矩形板超声电机的振子振型激励技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的电磁电机不同,超声电机是基于摩擦驱动原理的一类新型电机。超声电机利用弹性压电振子的共振,通过摩擦耦合驱动与其接触的动子运动。该类电机具有低速大转矩、功率体积比高、结构紧凑、定位精度高、不受电磁干扰、断电自锁等优点,可以满足直接驱动领域、精密驱动领域和无磁驱动领域对驱动器的微型化、精密化和智能化的要求。
     为了成功地设计出超声电机,并使超声电机输出较好的工作性能,必须研究超声电机的振子振型激励技术。在预压力和负载一定的情况下,振子对动子做功大小,取决于振子表面接触点的运动轨迹。而振子表面接触点的运动轨迹,是振子在所有工作模态下振动的综合作用。因此如何有效地激励出振子的工作模态,并使各个工作模态成功耦合是超声电机设计的核心工作,也是提升超声电机输出性能的关键。
     对于特定尺寸的压电振子来说,振子表面质点的运动轨迹主要受振子工作模态的类型、工作模态的耦合方式、激励信号的电压、频率及其施加位置等因素的影响。本文主要围绕着如何有效地激励出超声电机的工作模态、并使各模态之间成功耦合,从三个方面研究矩形板超声电机的振子振型激励技术,这三个方面为:(a)振子的工作模态耦合方式(b)振子各工作模态的频率一致性调节方法(c)激励信号的施加位置确定方法。
     本文的主要工作如下:
     1.提出并实现了一种矩形板超声电机的双频模态叠加激励方法,得出了两个不同频率的模态可以叠加在一起的条件。采用这种激励方式时,在振子上同时激励出两个不同频率的弯曲振动模态。振子表面接触点在振子和动子接触面的切向和法向的振动分别是由两个振动模态的分量叠加而成,因此可以获得较大的振动强度,振子可以对动子做更多的功。通过对压电振子表面的银电极进行分区,选择不同的分区来分别激励各个模态,可以使每个模态都能同时获得较大的振动幅值。根据理论分析,成功地制作了采用双频模态叠加激励的矩形板超声电机,并测量了该电机的输出特性,证明了该激励方法的有效性。
     2.提出了一种基于遗传算法、神经网络和有限元算法的超声电机工作模态频率一致性的自动调节方法。该调节方法将压电陶瓷和金属基体组成的复合压电振子作为研究对象,用有限元方法建立了复合压电振子的机电耦合动力学模型,更准确地描述了压电振子的机电耦合现象。采用BP神经网络对ANSYS输出结果中的目标模态进行识别,减少了人工干预,可以实现矩形板超声电机纵、弯模态频率一致性的自动调节,能大大加快求解过程,提高求解精度。计算结果显示,采用该调节方法,可以使矩形板超声电机的纵、弯模态的频率差计算值减小至1.146Hz。
     3.提出了一种将人工免疫算法和有限元算法相结合的确定矩形板超声电机振子的最佳激励区域的方法。该方法将快速、高效的人工免疫算法应用到超声电机的设计中,可大幅节约计算时间。该方法将振子对动子做的功作为解的评价标准,而不是只考虑振子在某个方向的位移作为目标函数,使计算结果更能接近超声电机的实际工作情况。计算结果表明,使用该方法确定超声电机的最佳激励位置及最佳激励电极面积,算法可以快速地收敛到全局最优解。对两个振子,包括五种激励情况下的无负载转速进行实验对比。实验结果显示,使用计算的最佳激励区域,超声电机具有最大的输出转速,与计算的结果相一致,证明了目标函数的有效性。表明采用人工免疫算法和有限元算法相结合,可快速、有效的用于同时寻找超声电机的最佳激励位置及激励电极面积。
The ultrasonic motors which utilize the mechanism of friction drive are quite differentwith the conventional electric motors. They utilize the friction force between the resonantvibrators and the rotors to drive. They are characterized as high torque at low speed, hightorque volume ratio, precise and accurate positioning, no electromagnetic interference andself-breaking without extra energy consumption, thus meeting the requirements ofmicrominiaturization, high precision and intellectualization in the areas of direct drive,precise drive and non-magnetic drive.
     To successfully design an ultrasonic motor, and to get better motor performance, it isrequired to investigate the exciting technologies of vibrator for ultrasonic motors. When thepre-force and the load are fixed, the work that the vibrator does to the mover is determined bythe motion trajectory of the contact point. The motion trajectory of the contact point onvibrator surface is the coupling between working vibration modes. So how to effectivelyexcite the working vibration mode and successfully couple the working vibration modes arethe key issues in the design of ultrasonic motors. They are also the key to achieve betterperformances of ultrasonic motors.
     For the specific piezoelectric vibrator, the motion trajectory of the contact point onvibrator surface depends on the type of working vibration mode, the coupling betweenworking vibration modes, the amplitude of the exciting voltage, the frequency of the excitingvoltage and the exciting location on vibrator. This dissertation focuses on how to effectively excite and successfully couple the working vibration modes of ultrasonic motor vibrator, andit investigates the exciting technologies of vibration shape of ultrasonic motors in threeaspects:(a) the coupling of working vibration modes (b) the regulation method of thefrequency difference between working vibration modes (c) the method of determining theoptimal exciting location on vibrator.
     The main research contents are as follows:
     1. A dual-frequency modal superposition exciting method for ultrasonic motor withrectangular shaped vibrator has been proposed and realized. The requirements forsuperposition of two vibration modes are obtained. There are two bending vibration modeswith different frequencies are excited and superposed in this exciting method. Both thenormal vibration and the tangential vibration of contact point are superposition of twovibration modes, so the vibrator can obtain larger vibration intensity and the vibrator can domore work to the rotor subsequently. By selecting different electrode segments to excite thetwo vibration modes separately, each vibration mode could obtain the largest vibrationamplitude at the same time. According to theoretical analysis, an ultrasonic motor usingdual-frequency modal superposition exciting is successfully fabricated, and the motorperformances are experimentally measured to justify the effectiveness of this exciting method.
     2. A regulation method by combing genetic algorithm, neural network and finite elementanalysis is proposed to regulate the accordance of two frequencies of two vibration modes forultrasonic motors with rectangular shaped vibrator. This regulation method investigates thevibration of metal-piezoelectric composite vibrator, and modeling the mechanical-electriccoupling for metal-piezoelectric composite vibrator utilizing the finite element method. Theelectromechanical coupling of piezoelectric vibrator is accurately described. The backpropagation neural network is used to identify the objective mode from the output data offinite element analysis. This can automatically regulate the accordance of the frequencies oftwo different vibration modes, thus can save a lot of calculating time. The calculation results show that, using this regulation method, the frequency difference between two vibrationmodes can decrease to1.146Hz.
     3. An optimization method by combining artificial immune algorithm and finite elementanalysis is proposed for the exciting position optimization of a piezoceramic plate typeultrasonic motor. This method uses the artificial immune algorithm as optimizer. The artificialimmune algorithm has the merit of high efficiency which quick convergence. This can save alot of calculation time. This optimization method use the work that vibrator does to rotor asthe evaluation criterion, instead of only taking the vibration amplitude in one direction as theevaluation criterion of the possible solutions, which makes the calculating results closely tothe actual working condition. Calculating results show that, using this method to calculate theoptimal exciting electrode, the algorithm can quickly converge to global optimum. The motorperformances of two vibrators which include five exciting cases are experimentally measured.Experimental results show that, using the calculated optimal exciting electrode, the rotor canobtain the largest no-load rotational speed of five different exciting cases. These show goodagreement with the calculating results, which can justify the effectiveness of the objectivefunction. This proved that using this method, both the optimal exciting position and size ofexciting electrode can be quickly and accurately determined.
引文
[1]李朝东.微电机研究的最新动态与应用展望[J].微特电机,2003(1):3-6.
    [2] Uchino K. Piezoelectric actuators2006-Expansion from IT/robotics toecological/energy applications[J]. Journal of Electroceramics,200820(3-4):301-311.
    [3]赵淳生.超声电机技术与应用[M].北京:科学出版社,2007:1-300.
    [4] Schenker, P S., Bar Cohen, Y, Brown, D K., Lindemann, R A., Garrett, M S.,Baumgartner, E T., Lee, S, Lih, S S., Joffe, B. A composite manipulator utilizing rotarypiezoelectric motors: new robotic technologies for Mars in-situ planetary science[M].Bellingham, WA, INTERNATIONAL: Society of Photo-Optical InstrumentationEngineers,1997: XII,930p.
    [5] Uchino K. Recent trend of piezoelectric actuator developments[C]. Micromechatronicsand Human Science,1999. MHS '99. Proceedings of1999International Symposium on,1999:3-9.
    [6] Das, H, Bao, X, Bar Cohen, Y, Bonitz, R, Lindemann, R, Maimone, M, Nesnas, I,Voorhees, C. Robot manipulator technologies for planetary exploration[C]. SPIE, SmartStructures and Integrated Systems,1999.
    [7] Charles F. Bergh. A COMPACT, LOW POWER TWO-AXIS SCANNING LASERRANGEFINDER FOR MOBILE ROBOTS[C].7th Mechatronics Forum InternationalConference2000,2000.
    [8]郑亮亮,黄卫清,赵淳生.超声电机驱动的目标视觉跟踪系统设计与实现[J].传感器与微系统,200726(12):77-79.
    [9]郭语,孙志峻,黄卫清.超声电机驱动五指灵巧手的设计与仿真[J].机械科学与技术,200726(10):1264-1267.
    [10]周铁英,张筠,陈宇,鹿存跃,傅德永,李毅,胡笑平.螺母型超声电机及其在透镜调焦中的应用[J].科学通报,200853(11):1251-1256.
    [11] Ferreira Antoine, Minotti Patrice. Control of a multidegree of freedom standing waveultrasonic motor driven precise positioning system[J]. Review of Scientific Instruments,199768(4):1779-1786.
    [12] Shafik M., Shehab E., Abdalla H. A linear piezo-electric ultrasonic motor using a singleflexural vibrating bar for electro-discharge system industrial applications[J]. TheInternational Journal of Advanced Manufacturing Technology,200945(3):287-299.
    [13] Tan K. K., Ng S. C., Huang S. N., Tan L. G. Robust adaptive control of piezoelectricactuators with an application to intracytoplasmic sperm injection[J]. Asian Journal ofControl,20057(1):63-72.
    [14] Heverly Matthew, Dougherty Sean, Toon Geoffrey, Soto Alejandro, BlavierJean-Francois. A Low Mass Translation Mechanism for Planetary FTIR Spectrometryusing an Ultrasonic Piezo Linear Motor[C]. Proceedings of the37th AerospaceMechanisms Symposium,,2004:251-262.
    [15]纪跃波,赵淳生,黄卫清,白永明.基于旋转型超声电动机的电控坐标平台[J].现代制造工程,2006(12):4-6.
    [16] Roger Gassert, Akio Yamamoto, Dominique Chapuis, Ludovic Dovat, Hannes Bleuler,Etienne Burdet. Actuation methods for applications in MR environments[J]. Concepts inmagnetic resonance. Part B, Magnetic Resonance Engineering200629B(4):191-209.
    [17] Nicholas Maropis.Method and apparatus for delivering vibratory energy:UnitedStates,3184842[P].1965
    [18] FJ Britten. Britten's Watch and Clock Makers' Handbook Dictionary and Guide[M].London,1978:109.
    [19] Snitka V., Mizariene V., Zukauskas D. The status of ultrasonic motors in the formerSoviet Union[J]. Ultrasonics,199634(2-5):247-250.
    [20] Lewis Balamuth.Ultrasonic motor system:United States,3396892[P].1968
    [21] Williams Alfred L. W., Brown, Walter J.Piezoelectric motor:UnitedStates,2439499[P].1948
    [22] Lavrinenko V.V.Piezoelectric motor:Soviet Union,217509[P].1964
    [23] N-Nagy F. L., Calderwood J. H. Solid state piezo-resonant crystal motor operating onelectrostatic principle[J],196910(5):529-535.
    [24] Sashida, Toshiiku.Supersonic vibration driven motor device:UnitedStates,4325264[P].1982
    [25] Sashida, Toshiiku.Motor device utilizing ultrasonic oscillation:UnitedStates,4562374[P].1985
    [26] Kumada A. A Piezoelectric Ultrasonic Motor[J]. Jpn. J. Appl. Phys.1.,198524(Suppl.24-2):739-741.
    [27]伊势悠纪彦.超音波モ—タ[J].日本音响学会志,1987(3).
    [28]尤向阳.超声波电机驱动控制装置的建模与仿真[硕士论文].河南洛阳:河南科技大学.2008
    [29]赵淳生.对发展我国超声电机技术的若干建议[J].微电机,200639(2):64-67.
    [30]赵淳生,李朝东.日本超声电机的产业化、应用和发展[J].振动、测试与诊断,199919(1):1-7.
    [31]黄茹楠,陈在礼.超声电机在国外的发展[J].振动、测试与诊断,200222(4):270-276.
    [32]赵淳生.21世纪超声电机技术展望[J].振动、测试与诊断,200020(1):7-12.
    [33]陈维山,李霞,谢涛.超声波电动机在太空探测中的应用[J].微特电机,2007(1):42-45.
    [34]陈忠.压电电动机[J].微特电机,1974(2):19-30.
    [35]陈忠.国外新原理新结构微特电机[J].微特电机1975(02):1-84.
    [36]指田,年生.振动片型和表面波型超声波电机[J].压电与声光198501):73-78.
    [37]杨顺意.压电电动机[J].微特电机,1983(1):59.
    [38] YukihikoIse,冯锦堂.行波超声电机可提供高的转换效率[J].压电与声光1987(02):84-88.
    [39] Akiyama Yuji,张传忠.日本超声电机的现状[J].压电与声光,198804):58-62.
    [40]刘一声.压电超声电机及其应用[J].压电与声光,198810(6):60-71.
    [41]周铁英,董蜀湘.环形三迭片超声振子及用其钳位的微动马达:中国,1043225[P].1991
    [42]严仁博.超声马达[J].应用声学,199211(1):39-41.
    [43]周铁英.发展中的超声马达[J].工科物理1992(4):36-40.
    [44]赵淳生.超声电机在南京航空航天大学的研究与发展[J].振动、测试与诊断,200525(3):167-173.
    [45]赵雅洁,杨明.基于SCI-E数据库的超声电动机研究[J].微电机,200741(2):60-64.
    [46]曲建俊,王彦利,曲焱炎,毛庆波.超声马达梯度涂层摩擦材料研究[J].摩擦学学报,200929(1):25-29.
    [47]田秀,曲建俊,孙凤艳.用于超声电机的聚四氟乙烯/聚苯酯复合摩擦材料[C].第十三届中国小电机技术研讨会论文集,2008:343-347.
    [48] Zhou T., Zhang K., Chen Y., Wang H., Wu J., Jiang K., Xue P. A cylindrical rodultrasonic motor with1mm diameter and its application in endoscopic OCT[J]. ChineseScience Bulletin,200550(8):826-830.
    [49]郭吉丰,伍建国.航天用大力矩高精度超声波电机研究[J].宇航学报,200425(1):70-76.
    [50]陈宇,刘庆利,周铁英.大力矩行波超声电机的性能[J].清华大学学报(自然科学版),200646(3):396-398.
    [51]徐志科,胡敏强,金龙,顾菊平.大直径行波型超声电机的优化[J].微电机,200538(3):16-19.
    [52]陈维山,郝铭,赵学涛,陈思,石胜君.纵弯复合多自由度球形超声电机的研究[J].振动与冲击,200928(7):105-110.
    [53]赵学涛.夹心换能器式多自由度球形超声波电动机研制[J].微特电机,2009(4):7-10.
    [54]夏长亮,邵桂萍,史婷娜,王香存.液体媒质超声波电机的特性仿真与实验研究[J].天津大学学报,200639(2):135-140.
    [55]李朝东.三角形低矮式微型直线超声电机[C].第十二届中国小电机技术研讨会论文集,2007:146-149.
    [56]周铁英,陈宇.超声电机的发展与展望[C].中国声学学会功率超声分会2007年学术年会论文集,2007:8-18.
    [57] Wallaschek Jorg. Piezoelectric Ultrasonic Motors[J]. Journal of Intelligent MaterialSystems and Structures,19956(1):71-83.
    [58] Uchino K. Piezoelectric ultrasonic motors: overview[J]. Smart Materials&Structures,19987(3):273-285.
    [59]董迎晖,赵淳生.摇头型超声电机在国内外的发展[J].微特电机,2003(2):35-37.
    [60] Vyshnevsky O., Kovalev S., Wischnewskiy W. A novel, single-mode piezoceramic plateactuator for ultrasonic linear motors[J]. Ultrasonics, Ferroelectrics and FrequencyControl, IEEE Transactions on,200552(11):2047-2053.
    [61] Nakamura K., Margairaz J., Ishii T., Ueha S. Ultrasonic stepping motor using spatiallyshifted standing vibrations[J]. IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control,199744(4):823-828.
    [62]陶征,赵淳生.电刷式纵扭型超声电机结构设计中的关键技术[J].振动与冲击,200524(06):75-80.
    [63]石胜君,陈维山,刘军考,赵学涛.一种基于纵弯夹心式换能器的直线超声电机[J].中国电机工程学报,200727(18):30-34.
    [64] Dong Shuxiang, Cagatay S., Uchino K., Viehland D. A`Center-Wobbling' UltrasonicRotary Motor Using a Metal Tube-Piezoelectric Plate Composite Stator[J]. Journal ofIntelligent Material Systems and Structures,200213(11):749-755.
    [65] Kuribayashi Kurosawa M., Kodaira O., Tsuchitoi Y., Higuchi T. Transducer for highspeed and large thrust ultrasonic linear motor using two sandwich-type vibrators[J].Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,199845(5):1188-1195.
    [66] Nakamura K., Satonobu J., Dongkyon Lee, Ueha S. An optimum design for the hybridtransducer ultrasonic motor in symmetrical structure[C]. Ultrasonics Symposium,1998.Proceedings.,1998IEEE,1998:703-706vol.1.
    [67] Lu C., Zhou T., Chen Y., Lu K. Piezoelectric rod micro ultrasonic motor withshear-bending modes[J]. Japanese Journal of Applied Physics Part1-Regular PapersBrief Communications&Review Papers,200645(5B):4770-4772.
    [68] Takano Takehiro, Tomikawa Yoshiro, Yamanoi Masato, Hirose Seiji, Kusakabe Chiharu.Operational characteristics of a same-phase drive-type ultrasonic motor[C]. Proc. SPIE,Smart Electronics and MEMS,1997:325-328.
    [69] Kurosawa M., Takahashi M., Higuchi T. Ultrasonic linear motor using surface acousticwaves[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,199643(5):901-906.
    [70] Tsujino J. Ultrasonic motor using a one-dimensional longitudinal-torsional vibrationconverter with diagonal slits[J]. Smart Materials&Structures,19987(3):345-351.
    [71] Bai D. Z., Ishii T., Nakamura K., Ueha S., Yonezawa T., Takahashi T. An ultrasonicmotor driven by the phase-velocity difference between two traveling waves[J]. IEEETransactions on Ultrasonics Ferroelectrics and Frequency Control,200451(6):680-685.
    [72] Fleischer M., Stein D., Meixner H. New type of piezoelectric ultrasonic motor[J].Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,198936(6):614-619.
    [73] Aoyagi Manabu, Tomikawa Yoshiro, Takano Takehiro. Ultrasonic Motors UsingLongitudinal and Bending Multimode Vibrators with Mode Coupling by ExternallyAdditional Asymmetry or Internal Nonlinearity[J]. Japanese Journal of Applied Physics,31(Part1, No.9B):3077.
    [74] Ming Yang, Richardson R. C., Levesley M. C., Walker P. G., Watterson K. Performanceimprovement of rectangular-plate linear ultrasonic motors using dual-frequency drive[J].Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,200451(12):1600-1606.
    [75] Kumada Akio. A Piezoelectric Ultrasonic Motor[J]. Japanese Journal of Applied Physics,198524(Supplement24-2):739-741.
    [76] Lim Kee-Joe, Lee Jong-Sub, Kang Seong-Hwa. The design and characteristics of ringtype linear ultrasonic motor for X-Y stage[J]. Journal of Electroceramics,200617(2):557-560.
    [77] Lu Cunyue, Xie Tian, Zhou Tieying, Chen Yu. Study of a new type linear ultrasonicmotor with double-driving feet[J]. Ultrasonics,200644(Supplement1): e585-e589.
    [78]冯威,邬锡忠,魏燕定,郭吉丰.纵扭复合型超声波电机原理及模态简并研究[J].微电机,200134(6):7-12.
    [79]孙合明,赵淳生,朱晓东,高亹.纵扭型压电超声电机的设计及有限元分析[J].微电机,200235(4):7-10.
    [80]许海,赵淳生.一种新型直线超声电动机设计[J].微电机,200740(6):25-27.
    [81]刘剑,赵淳生.基于矩形薄板面内振动的直线型超声电机的研究[J].声学学报,200328(1):86-90.
    [82]许海.双足型直线超声电机的原理分析及结构设计[J].机械设计与制造,2007(5):48-50.
    [83]陶征,赵淳生.基于Ansys的纵扭超声电机定子的优化设计方法[J].压电与声光,200729(5):603-608.
    [84]时运来,李玉宝,赵淳生.面内模态直线型超声电机的优化设计[J].中国电机工程学报,200828(30):56-60.
    [85] Loveday Philip W., Long Craig S., Groenwold Albert A. Ultrasonic motor resonatordesign using shape and topology optimization[C]. Smart Structures and Materials2004:Smart Structures and Integrated Systems,2004:451-458.
    [86] Bouchilloux Philippe, Uchino Kenji. Combined Finite Element Analysis-GeneticAlgorithm Method for the Design of Ultrasonic Motors[J]. Journal of IntelligentMaterial Systems and Structures,200314(10):657-667.
    [87] Bouchilloux Philippe, Cagatay Serra, Uchino Kenji, Koc Burhanettin. Finite elementmodeling and optimization of tube-shaped ultrasonic motors[C]. Smart Structures andMaterials2003: Smart Structures and Integrated Systems,2003:267-276.
    [88] Zhao C. S., Li Z. R., Huang W. Q. Optimal design of the stator of a three-DOFultrasonic motor[J]. Sensors and Actuators a-Physical,2005121(2):494-499.
    [89] Shiyang Li, Ming Yang. Particle swarm optimization combined with finite elementmethod for design of ultrasonic motors[J]. Sensors and Actuators A: Physical,2008148(1):285-289.
    [90]蒋峥,戴连奎,吴铁军.结合序列线性规划法的混合遗传算法[J].信息与控制,200433(3):299-302.
    [91]张慧生,王党生.约束变尺度法应用探讨[J].新疆工学院学报,199415(4):248-253.
    [92]孙合明,魏守水,赵淳生.纵扭复合型压电超声电机的研究[J].南京航空航天大学学报,200032(5):603-607.
    [93]程凯,李朝东.棒型直线超声电机最佳激励位置的确定[J].机电工徎,200118(6):55-57.
    [94] Ning H. H. Optimal number and placements of piezoelectric patch actuators instructural active vibration control[J]. Engineering Computations,200421(6):651-665.
    [95] Frecker Mary I. Recent Advances in Optimization of Smart Structures and Actuators[J].Journal of Intelligent Material Systems and Structures,200314(4-5):207-216.
    [96] Demetriou Michael A. Integrated Actuator-Sensor Placement and Hybrid ControllerDesign of Flexible Structures Under Worst Case Spatiotemporal DisturbanceVariations[J]. Journal of Intelligent Material Systems and Structures,200415(12):901-921.
    [97] Johnson Terrence, Frecker Mary I. Optimal placement of active material actuators usinggenetic algorithm[C]. Smart Structures and Materials2004: Modeling, SignalProcessing, and Control,2004:221-231.
    [98] Sethi V., Song G. Pole-Placement Vibration Control of a Flexible Composite I-beamusing Piezoceramic Sensors and Actuators[J]. Journal of Thermoplastic CompositeMaterials,200619(3):293-307.
    [99] Rama Mohan Rao A., Sivasubramanian K. Optimal placement of actuators for activevibration control of seismic excited tall buildings using a multiple start guidedneighbourhood search (MSGNS) algorithm[J]. Journal of Sound and Vibration,2008311(1-2):133-159.
    [100] Kumar K Ramesh, Narayanan S. Active vibration control of beams with optimalplacement of piezoelectric sensor/actuator pairs[J]. Smart Materials and Structures,200817(5):055008.
    [101] Mehrabian Ali Reza, Yousefi-Koma Aghil. A novel technique for optimal placement ofpiezoelectric actuators on smart structures[J]. Journal of the Franklin Institute, InPress(Corrected Proof).
    [102] Peng Fujun, Ng Alfred, Hu Yan-Ru. Actuator Placement Optimization and AdaptiveVibration Control of Plate Smart Structures[J]. Journal of Intelligent Material Systemsand Structures,200516(3):263-271.
    [103] Spier C., Bruch J. C. Jr, Sloss J. M., Adali S., Sadek I. S. Placement of Multiple PiezoPatch Sensors and Actuators for a Cantilever Beam to Maximize Frequencies andFrequency Gaps[J]. Journal of Vibration and Control,200915(5):643-670.
    [104] Ojeda X., Mininger X., Ben Ahmed H., Gabsi M., Lecrivain M. Piezoelectric ActuatorDesign and Placement for Switched Reluctance Motors Active Damping[J]. EnergyConversion, IEEE Transactions on,200924(2):305-313.
    [105] Dhuri K. D., Seshu P. Multi-objective optimization of piezo actuator placement andsizing using genetic algorithm[J]. Journal of Sound and Vibration,2009323(3-5):495-514.
    [106]吕永桂,魏燕定,陈子辰.基于遗传算法的压电扭转驱动器优化布置[J].浙江大学学报(工学版),200741(3):471-474.
    [107] Silva E. C. N. Topology optimization design of flextensional actuators[J]. IEEEtransactions on ultrasonics, ferroelectrics, and frequency control,200047(3):657-671.
    [108] Silva Emilio Carlos Nelli. Topology Optimization Applied to The Design of LinearPiezoelectric Motors[J]. Journal of Intelligent Material Systems and Structures,200314(4-5):309-322.
    [109] Fernandez J. M., Perriard Y. Sensitivity analysis and optimization of a standing waveultrasonic linear motor[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEETransactions on,200653(7):1352-1361.
    [110] Flueckiger M., Fernandez J. M., Giljum M., Perriard Y. Optimization of a Single PhaseUltrasonic Linear Motor[C]. Ultrasonics Symposium,2007. IEEE,2007:2327-2330.
    [111] Rho Jong-Seok, Lee Chang-Hwan, Jung Hyun-Kyo. Optimal design of ultrasonic motorusing evolution strategy and finite element method[J]. International Journal of AppliedElectromagnetics and Mechanics,200725(1):699-704.
    [112] Silva Emilio Carlos Nelli, Kikuchi Noboru. Design of piezoelectric transducers usingtopology optimization[J]. Smart Materials and Structures,19998(3):350-364.
    [113] Canfield S., Frecker M. Topology optimization of compliant mechanical amplifiers forpiezoelectric actuators[J]. Structural and Multidisciplinary Optimization,200020(4):269-279.
    [114]陈文英,阎绍泽,褚福磊.免疫遗传算法在智能桁架结构振动主动控制系统优化设计中的应用[J].机械工程学报,200844(2):196-200.
    [115]金一粟,周永华,梁逸曾.改进粒子群优化算法对反应动力学参数的估计[J].中南大学学报(自然科学版)200839(4):694-699.
    [116]吴博达,鄂世举,杨志刚,程光明.压电驱动与控制技术的发展与应用[J].机械工程学报,200339(10):79-85.
    [117]徐志科,胡敏强,龙金.行波超声波电机的动力学模型仿真[J].东南大学学报(自然科学版),200838(6):1072-1076.
    [118]曾平,程光明,杨志刚,吴博达,吴献威,陈西平.单振子多自由度压电马达研究[J].压电与声光,200022(5):306-308.
    [119]余作霸.微型行波超声波电机的研制[硕士论文].浙江杭州:浙江大学.2006
    [120]胡敏强,金龙,顾菊平.超声波电机原理与设计[M].北京:科学出版社,2005:1-280.
    [121]段志杰,李千,吴华德,杨纤颖.超声电机用压电材料的研究进展[J].材料导报,200822(6):24-27.
    [122]许文本,焦群英.机械振动与模态分析基础[M].北京:机械工业出版社,1998.
    [123] D.J.EWINS,赵淳生,周传荣.模态实验理论与实践[M].南京:东南大学出版社,1991:1-218.
    [124]李敏,程伟.工程振动基础[M].北京:北京航空航天大学出版社2004:8-166.
    [125]张准,汪凤泉.振动分析[M].南京:东南大学出版社,1992:1-354.
    [126]王惠文,李朝东. ANSYS在超声电机设计中的应用[J].机械工程师,2003(12):40-41.
    [127]段进,倪栋,王国业. ANSYS10.0结构分析从入门到精通[M].北京:兵器工业出版社,2006:1-273.
    [128] Tsai Hsiang-Chuan. Modal superposition method for dynamic analysis of structuresexcited by prescribed support displacements[J]. Computers&Structures,199866(5):675-683.
    [129]杨桂通.弹性力学简明教程[M].北京:清华大学出版社,2006:2-62.
    [130] Wallaschek J rg. Contact mechanics of piezoelectric ultrasonic motors[J]. SmartMaterials and Structures19987(3):369-381.
    [131] Boumous Z., Belkhiat S., Kebbab F. Z. Effect of shearing deformation on the transientresponse of a traveling wave ultrasonic motor[J]. Sensors and Actuators A: Physical,2009150(2):243-250.
    [132] Yao Zhi-yuan, Zhao Chun-sheng, Zeng Jin-song, Zhou Pei. Analytical solution on thenon-linear vibration of a traveling wave ultrasonic motor[J]. Journal of Electroceramics,200820(3):251-258.
    [133] Nakagawa Y., Saito A., Maeno T. Nonlinear dynamic analysis of traveling wave-typeultrasonic motors[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEETransactions on,200855(3):717-725.
    [134]姚志远,辛吴,尹育聪,丁庆军.超声电机定子和转子接触微观表面分析和形貌模拟[J].润滑与密封,200934(6):5-7.
    [135] Bing Jia, Zhi-jun Sun. Research on an ultrasonic brake[C]. Piezoelectricity, AcousticWaves, and Device Applications,2008. SPAWDA2008. Symposium on,2008:138-142.
    [136]朱龙根.简明机械零件设计手册[M].北京:机械工业出版社,2005:76-77.
    [137] Castro E., García-Hernandez M. T., Gallego A. Damage detection in rods by means ofthe wavelet analysis of vibrations: Influence of the mode order[J]. Journal of Sound andVibration,2006296(4-5):1028-1038.
    [138] Chen J., Xu Y. L., Zhang R. C. Modal parameter identification of Tsing Ma suspensionbridge under Typhoon Victor: EMD-HT method[J]. Journal of Wind Engineering andIndustrial Aerodynamics,200492(10):805-827.
    [139] Zhou Wenliang, Chelidze David. Generalized Eigenvalue Decomposition in TimeDomain Modal Parameter Identification[J]. Journal of Vibration and Acoustics,2008130(1):011001-6.
    [140] Yan B. F., Miyamoto A., Brühwiler E. Wavelet transform-based modal parameteridentification considering uncertainty[J]. Journal of Sound and Vibration,2006291(1-2):285-301.
    [141] Jing Xu, Qing-Chun Meng, Dong-Ming Zhou, Yan Ge. A modal parametersidentification method based on recurrent neural networks[C]. Machine Learning andCybernetics,2004. Proceedings of2004International Conference on,2004:3207-3212vol.5.
    [142] Yun Chung-Bang, Bahng Eun Young. Substructural identification using neuralnetworks[J]. Computers&Structures,200077(1):41-52.
    [143]谭冬梅,姚三,瞿伟廉.振动模态的参数识别综述[J].华中科技大学学报(城市科学版),200219(3):73-78.
    [144]王伦文,张铃.构造型神经网络综述[J].模式识别与人工智能,200821(1):49-55.
    [145]田绪红,江敏杰. GPU加速的神经网络BP算法[J].计算机应用研究,200926(5):1679-1681.
    [146]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005:6-9,69-89.
    [147]雷英杰. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版,2005:11-12.
    [148] Li Wei, Sheng Deren, Chen Jianhong, Yuan Zhenfu, Cen Kefa. A New Method Based onImmune Algorithm to Solve the Unit Commitment Problem[M]. Boston: Springer,2006:840-846.
    [149] Elka E., Elata D., Abramovich H. The electromechanical response of multilayeredpiezoelectric structures[J]. Journal of Microelectromechanical Systems,200413(2):332-341.
    [150] Wei Wang, Gao X. Z., Changhong Wang. A New Immune PID Controller inMaterial-Level Control[C]. Proceedings of the Third International Conference onNatural Computation-Volume03,2007:614-618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700