting the sound source trajectory, through a series of numericalsimulations obtaining the following conclusions: the algorithm is only applicable in the caseof Mach less than0.1; When existing multiple sources in complex sound field, the combinedonly applies to the radiation field with the sound source’s frequency less than2.5kHz; It canget the similar accuracy with twice size of the sound surface by only1.3times the sound source surface by this algorithm, which can provide the convenience for its engineeringapplications; After utilizing the modified data reconstructing the sound field, the amplitudereconstructive accuracy and phase reconstructive accuracy have all exist differentimprovements, which proved the correctness and effectiveness of the algorithm,andefficiently resolved the problem for the long measurement time.
     Study the theory and application based on HELS algorithm of patch near-field acousticholography. Firstly proved the completeness of the approximation sound field and utilizing aseries of spherical wave functions of the weighted from a mathematical view, provides a solidtheoretical basis for applying HELS algorithm extrapolation in the sound field; Secondly theextrapolation process and the steps for reconstructing the sound field is given in detail; Finally,researched the selection of the parameters and the accuracy of reconstructed field in thiscombination algorithm, analyzed the size of the measurement surface and the selection of theextrapolation area by simulation, and compared with the conventional sound fieldreconstruction methods. By analyzing obtained that it existed a minimum measurementsurface can ensure a certain degree of sound field reconstruction accuracy and saving theproject cost; Extrapolation of data points does not exceed the actual measured data points. In asmall measuring aperture, Patch NAH based on HELS algorithm e has far superiorreconstruction performance to the conventional NAH, which has a slightly higher engineeringvalue.
     Finally carry out the test research of underwater near-field location and identificationmethod for noise sources, investigate the feasibility and accuracy of noise sources locationand identification based on this paper’s methods. Introduced hardware platform of the mufflerpool, designed to complete a full set of hydrophone arrays and acquisition systems,experimental methods and the implementation process. Based on above, as a research objectwith a spherical source in the muffler pool, completed a experimental study for the noisesource location and identification, and the laboratory experimental data acquisition; In theSonghua Lake test to process a test study by a cylindrical and fish lips transducer, completedthe acquisition of the outside experiment data; Finally, experimental results show that: thismethod is feasible and accurate, and provided a basis for its application in engineering.
引文
[1]刘伯胜,雷家煌.水声学原理.哈尔滨船舶工程学院出版社,1993:220-229页
    [2](美)R.J.尤立克.水声原理.洪申译.哈尔滨船舶工程学院出版社,1990:258-269页
    [3]吴国清.舰船噪声识别(Ⅱ)线谱稳定性和唯一性.声学学报,1999,24(1):6-11页
    [4]廖风云.潜艇辐射噪声测量及被动测距研究.哈尔滨工程大学硕士学位论文.
    [5]杨德森.水下航行器噪声分析及主要噪声源识别.哈尔滨工程大学博士学位论文.1998
    [6]张宝成,徐雪仙.舰艇水下噪声源贡献的分析.舰船力学情报,1994,(10):40-46页
    [7]孙大军.合成孔径声呐技术研究综述.哈尔滨工程大学学报,2000,21(1):51-56页
    [8]蒋国建,任克明,马杰等.噪声抵消法估计和抑制声呐部位主要自噪声.声学学报,1996,21(4):289-296页
    [9] W.F.King,III and D.Bechert.On the sources of wayside noise generated byhigh-speed trains.Journal of Sound and Vibration.1979,66(3):311-332P
    [10] B.Barsikow.Experiences with various configurations of microph one arrays used tolocate sound sources on railway trains operated by the DB AG,Journal of sound andVibration,1996,193(1):172-182P
    [11] H.Kook,G.B.Moeds,P.Davies and J.S.Bolton,An efficient procedure for visualizingthe sound field radiated by vehicles during standardized passbv tests,Journal ofSound and vibratin,2000,233(1):137-156P
    [12] Christensen J.J,Hald J.Beamforming.B&K Technical Review,2004,No.1:1-48
    [13] Hald J.Combined NAH and beamforming using the same array.B&K TechnicalReview,2005:No.1:11-39P
    [14]贾智骏,蒋伟康.基于传声器阵列的电泵噪声源识别研究.噪声与振动控制.2004,6:49-51页
    [15]郭祺丽,孙超,杨益新.宽带波束形成中近场补偿的实验研究.西北工业大学学报.2007,25(5):743-746页
    [16]惠娟,胡丹,惠俊英,殷敬伟.聚焦波束形成声图测量原理研究.声学学报.2007,32(4):356-361页
    [17]梅继丹,惠俊英,惠娟.水平阵聚焦波束形成声图定位算法研究.哈尔滨工程大学学报.2007,28(7):773-778页
    [18]时洁,杨德森,刘伯胜.基于虚拟时间反转镜的噪声源近场定位方法研究.兵工学报.2008,29(10):1215-1219页
    [19]时洁,杨德森,刘伯胜,宋海岩.基于MVDR聚焦波束形成的辐射噪声源近场定位方法.大连海事大学学报.2008,34(3):55-58页
    [20]杨德森,时洁,刘伯胜.矢量阵相干宽带MVDR聚焦波束形成.系统仿真学报.2010,22(2):473-477页
    [21]时洁,杨德森,时胜国.子带分解MVDR高分辨宽带聚焦波束形成算法研究.声学技术.2008,27(5):416-417页
    [22] Shi Jie,Liu Bosheng,Song Haiyan.Radiated noise sources location based on MVDRnear-field focused beamforming.IEEE Conference on Industial Electronics andApplications.2008:849-852P
    [23] SHI Jie,LIU Bosheng,SONG Haiyan.Research on technique to improve accuracyin SBL locating systems.Journal of Marine Science and Application.2008,7(1):59-64P
    [24]杨德森,时洁,刘伯胜.基于倒谱分析的水声信号被动定位时延估计算法研究[J].系统仿真学报.2009,21(2):610-612页
    [25] Maynard J.D,Williams E.G,and Y.Lee.Nearfiled acoustic holography I.Theoryof generalized holography and development to NAH.J.Acoust.Soc.Am,1985,78(4):1395-1413P
    [26] Veronesi W.A,Maynard J.D.Nearfiled acoustic holography (NAH) II.Holographicreconstruction algorithms and computer implementation.J.Acoust.Soc.Am.1987,81(5):1307-1322P
    [27] Weinreich G,Arnold E B.Method for measuring acoustic radiationfield.J.Acoust.Soc.Am.,1980,68,:404-411P
    [28] Veronesi W.A,Maynard J.D.Digital holography reconstruction of sourcees witharbitrarily shaped surfaces. J.Acoust.Soc.Am.1989,85(2):588-598P
    [29] Williams E G, Dardy H D. Generalized near-field acoustical holography forcylindrical geometry: theory and experiment. J. Acoust. Soc. Am.,1987,81(2):389-407P
    [30] Stepanishen P R, Chen H W. Near-field pressure and surface intensity for cylindricalvibrators. J. Acoust. Soc. Am.,1984,76:942-948P
    [31] Canel S M, Chassaugnon C. Radial extrapolation of wave fields by spectral methods.J. Acoust. Soc. Am.,1984,76:1823-1828P
    [32] Lee J C. Spherical acoustical holography of low frequency noise sources. AppliedAcoustics,1996,48(1):85-95P
    [33] Saijyou K, Yoshikawa S. Reduction methods of the reconstruction error for largescale implementation of near-field acoustical holography. J. Acoust. Soc.Am.,2001,110(4):2007-2023P
    [34] E. G. Williams. Continuation of acoustic near-fields. J. Acoust. Soc. Am.,2003,113:1273-1281P
    [35] E. G. Williams, B. H. Houston, P. C. Herdic. Fast Fourier transform and singularvalue decomposition formulations for patch near-field acoustical holography. J.Acoust. Soc. Am.,2003,114(3):1322-1333P
    [36]何元安,何祚镛,商德江.基于平面声全息的全空间场变换:II.水下大面积平面发射声基阵的近场声全息实验,2003,28(1),46~51页
    [37]何元安,何祚镛,基于平面声全息的全空间场变换:I.原理与算法,2002,27(6),507~512页
    [38]徐亮Patch近场声全息及近场声全息分辨率增强方法合肥工业大学博士论文2009
    [39]杨超基于局部近场声全息的机械噪声源特征提取技术上海交通大学博士论文2009
    [40]章林柯,何琳,朱石坚.潜艇主要噪声源识别方法研究.噪声与振动控制,2006,(4):7-10页
    [41] Park S H, Kim Y H. An improved moving frame acoustic holography for coherentband-limited noise. J. Acoust. Soc. Am.,1998,104(4):3179-3189P
    [42] Park S H, Kim Y H. Effects of the moving noise sources on the sound visualizationby means of moving frame acoustic holography. J. Acoust. Soc.Am.,2000,108(6):2719-2728P
    [43] Park S H, Kim Y H. Visualization of pass-by noise by means of moving frameacoustic holography. J. Acoust. Soc. Am.,2000,110(5):2326-2339P
    [44] Kim.Yang-Hann and Park.Soon-Hong. Moving frame acoustic holography for thevisualization of pass-by noise.Proceedings of National Conference on Noise ControlEnginering,1998:655-660P
    [45] Park, Soon-Hong and Kim.Effects of the speed of moving noise sources on the soundvisualization by means of moving frame acoustic holography. J. Acoust. Soc.Am.,2000,108(6):2719-2728P
    [46] Ruhala R J, Swanson D C. Planar near-field acoustical holography in a movingmedium. J. Acoust. Soc. Am.,2002,112(2):420-429P
    [47]杨殿阁,郑四发等.运动声源的声全息识别方法.声学学报.2002,27(4):357-362页
    [48]杨殿阁,刘峰等.声全息方法识别汽车运动噪声.汽车工程.2001,5(23):329-331页
    [49]罗禹贡,杨殿阁等.应用动态声全息方法识别轿车的行驶噪声源.汽车工程.2003,6(25):595-598页
    [50]郑凯,郑四发等.声全息分析噪声场的空间频域重建算法.清华大学学报(自然科学版).2002,42(2):247-250页
    [51]刘峰,杨殿阁等.利用声全息方法识别噪声源问题中声源辐值修正的研究.声学学报.2002,27(3):263-266页
    [52]罗禹贡,杨殿阁等.基于近场声全息理论的运动声源动态识别方法.声学学报.2004,29(3):226-230页
    [53]杨殿阁,罗禹贡,李兵等基于时域多普勒修正的运动声全息识别方法物理学报2010,59(7):4738-4747页
    [54] W. A. Veronesi, J. D. Maynard. Digital holographic reconstruction of source witharbitrarily shaped surfaces. J. Acoust. Soc. Am.,1989,85(2):588-598P
    [55] G. T. Kim and B. H. Lee.3-D sound source reconstruction and field repredictionusing the Helmholtz integral equation. Journal of Sound andVibration,1990,136(2):245-261P
    [56] M R. Bai. Application of BEM (boundary element method)-based acousticholography to radiation analysis of sound sources with arbitrarily shaped geometries.J. Acoust. Soc. Am.,1992,92(2):533-549P
    [57] A. Sarkissian. Reconstruction of the surface acoustic field on radiating structures. J.Acoust. Soc. Am.,1992,92(2):825-830P
    [58] Photiads D M. The relationship of singular value decomposition to wave-vectorfiltering in sound radiation problems. J. Acoust. Soc. Am.,1990,88(2):1152-1159
    [59] Borgiotti G V. The power radiated by a vibrating body in an acoustic field and itsdetermination from boundary measurements. J. Acoust. Soc.Am.,1990,88(4):1884-1893P
    [60] Kim B K, Ih J G.. On the reconstruction of the vibro-acoustic field over the surfaceenclosing an interior space using the boundary element method. J. Acoust. Soc.Am.,1996,105(5):3003-3016P
    [61] Kim B K, Ih J G. Design of an optimal wave-vector filter for enhancing the resolutionof reconstructed source field by near-field acoustical holography(NAH). J. Acoust.Soc. Am.,2000,107(6):3289-3297P
    [62] Kang S C, Ih J G. The use of partially measured source data in near-field acousticalholography based on BEM. J.Acoust.Soc.Am.,2000,107(5):2472-2479P
    [63] Kang S C, Ih J G.. Use of nonsingular boundary integral formulation for reducingerrors due to near-field measurements in the boundary element method basednear-field acoustic holography. J. Acoust. Soc. Am.,2001,109(4):1320-1328P
    [64] Nelson P A, Yoon S H. Estimation of acoustic source strength by inverse methods:Part conditioning of the inverse problem. Journal of Sound andVibration,2000,233:643-668P
    [65] Yoon S, Nelson P. Estimation of acoustic source strength by inverse methods: Part2,experimental investigation of methods for choosing regularization parameters.Journal of Sound and Vibration,2000,33:669-705P
    [66] Williams E G. Regularization methods for near-field acoustical holography. J. Acoust.Soc. Am.,2001,110:1976-1988P
    [67] Sarkissian A,Charles F. Gaumond, et al. Reconstruction of the acoustic field over alimited surface area on vibrating cylider. Journal of the Acoustic Society ofAmerica,1993,93(1):48-54P
    [68] Saijyou K, Uchida, Hiroshi. Data extrapolation method for boundary elementmethod-based near-field acoustical holography. Journal of the Acoustic Society ofAmerica,2004,115(2):785-796P
    [69] Williams E G, Houston B H., Herdic P C., et al. Interior near-field acousticalholography in flight. J. Acoust. Soc. Am.,2000,108(4):1451-1463P
    [70] S. I. Kim and J. G. Ih. Use of additional scattering bodies in the NAH based on theinverse BEM. Proceedings of the32nd International Congress and Exposition onNoise Control Engineering,2003:2235-2242P
    [71]暴雪梅.宽带的以边界元为基础的非共形全息声场变换方法研究.哈船院硕士学位论文.1995:35-43页
    [72]何元安.大型水下结构近场声全息的理论与实验研究哈尔滨工程大学博士学位论文2000:71-91页
    [73]胡博.基于矢量阵近场声全息技术的噪声源识别方法研究哈尔滨工程大学博士学位论文2009
    [74] Chao Y C. An implicit least-square method for the inverse problem of acousticradiation. J. Acoust. Soc. Am.,1987,81(5):1288-1292P
    [75] Wang Z, Wu S F. Helmholtz equation-least method for reconstructing the acousticpressure field. J. Acoust. Soc. Am.,1997,102(4):2020-2032P
    [76] Wu S F, Yu J.Reconstructing interior acoustic pressure fields via HelmholtzEquation-least Square method. J. Acoust. Soc. Am.,1998,104(4):2054-2060P
    [77] Wu S F, Lim B D. Determination of the optimal number of expansion terms in theHELS method. J. Acoust. Soc. Am.,2000,108:2505-2513P
    [78] Rayess N E., Wu S F. Experimental validations of the HELS method forreconstructing acoustic radiation from a complex vibrating structure. J. Acoust. Soc.Am.,2000,107(6):2955-2964P
    [79] Wu S F, Zhao X. Combined Helmholtz equation-least method for reconstructing theacoustic radiation from arbitrarily shaped objects. J. Acoust. Soc.Am.,2002,112(1):179-188P
    [80] Hybrid near-field acoustic holography. J. Acoust. Soc. Am.,2004,115(1):207-217
    [81] Zhao X, Wu S F. Reconstruction of vibroacoustic fields in half space by using hybridnear-field acoustical holography. J. Acoust. Soc. Am.,2005,117(2):555-565P
    [82] Semenova T, Wu S F. The Helmholtz equation least-squares method and Rayleighhypothesis in near-field acoustical holography. J. Acoust. Soc.Am.,2004,115(4):1632-1640P
    [83] Semenova T, Wu S F. On the choice of expansion functions in the Helmholtzequation least-squares method. J. Acoust. Soc. Am.,2005,117(2):701-710P
    [84] Wu S F, Rayess N E, Shiau N M. Visualizing sound radiation from a vehicle frontend using the HELS method. Journal of Sound and Vibration,2001,248(5):963-974P
    [85] Huancai Lu, Sean F Wu. Reconstruction of vibroacoustic responses of a highlynonspherical structure using Helmholtz equation least-squares method. J. Acoust. Soc.Am.,2009,125(3):1538-1548P
    [86] Huancai Lu. Reconstruction of vibroacoustic responses using Helmholtz equationleast-squares method. PH.D.Dissertation. Wayne State University.2007
    [87] Nassif E Rayess. An investigation in acoustic holography using the Helmholtzequation-least squares method. PH.D. Dissertation Wayne State University,2001
    [88] Hald J. Patch near-field acoustical holography using a new statistically optimalmethod Inter-Noise03, Jeju(Korea),2003:2203-2210P
    [89] Hald J. Patch holography in cabin environments using a two-layer handheld array withan extended SONAH algorithm. Proceeding of Euro-noise2006, Tampere, Finland
    [90] Koopmann G H, Song L, Fahnline J. A method for computing acoustic fields basedon the principle of wave superposition. J. Acoust. Soc. Am.,1989,86(5):2433-2438P
    [91] Song L, Koopmann G H, Fahnline J. Numerical errors associated with the method ofsuperposition for computing acoustic fields. J. Acoust. Soc. Am.1991,89(6):2625-2633P
    [92] Fahnline J, Koopmann G H. A numerical solution for the general radiation problembased on the combined methods of superposition and singular value decomposition. J.Acoust. Soc. Am.,1991,90:2808-2819P
    [93]于飞.基于波叠加方法的声全息技术与声学灵敏度分析.合肥工业大学博士学位论文.2005:79-102页
    [94]于飞,陈剑,陈心昭等.基于波叠加方法的近场声全息技术.全国博士生学术论坛2004(哈尔滨工业大学).75-80页
    [95]于飞,陈心昭,李卫兵等.空间声场全息重建的波叠加方法研究.物理学报.2004,53(8):2607-2613页
    [96]于飞,陈剑,李卫兵等.一种稳健的全波数空间声场重构技术.中国科学(E辑).2004,34(9):1069-1080页
    [97]李卫兵,陈剑,陈心昭.基于波叠加方法的半自由声场全息理论.中国科技论文在线优秀论文.2005,11:563页
    [98]李卫兵,陈剑,毕传兴,陈心昭.联合波叠加法的全息理论与实验研究.物理学报.2006,55(3):1260-1270页
    [99]李卫兵.基于统计最优和波叠加方法的近场声全息技术研究.合肥工业大学博士学位论文.2006:99-106页
    [100] L. S. Jarry, A turiac on underwater acoustic imaging. Acoustical Imaging,1979:599-630P
    [101] Nitadirtk, An experimental underwater acoustic imaging system usingmulti-beamsscanning, Acoustical imaging,1978,8:249-266P
    [102] Sarkissian A, Nearfield acoustical holography for axisymmetric geometries. J. Acoust.Soc.Am.,1990,88(2):961-966P
    [103]楼红伟,姜俊奇,何祚镛.水听器线列阵近场声压测量误差实验研究,应用声学.2001,20(3):11-17页
    [104]张德俊.近场声全息对振动体及其辐射场的成像.物理学进展,1996,16(34):613-623页
    [105]张德俊.振动体及其辐射场的近场声全息试验研究.声学学报,1992,17(6):436-445页
    [106] Mann J A, Claude J Pascal. Locating noise sources on an industrial air compressorusing broadband acoustical holography from intensity measurements(BAHIM).Noise Control Engineering Journal.1992,39(1):3-12P
    [107]何祚镛.声学逆问题-声全息变换技术及源特性判别.物理学进展,1996,16(34):600-612页
    [108]程建政.编磬振动特性的声全息研究.声学学报,2000,25(1):87-92页
    [109] Metherall A F, Spinak S. Acoustic holography of none instant wavefronts detected ata single point in space. Appl.Phy.Lett.1968,13:22-28P
    [110] Cutrona L J, Leith E N, etc. On the application of coherent optical processingtechnique to synthetic aperture radat. PIEEE,1996,54:1026-1033P
    [111]蒋伟康,高博田.声近场综合试验解析技术及其在车外噪声分析中的应用.机械工程学报.1998,34(5):76-84页
    [112]杨瑞梁.快速噪声诊断技术.黄河水利出版社,2006
    [113]肖庭延于慎根王彦飞等反问题的数值解法科学出版社,2003:8-9页
    [114]何祚镛赵玉芳声学理论基础
    [115] Victor Isakov, Sean F Wu. On theory and application of the Helmholtz equation leastsquares method in inverse acoustic. Inverse Problems,18(2002):1147-1159P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700