用户名: 密码: 验证码:
中国两种亚热带红树林生态系统的碳固定、掉落物分解及其同化过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红树林是全球净初级生产力最高的生态系统之一,也是全球蓝碳的主要贡献者之一。碳循环研究是阐明红树林碳汇潜力及调控机制的前提,但目前亟缺乏红树林生态系统碳固定及其去向的系统研究,特别是对于亚热带地区的红树林。本研究结合传统调查、野外定位观测和控制实验,利用涡度协方差技术和稳定同位素技术探讨了亚热带地区(云霄和高桥)红树林的碳固定、掉落物分解及其同化过程,并着重分析了极端天气如台风活动对红树林生态系统碳交换过程的影响及生物入侵背景下红树林湿地的掉落物分解与同化过程。主要结果与结论分述如下:
     (1)云霄和高桥的亚热带红树林均具有很高的生物量和年掉落物产量。云霄(2008年8月)和高桥(2009年10月)红树林的生物量分别为82.17-118.74和85.04-161.08Ton ha-1,其中枝和直根的比例最高,根冠比的变化范围为0.35-1.47;2009-2012年云霄和高桥红树林的平均年掉落物产量分别为848.44和728.62g m-2,表现出明显的季节动态和年际动态,其中叶掉落物比例最高;温度、降雨量、风速是影响红树林掉落物量的主要气候因子。
     (2)生态系统碳通量研究结果表明,云霄和高桥红树林全年都表现为较强的碳汇:2009-2012年云霄和高桥红树林生态系统平均固定了683和721g C m-2yr-1,两地的年总生态系统生产力(GEP)差异较小(分别为1871和1763g C m-2yr-1),但云霄红树林的年生态系统呼吸量(RE)显著高于高桥的(分别为1287和1096g C m-2yr-1),两个站点RE/GEP比分别为0.69和0.63。光照、云量、空气饱和蒸气压差(VPD)和温度共同调控白天红树林生态系统的NEE:云霄和高桥红树林都在中等云量(晴空指数kt值分别为0.3-0.6和0.4-0.6)时达到最大NEE。传统方法(掉落物法)估算得到的净初级生产力远高于碳通量观测结果,可能是因为传统研究低估了掉落物量在净初级生产力中所占的比例,这意味着对掉落物产量及其去向的研究将变得更为重要。
     (3)2009至2011年期间登陆的23个台风活动对红树林碳水通量影响的综合分析表明:台风的风速、持续时间、登陆距离是调控红树林生态系统碳水循环的最重要台风特征。频繁强台风带来的强降水和大风会使红树林形成大量的掉落物,也会在短期内起到降温的效果。在强台风登陆之后,生态系统最大NEE均显著降低,而且白天生态系统暗呼吸Rd也显著降低;除了2010年10月登陆的13级台风Megi,其他台风登陆后光量子效率α均显著增大。高VPD和高温都会抑制白天红树林的NEE,但VPD和温度对红树林NEE的调控作用与台风强度和登陆时间相关。台风登陆前后NEE的变化方向及大小主要受到GEP和RE的共同调控:在2010年7月12级台风Conson-Chanthu和2010年9月10级台风Namtheum-Fanapi登陆后,红树林生态系统NEE的日总量分别下降了26%和57%,但台风Megi登陆后红树林NEE反而增加了140%。这些改变在台风过后几周内就得到恢复,说明红树林生态系统碳交换过程对台风干扰呈现出较强的生态弹性。
     (4)红树林生境内乡土红树植物秋茄(Kandelia obvata)的凋落叶片比入侵植物互花米草(Spartina alterniflora)凋落叶片分解得更快(分解常数和半分解期分别为0.021、0.012d-1和34、59d),但在盐沼生境中二者分解速度没有显著差异(分解常数和半分解期分别为0.016、0.014d-1和43、50d);互花米草凋落叶的淋溶速率显著高于秋茄的(0.14和0.09g d-1);秋茄和互花米草凋落叶的分解模式一致,都在分解初期(28天)快速减少后变缓直到平稳;分解过程中凋落叶的总氮剩余量保持下降趋势,C/N比与其氮含量呈显著负相关关系;秋茄和互花米草凋落叶的δ13C值随分解都变得更负(分别下降1‰和1.5‰),且这种趋势在盐沼生境中表现得更明显。这意味着互花米草入侵并未显著改变红树林湿地的掉落物分解过程。
     (5)乡土红树林生境内多毛类混合利用了红树植物凋落叶等食物,但在互花米草入侵后多毛类主要以互花米草为食。野外控制实验结果表明:入侵植物互花米草凋落叶对乡土红树林生境内多毛类的食物来源影响最大,但这种影响会随分解过程而减弱。在添加乡土红树植物秋茄凋落叶后,多毛类δ13C值的变化较小且平稳,但在添加外来互花米草凋落叶后多毛类的δ13C值在分解初期(28天)快速增加达到最大值,之后又降低回初始水平。互花米草和秋茄掉落物之间主要营养成分的不同以及它们在分解过程中的差异可能是造成底栖动物多毛类对外来种和乡土植物掉落物选择利用的主要原因。
Mangrove ecosystems are among the most productive natural ecosystems in the world, and global mangrove wetland is one of major contributors to earth's blue carbon sink. Systematic study of mangrove carbon cycle will improve our understanding of the regulatory mechanisms of mangrove carbon sink, and prediction of their responses to global change. However, there are limited studies on mangrove carbon sequestration and sink strength, especially for subtropical mangrove ecosystems. In this study, eddy covariance technique was used to quantify mangrove carbon sequestration and their determining factors in Yunxiao, Zhangzhou and Gaoqiao, Zhanjiang, China; then traditional survey, field control experiment and stable isotope technique were applied jointly to investigate litter decomposition and their consumption processes. The main findings and conclusions from this study were summarzied as follows:
     (1) The total biomass was82.17-118.74Ton ha-1for the mangrove forests in Yunxiao (August2008) and85.04-161.08Ton ha-1for the mangrove forests in Gaoqiao (October2009), respectively, with branch and taproot having the highest proportions. Below ground biomass were mainly distributed in a depth of0-30cm, and their below to above-ground ratios ranged from0.35-1.47. Mean annual litter production was843.20-1011.51and964.98g m"2for the Yunxiao and Gaoqiao mangrove forests from2009to2012, with the leaf litter having the highest proportion. Litter production showed obvious seasonal and inter-annual variation, attributed to the changes in temperature, rainfall and wind conditions.
     (2) During the last four years (2009-2012), the net ecosystem CO2exchange (NEE) was687and721g C m-2yr-1for Yunxiao and Gaoqiao mangrove forests, respectively. The mean annual gross ecosystem productivity (GEP) was1871and1763g C m-2yr-1, respectively for Yunxiao and Gaoqiao mangrove forests during the same period, with corresponding mean annual total ecosystem respiration (RE) of1287and1096g C m-2yr-1and RE/GEP of0.69and0.63, respectively. Solar irradiance, cloud, vapor pressure deficit (VPD) and temperature co-regulated daytime NEE. Both Yunxiao and Gaoqiao mangrove ecosystems reached their maximum NEE under moderate cloudiness (clearness index of0.3-0.6and0.4-0.6). Net primary productivity (NPP) estimated by traditional survey (litter fall method) was much higher than that from eddy flux measurements, likely due to the underestimation of litter proportion in NPP by the traditional survey method, which underscored the importance of research on litter fall for understanding mangrove carbon cycle processes.
     (3) Frequent typhoons with strong wind and intensive rainfall caused defoliation and local cooling effect during typhoon season. Results from our synthesis of23typhoons during2009-2011demonstrated that wind speed, duration and distance of typhoon from mangrove ecosystem were the most important factors controlling the mangrove ecosystem carbon and water fluxes. In2010, the maximum NEE was slightly decreased following typhoon. Except for category13typhoon Megi (October2010), the apparent quantum yield was significantly greater than that before typhoon. Daytime RE also exhibited significant decrease after typhoon landfalls, particularly following typhoon Megi. Daily total NEE values were decreased by26%and57%following category12typhoon Conson-Chanthu (July2010) and category10typhoon Namtheum-Fanapi (September2010), respectively, while they were significantly increased by140%following typhoon Megi. These changes were quickly reversed within a few weeks right after the typhoon events indicating that mangrove ecosystems have strong resilience to the frequent typhoon disturbances.
     (4) The leaf litter of Kandelia obvata decomposed faster than that of Spartina alterniflora at the mangrove decomposition site, with a decay constant and half life time of0.021,0.012d-1and34,59d for K. obvata and S. alterniflora, respectively. However, there was no significant difference between species at the salt marsh decomposition site. The leaf litter of S. alterniflora leached faster than that of K. obvata with a leaching rate of0.14,0.09g d-1, respectively. The dry mass loss rates were similar for the leaf litter of both plant species and both decomposition site, degrading rapidly in the first28days, then following by a slower, steady decrease for the remaining period of the experiment. Total nitrogen content of leaf litter decreased during the decomposition, and the C/N ratio was negatively correlated with nitrogen content for the decomposed leaf litter. The δ13C values of decomposing leaf litter decreased during decomposition, about1%o for K. obvata and1.5%o for S. alterniflora).
     (5) Polychaetes depended on mangrove leaf litter, microphytobenthos and particular organic matter for their foods at the mangrove site, but mainly used S. alterniflora leaf litter at the salt marsh site. The preliminary results from a field control experiment showed that the δ13C values of polychaetes were affected significantly by added leaf litter during decomposition. After adding exotic S. alterniflora leaf litter, polychaetes at the mangrove site had larger enrichment in813C values than that at the salt marsh site. Mangrove polychaetes assimilated more carbon from exotic S. alterniflora leaf litter than from native mangrove leaf litter. However, the significant carbon consumption only occurred within the half-life time (<2months) of exotic S. alterniflora leaf litter indicating significant impact of Spartina invasion on the food sources of local polychaetes. Decomposition rate and nutrient content might contribute to the selective utilization of litter from exotic S. alterniflora and native mangroves by the polychaetes in the mangrove wetlands.
引文
[1]Tomlinson, P. B. The botany of mangroves [M]. Cambridge University Press,1986.
    [2]林鹏.海洋高等植物生态学[M].北京:科学出版社,2006.
    [3]Alongi, D. M. The energetics of mangrove forests [M]. Dordrecht Springer,2009.
    [4]Barr, J. G., Engel, V., Fuentes, J. D., Zieman, J. C., O'Halloran, T. L., Smith III, T. J., Anderson, G. H. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park [J]. Journal of Geophysical Research,2010, 115(G02020):1-14.
    [5]Chapman, V. J. Ecosystem of the world. I:wet coastal ecosystem [M]. Elsevier Press, 1977.
    [6]Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data [J]. Global Ecology and Biogeography,2011,20(1):154-159.
    [7]Spalding, M. D., Blasco, F., Field, C. D. World mangrove atlas [M]. International Society for Mangrove Ecosystems.Okinawa, Japan,1997.
    [8]FAO. Status and trends in mangrove area extent worldwide [M]. Forest Resources Division, FAO, Paris,2003.
    [9]Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K. C., Field, C. D. A world without mangroves? [J]. Science,2007,317(5834):41-42.
    [10]王文卿,王瑁.中国红树林[M].北京:科学出版社,2007.
    [11]Komiyama, A., Ong, J. E., Poungpam, S. Allometry, biomass, and productivity of mangrove forests:A review [J]. Aquatic Botany,2008,89(2):128-137.
    [12]Donato, D. C., Kaufrman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M. Mangroves among the most carbon-rich forests in the tropics [J]. Nature Geoscience, 2011,4(5):293-297.
    [13]Saenger, P., Snedaker, S. C. Pantropical trends in mangrove above-ground biomass and annual litterfall [J]. Oecologia,1993,96(3):293-299.
    [14]林鹏.中国红树林生态系[M].北京:科学出版社,1997.
    [15]Bouillon, S., Borges, A. V., Castaneda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J. Mangrove production and carbon sinks:a revision of global budget estimates [J]. Global Biogeochemical Cycles, 2008,22(2):GB2013.
    [16]Bouillon, S., Connolly, R. M., Lee, S. Y. Organic matter exchange and cycling in mangrove ecosystems:recent insights from stable isotope studies [J]. Journal of Sea Research,2008,59(1):44-58.
    [17]Kristensen, E., Bouillon, S., Dittmar, T., Marchand, C. Organic carbon dynamics in mangrove ecosystems:a review [J]. Aquatic Botany,2008,89(2):201-219.
    [18]Jennerjahn, T. C., Ittekkot, V. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins [J]. Naturwissenschaften,2002, 89(1):23-30.
    [19]Dittmar, T., Hertkom, N., Kattner, G., Lara, R. J. Mangroves, a major source of dissolved organic carbon to the oceans [J]. Global Biogeochemical Cycles,2006,20(1):GB1012.
    [20]段晓男,王效科,尹弢,陈琳.湿地生态系统固碳潜力研究进展[J].生态环境,2006,15(5):1091-1095.
    [21]Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., Trettin, C. The carbon balance of North American wetlands [J]. Wetlands,2006,26(4):889-916.
    [22]Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils [J]. Global Biogeochemical Cycles,2003,17(4):1111-1120.
    [23]汤天波.红树林在碳循环方面的作用不容忽视[J].科学研究动态监测快报,2009,1(10):12.
    [24]Trumper, K. The natural fix?:the role of ecosystems in climate mitigation:a UNEP rapid response assessment [M]. Earthprint,2009.
    [25]Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Bjork, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., Silliman, B. R. A blueprint for blue carbon:toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 [J]. Frontiers in Ecology and the Environment,2011,9(10):552-560.
    [26]Nellemann, C., Corcoran, E., Duarte, C. M., Valdes, L., De Young, C., Fonseca, L., Grimsditch, G. Blue carbon:a rapid response assessment [M]. United Nations Environment Programme,2009.
    [27]Crooks, S., Herr, D., Tamelander, J., Laffoley, D., Vandever, J. Mitigating climate change through restoration and management of coastal wetlands and near-shore marine ecosystems:challenges and opportunities [J]. Environment Department Paper,2011, 121:2011-2009.
    [28]Duarte, C. M., Middelburg, J. J., Caraco, N. Major role of marine vegetation on the oceanic carbon cycle [J]. Biogeosciences,2005,2(1):1-8.
    [29]Alongi, D. M. Carbon sequestration in mangrove forests [J]. Carbon Management,2012, 3(3):313-322.
    [30]Duarte, C. M., Dennison, W. C., Orth, R. J. W., Carruthers, T. J. B. The charisma of coastal ecosystems:addressing the imbalance [J]. Estuaries and Coasts,2008,31(2): 233-238.
    [31]Duarte, C. M., Holmer, M., Olsen, Y., Soto, D., Marba, N., Guiu, J., Black, K., Karakassis, I. Will the oceans help feed humanity? [J]. BioScience,2009,59(11): 967-976.
    [32]Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R. Accelerating loss of seagrasses across the globe threatens coastal ecosystems [J]. Proceedings of the National Academy of Sciences,2009,106(30):12377-12381.
    [33]Caldeira, K. Avoiding mangrove destruction by avoiding carbon dioxide emissions [J]. Proceedings of the National Academy of Sciences,2012,109(36):14287-14288.
    [34]Murray, B. C. Economics:Mangroves'hidden value [J]. Nature Climate Change,2012, 2(11):773-774.
    [35]Siikamaki, J., Sanchirico, J. N., Jardine, S. L. Global economic potential for reducing carbon dioxide emissions from mangrove loss [J]. Proceedings of the National Academy of Sciences,2012,109(36):14369-14374.
    [36]Borges, A. V. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? [J]. Estuaries and Coasts,2005,28(1):3-27.
    [37]Chen, C. T. A., Borges, A. V. Reconciling opposing views on carbon cycling in the coastal ocean:continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2 [J]. Deep Sea Research Part II:Topical Studies in Oceanography,2009, 56(8):578-590.
    [38]Kone, Y. J. M., Borges, A. V. Dissolved inorganic carbon dynamics in the waters surrounding forested mangroves of the Ca Mau. Province (Vietnam) [J]. Estuarine, Coastal and Shelf Science,2008,77(3):409-421.
    [39]Jahnke, R. A. Maybe it's not just about air-water gas exchange [J]. Oceanography,2008, 21(4):42-43.
    [40]Cai, W. J., Luther III, G. W., Cornwell, J. C., Giblin, A. E. Carbon cycling and the coupling between proton and electron transfer reactions in aquatic sediments in Lake Champlain [J]. Aquatic Geochemistry,2010,16(3):421-446.
    [41]Cai, W. J., Wang, Z. A., Wang, Y. C. The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere, the land-sea interface and the ocean [J]. Geophysical Research Letters,2003,30(16):1849-1852.
    [42]Wang, Z. A., Cai, W. J. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River):a marsh CO2 pump [J]. Limnology and Oceanography,2004,49(2):341-354.
    [43]Yan, Y., Zhao, B., Chen, J. Q., Guo, H. Q., Gu, Y. J., Wu, Q. H., Li, B. Closing the carbon budget of estuarine wetlands with tower-based measurements and MODIS time series [J]. Global Change Biology,2008,14(7):1690-1702.
    [44]Guo, H. Q., Noormets, A., Zhao, B., Chen, J. Q., Sun, G., Gu, Y. J., Li, B., Chen, J. K. Tidal effects on net ecosystem exchange of carbon in an estuarine wetland [J]. Agricultural And Forest Meteorology,2009,149(11):1820-1828.
    [45]于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法[M].高等教育出版社,2006.
    [46]Lovett, G. M., Cole, J. J., Pace, M. L. Is net ecosystem production equal to ecosystem carbon accumulation? [J]. Ecosystems,2006,9(1):152-155.
    [47]Barr, J. G., Engel, V., Smith, T. J., Fuentes, J. D. Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades [J]. Agricultural And Forest Meteorology,2012,153:54-66.
    [48]Swinbank, W. C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere [J]. Journal of Atmospheric Sciences,1951,8:135-145.
    [49]Baldocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S. W., Anthoni, P., Bernhofer, C., Davis, K., Evans, R. FLUXNET:a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities [J]. Bulletin of the American Meteorological Society,2001,82(11):2415-2434.
    [50]Barr, J. G., Fuentes, J. D., DeLonge, M. S., O'Halloran, T. L., Barr, D., Zieman, J. C. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest [J]. Biogeosciences,2013,10:501-511.
    [51]陈雅萍,叶勇.红树林掉落物生产及其归宿[J].生态学杂志,2013,32(1):204-209.
    [52]Twilley, R. W., Lugo, A. E., Patterson-Zucca, C. Litter production and turnover in basin mangrove forests in southwest Florida [J]. Ecology,1986,67(3):670-683.
    [53]Twilley, R. R., Pozo, M., Garcia, V. H., Rivera-Monroy, V. H., Zambrano, R., Bodero, A. Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador [J]. Oecologia,1997,111(1):109-122.
    [54]Alongi, D. M. Patterns of Mangrove Wood and Litter Production Within a Beach Ridge-Fringing Reef Embayment, Northern Great Barrier Reef Coast [J]. Estuaries and Coasts,2011,34(1):32-44.
    [55]Twilley, R. R., Chen, R. H., Hargis, T. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems [J]. Water, Air, and Soil Pollution,1992, 64(1-2):265-288.
    [56]Alongi, D. M. Present state and future of the world's mangrove forests [J]. Environmental Conservation,2002,29(3):331-349.
    [57]Creach, V. M. T. S., Schricke, M. T., Bertru, G., Mariotti, A. Stable isotopes and gut analyses to determine feeding relationships in saltmarsh macroconsumers [J]. Estuarine, Coastal and Shelf Science,1997,44(5):599-611.
    [58]Lin, Y. M., Liu, J. W., Xiang, P., Lin, P., Ding, Z. H., Sternberg, L. D. S. L. Tannins and nitrogen dynamics in mangrove leaves at different age and decay stages (Jiulong River Estuary, China) [J]. Hydrobiologia,2007,583(1):285-295.
    [59]Wei, S. D., Lin, Y. M., Liao, M. M., Zhou, H. C., Li, Y. Y. Characterization and antioxidative properties of condensed tannins from the mangrove plant Aegiceras corniculatum [J]. Journal of Applied Polymer Science,2012,124(3):2463-2472.
    [60]Kristensen, D. K., Kristensen, E., Mangion, P. Food partitioning of leaf-eating mangrove crabs Sesarminae:Experimental and stable isotope (13C and 15N) evidence [J]. Estuarine, Coastal and Shelf Science,2010,87(4):583-590.
    [61]Bouillon, S., Moens, T., Overmeer, I., Koedam, N., Dehairs, F. Resource utilization patterns of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter [J]. Marine Ecology-Progress Series,2004,278:77-88.
    [62]Nabeel, M. A., Kathiresan, K., Rajendran, N., Ohnishi, H., Hamaoka, H., Omori, K. Contribution by microbes to the foodweb of a mangrove biotope:the approach of carbon and nitrogen stable isotopes [J]. African Journal of Marine Science,2010,32(1):65-70.
    [63]Loneragan, N. R., Bunn, S. E., Kellaway, D. M. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? a multiple stable-isotope study [J]. Marine Biology,1997,130(2):289-300.
    [64]Bouillon, S., Koedam, N., Raman, A., Dehairs, F. Primary producers sustaining macro-invertebrate communities in intertidal mangrove forests [J]. Oecologia,2002, 130(3):441-448.
    [65]Bouillon, S., Raman, A. V., Dauby, P., Dehairs, F. Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India) [J]. Estuarine, Coastal and Shelf Science,2002,54(5):901-913.
    [66]Fry, B., Smith, T. J. Stable isotope studies of red mangroves and filter feeders from the Shark River estuary, Florida [J]. Bulletin of Marine Science,2002,70(3):871-890.
    [67]Thimdee, W., Deein, G., Sangrungruang, C., Matsunaga, K. Analysis of primary food sources and trophic relationships of aquatic animals in a mangrove-fringed estuary, Khung Krabaen Bay (Thailand) using dual stable isotope techniques [J]. Wetlands Ecology and Management,2004,12(2):135-144.
    [68]Granek, E. F., Compton, J. E., Phillips, D. L. Mangrove-exported nutrient incorporation by sessile coral reef invertebrates [J]. Ecosystems,2009,12(3):462-472.
    [69]Lee, S. Y. Litter production and turnover of the mangrove Kandelia candel (L.) Druce in a Hong Kong tidal shrimp pond [J]. Estuarine, Coastal and Shelf Science,1989,29(1): 75-87.
    [70]Lu, C. Y., Lin, P. Studies on litter fall and decomposition of Bruguiera sexangula (Lour.) Poir, community on Hainan Island, China [J]. Bulletin of Marine Science,1990,47(1): 139-148.
    [71]Grosholz, E. Ecological and evolutionary consequences of coastal invasions [J]. Trends in Ecology and Evolution,2002,17(1):22-27.
    [72]Zedler, J. B., Kercher, S. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes [J]. Critical Reviews in Plant Sciences,2004, 23(5):431-452.
    [73]Ehrenfeld, J. G. Effects of exotic plant invasions on soil nutrient cycling processes [J]. Ecosystems,2003,6(6):503-523.
    [74]Rothstein, D. E., Vitousek, P. M., Simmons, B. L. An exotic tree alters decomposition and nutrient cycling in a Hawaiian montane forest [J]. Ecosystems,2004,7(8):805-814.
    [75]Ashton, I. W., Hyatt, L. A., Howe, K. M., Gurevitch, J., Lerdau, M. T. Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest [J]. Ecological Applications,2005,15(4):1263-1272.
    [76]Liao, C. Z., Luo, Y. Q., Fang, C. M., Chen, J. K., Li, B. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary [J]. Oecologia,2008,156(3):589-600.
    [77]Zhou, H. Effects of leaf litter addition on meiofaunal colonization of azoic sediments in a subtropical mangrove in Hong Kong [J]. Journal of Experimental Marine Biology and Ecology,2001,256(1):99-121.
    [78]Mfilinge, P. L., Atta, N., Tsuchiya, M. Nutrient dynamics and leaf litter decomposition in a subtropical mangrove forest at Oura Bay, Okinawa, Japan [J]. Trees-Structure and Function,2002,16(2-3):172-180.
    [79]Fourqurean, J. W., Schrlau, J. E. Changes in nutrient content and stable isotope ratios of C and N during decomposition of seagrasses and mangrove leaves along a nutrient availability gradient in Florida Bay, USA [J]. Chemistry and Ecology,2003,19(5): 373-390.
    [80]Doi, H., Matsumasa, M., Toya, T., Satoh, N., Mizota, C., Maki, Y., Kikuchi, E. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem:carbon and nitrogen stable isotope analyses [J]. Estuarine, Coastal and Shelf Science,2005,64(2-3): 316-322.
    [81]Levin, L. A., Neira, C., Grosholz, E. D. Invasive cordgrass modifies wetland trophic function [J]. Ecology,2006,87(2):419-432.
    [82]Wu, Y. T., Wang, C. H., Zhang, X. D., Zhao, B., Jiang, L. F., Chen, J. K., Li, B. Effects of saltmarsh invasion by Spartina alterniflora on arthropod community structure and diets [J]. Biological Invasions,2009,11(3):635-649.
    [83]Qin, H. M., Chu, T. J., Xu, W., Lei, G. C., Chen, Z. B., Quan, W. M., Chen, J. K., Wu, J. H. Effects of invasive cordgrass on crab distributions and diets in a Chinese salt marsh [J]. Marine Ecology Progress Series,2010,415:177-187.
    [84]Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setala, H., Van Der Putten, W. H., Wall, D. H. Ecological linkages between aboveground and belowground biota [J]. Science,2004,304(5677):1629-1633.
    [85]Pollierer, M. M., Langel, R., Korner, C., Maraun, M., Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs [J]. Ecology Letters,2007,10(8):729-736.
    [86]Gerlach, A., Russell, D. J., Rombke, J., Bruggemann, W. Consumption of introduced oak litter by native decomposers (Glomeridae, Diplopoda) [J]. Soil Biology and Biochemistry, 2011,44(1):26-30.
    [87]Chen, H., Li, B., Fang, C., Chen, J., Wu, J. Exotic plant influences soil nematode communities through litter input [J]. Soil Biology and Biochemistry,2007,39(7): 1782-1793.
    [88]Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., Tu, K. P. Stable isotopes in plant ecology [J]. Annual Review of Ecology and Systematics,2002,33:507-559.
    [89]王建柱,林光辉,黄建辉,韩兴国.稳定同位素在陆地生态系统动-植物相互关系研究中的应用[J].科学通报,2004,49(21):2141-2149.
    [90]李博.现代生态学讲座[M].北京:科学出版社,1995.
    [91]DeNiro, M. J., Epstein, S. Influence of diet on the distribution of carbon isotopes in animals [J]. Geochimica et Cosmochimica Acta,1978,42(5):495-506.
    [92]Farquhar, G. D., O'leary, M. H., Berry, J. A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves [J]. Functional Plant Biology,1982,9(2):121-137.
    [93]Farquhar, G. D., Richards, R. A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes [J]. Functional Plant Biology,1984,11(6): 539-552.
    [94]Evans, R. D. Physiological mechanisms influencing plant nitrogen isotope composition [J]. Trends in Plant Science,2001,6(3):121-126.
    [95]Hobson, K. A., Welch, H. E. Determination of trophic relationships within a high Arctic marine food web using delta-'3C and delta-15N analysis [J]. Marine Ecology Progress Series,1992,84(1):9-18.
    [96]Hobson, K. A., Schell, D. M., Renouf, D., Noseworthy, E. Stable carbon and nitrogen isotopic fractionation between diet and tissues of captive seals:implications for dietary reconstructions involving marine mammals [J]. Canadian Journal of Fisheries and Aquatic Sciences,1996,53(3):528-533.
    [97]Fry, B. Food web structure on Georges Bank from stable C, N, and S isotopic compositions [J]. Limnology and Oceanography,1988,33(5):1182-1190.
    [98]Phillips, D. L., Gregg, J. W. Source partitioning using stable isotopes:coping with too many sources [J]. Oecologia,2003,136(2):261-269.
    [99]Lubetkin, S. C., Simenstad, C. A. Multi-source mixing models to quantify food web sources and pathways [J]. Journal of Applied Ecology,2004,41(5):996-1008.
    [100]Pasquaud, S., Lobry, J., Elie, P. Facing the necessity of describing estuarine ecosystems: a review of food web ecology study techniques [J]. Hydrobiologia,2007,588(1): 159-172.
    [101]Hobson, K. A. Tracing origins and migration of wildlife using stable isotopes:a review [J]. Oecologia,1999,120(3):314-326.
    [102]Rodelli, M. R., Gearing, J. N., Gearing, P. J., Marshall, N., Sasekumar, A. Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystems [J]. Oecologia,1984,61(3): 326-333.
    [103]Graca, M. A. S., Barlocher, F., Gessner, M. O. Methods to study litter decomposition:a practical guide [M]. Netherlands Springer,2005.
    [104]Alongi, D. M. A simple mass balance framework for estimating limits to sustainable mangrove production:some examples from managed forests in southeast Asia [J]. International Journal of Ecology and Environmental Sciences,2005,31:147-155.
    [105]Lee, S. Y. Mangrove outwelling:a review [J]. Hydrobiologia,1995,295(1):203-212.
    [106]Mfilinge, P. L., Meziane, T., Bachok, Z., Tsuchiya, M. Litter dynamics and particulate organic matter outwelling from a subtropical mangrove in Okinawa Island, South Japan [J]. Estuarine, Coastal and Shelf Science,2005,63(1):301-313.
    [107]Woodroffe, C. D. Studies of a mangrove basin, Tuff Crater, New Zealand:I. Mangrove biomass and production of detritus [J]. Estuarine, Coastal and Shelf Science,1985,20(3): 265-280.
    [108]林鹏.福建漳江口红树林湿地自然保护区综合科学考察报告[M].厦门大学出版社,2001.
    [109]王参谋.红树林生态系统土壤有机碳动态及互花米草入侵的影响[D].厦门大学,2012.
    [110]缪绅裕,陈桂珠,陈正桃,吴中亨.广东湛江保护区红树林种群的生物量及其分布格局[J].1998,18(1):11-23.
    [111]郑逢中,林鹏.福建九龙江口秋茄红树林掉落物季节动态及落叶能量季节流[J].厦门大学学报(自然科学版),2000,39(5):693-698.
    [112]林鹏,卢昌义,林光辉,陈荣华,苏辚.九龙江口红树林研究——1.秋茄群落的生物量和生产力[J].厦门大学学报(自然科学版),1985,24(4):508-514.
    [113]林鹏,卢昌义,王恭礼,陈焕雄.海莲红树林的生物量和生产力[J].厦门大学学报(自然科学版),1990,29(2):209-213.
    [114]林鹏,尹毅,卢昌义.广西红海榄群落的生物量和生产力[J].厦门大学学报(自然科学版),1992,31(2):200-202.
    [115]林鹏,胡宏友,郑文教,李振基,林益明.深圳福田白骨壤红树林生物量和能量研究[J].林业科学,1998,34(1):18-24.
    [116]廖宝文,郑德璋,郑松发.我国东南沿海防护林的特殊类型——红树林[J].广东林业科技,1992,(1):9,30-33.
    [117]林金顺.福建省平潭沿海秋茄人工林群落的生物量研究[J].防护林科技,2005,1(2):6-8.
    [118]温远光.广西英罗港5种红树植物群落的生物量和生产力[J].广西科学,1999, 6(2):142-147.
    [119]廖宝文,郑德璋.木榄林生物量和生产力的研究[J].林业科学研究,1991,4(1):22-29.
    [120]宁世江,蒋运生,邓泽龙.广西龙门岛群桐花树天然林生物量的初步研究[J].植物生态学报,1996,20(1):57-64.
    [121]廖宝文,郑德璋,郑松发.海南岛清澜港红树林次生灌丛生物量与叶面积指数测定[J].林业科学研究,1993,6(6):680-685.
    [122]黄月琼,吴小凤,韩维栋,刘新田.无瓣海桑人工林林分生物量的研究[J].江西农业大学学报:自然科学版,2002,24(4):534-536.
    [123]Saenger, P. Morphological, anatomical and reproductive adaptations of Australian mangroves. In:Clough BF (ed) Mangrove ecosystems in Australia [M]. Australian National University Press,1982.
    [124]Snedaker, S. C. Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses [J]. Hydrobiologia,1995,295(1-3):43-49.
    [125]Sanchez, B. G. Belowground productivity of mangrove forests in southwest Florida [D]. Universidad Del Valle,2005.
    [126]Clough, B., Tan, D. T., Phuong, D. X., Buu, D. C. Canopy leaf area index and litter fall in stands of the mangrove Rhizophora apiculata of different age in the Mekong Delta, Vietnam [J]. Aquatic Botany,2000,66(4):311-320.
    [127]林鹏,胡宏友.厦门东屿白骨壤群落生物量和能量[J].厦门大学学报(自然科学版),1995,34(2):282-286.
    [128]Woodroffe, C. D. Litter production and decomposition in the New Zealand mangrove, Avicennia marina var. resinifera [J]. New Zealand Journal of Marine and Freshwater Research,1982,16(2):179-188.
    [129]Tam, N. F. Y., Wong, Y. S., Lan, C. Y., Wang, L. N. Litter production and decomposition in a subtropical mangrove swamp receiving wastewater [J]. Journal of Experimental Marine Biology and Ecology,1998,226(1):1-18.
    [130]Steinke, T. D., Ward, C. J. Litter production by mangroves. Ⅱ. St Lucia and Richards Bay [J]. South African Journal of Botany 1988,54(5):445-454.
    [131]郑逢中,林鹏,卢昌义,郑文教.福建九龙江口秋茄红树林掉落物年际动态及其能流 量的研究[J].生态学报,1998,18(2):113-118.
    [132]Ghosh, P. B., Singh, B. N., Chakrabarty, C., Saha, A., Das, R. L. Mangrove litter production in a tidal creek of Lothian island of Sundarbans, India [J]. Indian Journal of Marine Sciences,1990,19(4):292-293.
    [133]Chale, F. M. M. Litter production in an Avicennia Gerrninans (L.) stearn forest in Guyana, South America [J]. Hydrobiologia,1996,330(1):47-53.
    [134]Wafar, S., Untawale, A. G., Wafar, M. Litter fall and energy flux in a mangrove ecosystem [J]. Estuarine, Coastal and Shelf Science,1997,44(1):111-124.
    [135]Lahmann, E. J. Effects of different hydrological regimes on the productivity of Rhizophora mangle L:a case study of mosquito control impoundments at Hutchinson Island, Saint Lucie County, Florida [J]. International Part B:Science and Engineering, 1989,50(3):166.
    [136]Nordhaus, I., Wolff, M., Diele, K. Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil [J]. Estuarine, Coastal and Shelf Science,2006,67(1):239-250.
    [137]Nga, B. T., Tinh, H. Q., Tam, D. T., Scheffer, M., Roijackers, R. Young mangrove stands produce a large and high quality litter input to aquatic systems [J]. Wetlands Ecology and Management,2005,13(5):569-576.
    [138]Duke, N. C., Bunt, J. S., Williams, W. T. Mangrove litter fall in north-eastern Australia. I. Annual totals by component in selected species [J]. Australian Journal of Botany,1981, 29(5):547-553.
    [139]Juman, R. A. Biomass, litterfall and decomposition rates for the fringed Rhizophora mangle forest lining the Bon Accord Lagoon, Tobago [J]. Revista de Biologia Tropical, 2005,53(1):207-217.
    [140]Lopez-Portillo, J., Ezcurra, E. Litter fall of Avicennia germinans L. in a one-year cycle in a mudflat at the Laguna de Mecoacan, Tabasco, Mexico [J]. Biotropica,1985,17(3): 186-190.
    [141]Khan, M. N. I., Suwa, R., Hagihara, A. Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan [J]. Wetlands Ecology and Management,2009,17(6):585-599.
    [142]Boer, W. F. Biomass dynamics of seagrasses and the role of mangrove and seagrass vegetation as different nutrient sources for an intertidal ecosystem [J]. Aquatic Botany, 2000,66(3):225-239.
    [143]Bray, J. R., Gorham, E. Litter production in forests of the world [J]. Advances in Ecological Research,1964,2:101-157.
    [144]彭少麟,刘强.森林掉落物动态及其对全球变暖的响应[J].生态学报,2002,22(9):1534-1544.
    [145]Woodroffe, C. D., Bardsley, K. N., Ward, P. J., Hanley, J. R. Production of mangrove litter in a macrotidal embayment, Darwin Harbour, NT, Australia [J]. Estuarine, Coastal and Shelf Science,1988,26(6):581-598.
    [146]颜素贞.红树林微生境异质性对鱼类多样性的影响[D].厦门大学,2011.
    [147]韩维栋,高秀梅.无瓣海桑人工林的生物量与能量研究[J].广西科学,2004,11(3):243-248.
    [148]张乔民,陈永福.海南三亚河红树掉落物产量与季节变化研究[J].生态学报,2003,23(10):1977-1983.
    [149]Chen, L. Z. Litter dynamics and forest structure of the introduced Sonneratia caseolaris mangrove forest in Shenzhen, China [J]. Estuarine, Coastal and Shelf Science,2009, 85(2):241-246.
    [150]卢昌义,林鹏.两种红树植物落叶分解速率的研究[J].厦门大学学报(自然科学版),1988,27(6):679-683.
    [151]陈光程.九龙江口秋茄红树植被与主要大型底栖动物某些生态关系的研究[D].厦门大学,2009.
    [152]彭友贵,陈桂珠,武鹏飞,缪绅裕,殷敏,佘忠明.人工生境条件下几种红树植物的净初级生产力比较研究[J].应用生态学报,2005,16(8):1383-1388.
    [153]黄立南,蓝崇钰,束文圣,李明顺.城镇生活污水排放对红树林植物群落掉落物的影响[J].应用与环境生物学报,2000,6(6):505-510.
    [154]郑逢中,林鹏,卢昌义,郑文教,尹毅.广西英罗湾红海榄林掉落物动态及能流量[J].厦门大学学报(自然科学版),1996,35(3):417-423.
    [155]林鹏,邵成.福建和溪亚热带雨林掉落物能流的研究[J].厦门大学学报(自然科学版),1995,34(6):987-991.
    [156]张德强,叶万辉,余清发,孔国辉,张佑倡.鼎湖山演替系列中代表性森林掉落物研究[J].生态学报,2000,20(6):938-944.
    [157]王敏英,刘强,丁业凤,符素贞,叶照丽,冯太生.海岸青皮林与木麻黄林养分动态及掉落物分解的比较[J].浙江林学院学报,2008,25(5):597-603.
    [158]Noormets, A., Chen, J., Crow, T. R. Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA [J]. Ecosystems,2007,10(2):187-203.
    [159]Schotanus, P., Nieuwstadt, F. T. M., Bruin, H. A. R. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes [J]. Boundary-Layer Meteorology,1983,26(1):81-93.
    [160]Paw U, K. T., Baldocchi, D. D., Meyers, T. P., Wilson, K. B. Correction of eddy-covariance measurements incorporating both advective effects and density fluxes [J]. Boundary-Layer Meteorology,2000,97(3):487-511.
    [161]Mauder, M., Foken, T. Impact of post-field data processing on eddy covariance flux estimates and energy balance closure [J]. Meteorologische Zeitschrift,2006,15(6): 597-609.
    [162]Burba, G. G., Anderson, D. J., Xu, L., McDermitt, D. K. Correcting apparent off-season CO2 uptake due to surface heating of an open path gas analyzer:progress report of an ongoing study [C].27th Confercence on Agricultural and Forest Meteorology,2006.
    [163]Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H. Gap filling strategies for long term energy flux data sets [J]. Agricultural and Forest Meteorology,2001,107(1):71-77.
    [164]Michaelis, L., Menten, M. L. Die kinetik der invertinwirkung [J]. Biochemische Zeitschrift 1913,49:333-369.
    [165]Lloyd, J., Taylor, J. A. On the temperature dependence of soil respiration [J]. Functional Ecology,1994,8(3):315-323.
    [166]Gu, L. H., Fuentes, J. D., Shugart, H. H., Staebler, R. M., Black, T. A. Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness:results from two North American deciduous forests [J]. Journal of Geophysical Research,1999,104(D24): 31421-31434.
    [167]Reindl, D. T., Beckman, W. A., Duffie, J. A. Diffuse fraction correlations [M]. Elsevier Press,1990.
    [168]Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S., Schulze, E. D., Wingate, L., Matteucci, G. CO2 balance of boreal, temperate, and tropical forests derived from a global database [J]. Global Change Biology,2007,13(12): 2509-2537.
    [169]Hirata, R., Saigusa, N., Yamamoto, S., Ohtani, Y., Ide, R., Asanuma, J., Gamo, M., Hirano, T., Kondo, H., Kosugi, Y. Spatial distribution of carbon balance in forest ecosystems across East Asia [J]. Agricultural and Forest Meteorology,2008,148(5): 761-775.
    [170]Goulden, M. L., Crill, P. M. Automated measurements of CO2 exchange at the moss surface of a black spruce forest [J]. Tree Physiology,1997,17(8-9):537-542.
    [171]Zhang, M., Yu, G. R., Zhang, L. M., Sun, X. M., Wen, X. F., Han, S. J., Yan, J. H. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China [J]. Biogeosciences,2010,7(2):711-722.
    [172]Gu, L., Baldocchi, D., Verma, S. B., Black, T. A., Vesala, T., Falge, E. M., Dowry, P. R. Advantages of diffuse radiation for terrestrial ecosystem productivity [J]. Journal of Geophysical Research,2002,107(D6):doi:10.1029/12001021jdoo 1242.
    [173]Duchon, C. E., O'Malley, M. S. Estimating cloud type from pyranometer observations [J]. Journal of Applied Meteorology,1999,38(1):132-141.
    [174]Letts, M. G., Lafleur, P. M., Roulet, N. T. On the relationship between cloudiness and net ecosystem carbon dioxide exchange in a peatland ecosystem [J]. Ecoscience,2005,12(1): 53-59.
    [175]Urban, O., Janous, D., Acosta, M., Czemy, R., MarkovA, I., NavrATil, M., Pavelka, M., Pokorny, R., Sprtova, M., Zhang, R. Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation [J]. Global Change Biology,2007,13(1):157-168.
    [176]Alton, P. B., North, P. R., Los, S. O. The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes [J]. Global Change Biology,2007,13(4):776-787.
    [177]张弥,于贵瑞,张雷明,孙晓敏,温学发,韩士杰.太阳辐射对长白山阔叶红松林净 生态系统碳交换的影响[J].植物生态学报,2009,33(2):270-282.
    [178]Price, D. T., Black, T. A. Effects of short-term variation in weather on diurnal canopy CO2 flux and evapotranspiration of a juvenile douglas-fir stand [J]. Agricultural and Forest Meteorology,1990,50(3):139-158.
    [179]Wang, Y. P., Jarvis, P. G. Effect of incident beam and diffuse radiation on PAR absorption, photosynthesis and transpiration of sitka spruce-a simulation study [J]. Silva Carelica,1990,15:167-180.
    [180]Gutschick, V. P. Joining leaf photosynthesis models and canopy photon-transport models [M]. Springer Press,1991.
    [181]Hollinger, D. Y., Kelliher, F. M., Byers, J. N., Hunt, J. E., McSeveny, T. M., Weir, P. L. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere [J]. Ecology,1994,75(1):134-150.
    [182]Rochette, P., Desjardins, R. L., Pattey, E., Lessard, R. Instantaneous measurement of radiation and water use efficiencies of a maize crop [J]. Agronomy Journal,1996,88(4): 627-635.
    [183]Healy, K. D., Ricker, K. G., Hammer, G. L., Bange, M. P. Radiation use efficiency increases when the diffuse component of incident radiation is enhanced [J]. Australian Journal of Agricultural Research 1998,49:665-672.
    [184]Farquhar, G. D., Roderick, M. L. Pinatubo, diffuse light, and the carbon cycle [J]. Science, 2003,299(5615):1997-1998.
    [185]Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants [J]. Plant, Cell and Environment,1995,18(4):339-355.
    [186]Freedman, J. M., Fitzjarrald, D. R., Moore, K. E., Sakai, R. K. Boundary layer clouds and vegetation-atmosphere feedbacks [J]. Journal of Climate,2001,14(2):180-197.
    [187]Kovacs, J. M., Malczewski, J., Flores-Verdugo, F. Examining local ecological knowledge of hurricane impacts in a mangrove forest using an analytical hierarchy process (AHP) approach [J]. Journal of Coastal Research,2004,20(3):792-800.
    [188]Milbrandt, E. C., Greenawalt-Boswell, J. M., Sokoloff, P. D., Bortone, S. A. Impact and response of southwest Florida mangroves to the 2004 hurricane season [J]. Estuarine, Coastal and Shelf Science,2006,29(6):979-984.
    [189]Amiro, B. D., Barr, A. G., Barr, J. G., Black, T. A., Bracho, R., Brown, M., Chen, J., Clark, K. L., Davis, K. J., Desai, A. R. Ecosystem carbon dioxide fluxes after disturbance in forests of North America [J]. Journal of Geophysical Research,2010,115(G00K02): 1-13.
    [190]Webster, P. J., Holland, G. J., Curry, J. A., Chang, H. R. Changes in tropical cyclone number, duration, and intensity in a warming environment [J]. Science,2005,309(5742): 1844-1846.
    [191]Emanuel, K. Environmental factors affecting tropical cyclone power dissipation [J]. Journal of Climate,2007,20(22):5497-5509.
    [192]IPCC. Fourth Assessment Report (AR4 SYR Summary for Policymakers) [M]. Cambridge University Press,2007.
    [193]Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A., Sugi, M. Tropical cyclones and climate change [J]. Nature Geoscience,2010,3(3):157-163.
    [194]Turner, M. G., Dale, V. H. Comparing large, infrequent disturbances:what have we learned? [J]. Ecosystems,1998,1(6):493-496.
    [195]Greening, H., Doering, P., Corbett, C. Hurricane impacts on coastal ecosystems [J]. Estuarine, Coastal and Shelf Science,2006,29(6):877-879.
    [196]Li, J. H., Powell, T. L., Seiler, T. J., Johnson, D. P., Anderson, H. P., Bracho, R., Hungate, B. A., Hinkle, C. R., Drake, B. G. Impacts of Hurricane Frances on Florida scrub-oak ecosystem processes:defoliation, net CO2 exchange and interactions with elevated CO2 [J]. Global Change Biology,2007,13(6):1101-1113.
    [197]Baldocchi, D.'Breathing'of the terrestrial biosphere:lessons learned from a global network of carbon dioxide flux measurement systems [J]. Australian Journal of Botany, 2008,56(1):1-26.
    [198]Running, S. W. Ecosystem disturbance, carbon, and climate [J]. Science,2008,321(5889): 652-653.
    [199]Ito, A. Evaluation of the impacts of defoliation by tropical cyclones on a Japanese forest's carbon budget using flux data and a process-based model [J]. Journal of Geophysical Research,2010,115(G4):G04013.
    [200]Powell, T. L., Gholz, H. L., Clark, K. L., Stan-, G., Cropper, W. P., Martin, T. A. Carbon exchange of a mature, naturally regenerated pine forest in north Florida [J]. Global Change Biology,2008,14(11):2523-2538.
    [201]Alongi, D. M. Mangrove forests:resilience, protection from tsunamis, and responses to global climate change [J]. Estuarine, Coastal and Shelf Science,2008,76(1):1-13.
    [202]Gilman, E. L., Ellison, J., Duke, N. C., Field, C. Threats to mangroves from climate change and adaptation options:A review [J]. Aquatic Botany,2008,89(2):237-250.
    [203]Kwon, H., Kim, J., Hong, J., Lim, J. H. Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea [J]. Biogeosciences,2010,7(5): 1493-1504.
    [204]O'Halloran, T. L., Law, B. E., Goulden, M. L., Wang, Z., Barr, J. G., Schaaf, C., Brown, M., Fuentes, J. D., Gockede, M., Black, A. Radiative forcing of natural forest disturbances [J]. Global Change Biology,2012,18(2):555-565.
    [205]Xu, X. N., Hirata, E., Enoki, T., Tokashiki, Y. Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance [J]. Plant Ecology,2004, 173(2):161-170.
    [206]Ostertag, R., Scatena, F. N., Silver, W. L. Forest floor decomposition following hurricane litter inputs in several Puerto Rican forests [J]. Ecosystems,2003,6(3):261-273.
    [207]Goulden, M. L., Miller, S. D., Da Rocha, H. R., Menton, M. C, de Freitas, H. C., e Silva Figueira, A. M., de Sousa, C. A. D. Diel and seasonal patterns of tropical forest CO2 exchange [J]. Ecological Applications,2004,14(sp4):42-54.
    [208]Keith, H., van Gorsel, E., Jacobsen, K., Cleugh, H. Dynamics of carbon exchange in a Eucalyptus forest in response to interacting disturbance factors [J]. Agricultural and Forest Meteorology,2012,153:67-81.
    [209]Sano, T., Hirano, T., Liang, N., Hirata, R., Fujinuma, Y. Carbon dioxide exchange of a larch forest after a typhoon disturbance [J]. Forest Ecology and Management,2010, 260(12):2214-2223.
    [210]Wen, X. F., Wang, H. M., Wang, J. L., Yu, G. R., Sun, X. M. Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003-2007 [J]. Biogeosciences,2010,7(1):357-369.
    [211]Lindroth, A., Lagergren, F., Grelle, A., Klemedtsson, L., Langvall, O., Weslien, P., Tuulik, J. Storms can cause Europe-wide reduction in forest carbon sink [J]. Global Change Biology,2008,15(2):346-355.
    [212]Vargas, R. How a hurricane disturbance influences extreme CO2 fluxes and variance in a tropical forest [J]. Environmental Research Letters,2012,7(3):035704.
    [213]Davis, S. E., Childers, D. L., Noe, G. B. The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation [J]. Hydrobiologia,2006, 569(1):87-97.
    [214]Vitousek, P. M., Turner, D. R., Parton, W. J., Sanford, R. L. Litter decomposition on the Maura Loa environmental matrix, Hawai'i:patterns, mechanisms, and models [J]. Ecology,1994,418-429.
    [215]Moore, T. R., Trofymow, J. A., Taylor, B., Prescott, C., Camire, C., Duschene, L., Fyles, J., Kozak, L., Kranabetter, M., Morrison, I. Litter decomposition rates in Canadian forests [J]. Global Change Biology,1999,5(1):75-82.
    [216]Melillo, J. M., Aber, J. D., Muratore, J. F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics [J]. Ecology,1982,63(3):621-626.
    [217]Rejmankova, E., Houdkova, K. Wetland plant decomposition under different nutrient conditions:what is more important, litter quality or site quality? [J]. Biogeochemistry, 2006,80(3):245-262.
    [218]Gonzalez, G., Seastedt, T. R. Soil fauna and plant litter decomposition in tropical and subalpine forests [J]. Ecology,2001,82(4):955-964.
    [219]Taylor, B. R., Barlocher, F. Variable effects of air-drying on leaching losses from tree leaf litter [J]. Hydrobiologia,1996,325(3):173-182.
    [220]Bokhorst, S., Wardle, D. A. Microclimate within litter bags of different mesh size: implications for the'arthropod effect'on litter decomposition [J]. Soil Biology and Biochemistry,2013,58:147-152.
    [221]Makkar, H. P. S., Blummel, M., Borowy, N. K., Becker, K. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods [J]. Journal of the Science of Food and Agriculture,1993,61(2):161-165.
    [222]Wei, S. D., Zhou, H. C., Lin, Y. M. Antioxidant activities of extract and fractions from the hypocotyls of the mangrove plant Kandelia candel [J]. International Journal of Molecular Sciences,2010,11(10):4080-4093.
    [223]Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry,1976,72(1-2):248-254.
    [224]Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems [J]. Ecology,1963,44(2):322-331.
    [225]Ehleringer, J. R., Rundel, P. W. Stable isotopes:history, units, and instrumentation [M]. Springer Press,1989.
    [226]Ember, L., Williams, D., Morris, J. Processes that influence carbon isotope variations in salt marsh sediments [J]. Marine Ecology Progress Series,1987,36:33-42.
    [227]Valiela, I., Teal, J. M., Allen, S. D., R., V. E., Goehringer, D., Volkmann, S. Decomposition in salt marsh ecosystems:the phases and major factors affecting disappearance of above-ground organic matter [J]. Journal of Experimental Marine Biology and Ecology,1985,89(1):29-54.
    [228]Van der Valk, A. G., Attiwill, P. M. Decomposition of leaf and root litter of Avicennia marina at Westernport Bay, Victoria, Australia [J]. Aquatic Botany,1984,18(3): 205-221.
    [229]Steinke, T. D., Naidoo, G., Charles, L. M. Degradation of mangrove leaf and stem tissues in situ in Mgeni Estuary, South Africa [J]. Biology and Ecology of Mangroves,1983, 8:141-149.
    [230]Steinke, T. D., Rajh, A., Holland, A. J. The feeding behaviour of the red mangrove crab Sesarma meinerti De Man,1887 (Crustacea:Decapoda:Grapsidae) and its effect on the degradation of mangrove leaf litter [J]. South African Journal of Marine Science,1993, 13(1):151-160.
    [231]Tam, N. F. Y., Vrijmoed, L. L. P., Wong, Y. S. Nutrient dynamics associated with leaf decomposition in a small subtropical mangrove community in Hong Kong [J]. Bulletin of Marine Science,1990,47(1):68-78.
    [232]Peterson, B. J., Fry, B. Stable isotopes in ecosystem studies [J]. Annual Review of Ecology and Systematics,1987,18(1):293-320.
    [233]Perry, C. L., Mendelssohn, I. A. Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh [J]. Wetlands,2009,29(1):396-406.
    [234]Marinucci, A. C. Carbon and Nitrogen Fluxes during Decomposition of Spartina alterniflora in a Flow-Through Percolator [J]. Biological Bulletin,1982,162(1):53-69.
    [235]Gracas, M. A. S., Barlocher, F., Gessner, M. O. Methods to study litter decomposition:a practical guide [M]. Kluwer Academic Publication,2005.
    [236]Taylor, B. R. Air-drying depresses rates of leaf litter decomposition [J]. Soil Biology and Biochemistry,1998,30(3):403-412.
    [237]Halupa, P. J., Howes, B. Effects of tidally mediated litter moisture content on decomposition of Spartina altemiflora and S. patens [J]. Marine Biology,1995,123(2): 379-391.
    [238]Rogers, K. H., Breen, C. M. Decomposition of Potamogeton crispus L.:the effects of drying on the pattern of mass and nutrient loss [J]. Aquatic Botany,1982,12:1-12.
    [239]Newell, S., Fallon, R. Litterbags, leaf tags, and decay of nonabscised intertidal leaves [J]. CanadianJournal of Botany,1989,67(8):2324-2327.
    [240]White, D. S., Howes, B. L. Nitrogen incorporation into decomposing litter of Spartina alterniflora [J]. Limnology and Oceanography,1994,39(1):133-140.
    [241]Nourbakhsh, F., Dick, R. P. Net nitrogen mineralization or immobilization potential in a residue-amended calcareous soil [J]. Arid Land Research and Management,2005,19(4): 299-306.
    [242]Taylor, B. R., Parsons, W. F., Parkinson, D. Decomposition of Populus tremuloides leaf litter accelerated by addition of Alnus crispa litter [J]. Canadian Journal of Forest Research,1989,19(5):674-679.
    [243]Vigil, M. F., Kissel, D. E. Equations for estimating the amount of nitrogen mineralized from crop residues [J]. Soil Science Society of America Journal,1991,55(3):757-761.
    [244]Alongi, D. M., Christoffersen, P. Benthic infauna and organism-sediment relations in a shallow, tropical coastal area:Influence of outwelled mangrove detritus and physical disturbance [J]. Marine Ecology Progress Series,1992,81(3):229-245.
    [245]Hernes, P. J., Hedges, J. I. Determination of condensed tannin monomers in environmental samples by capillary gas chromatography of acid depolymerization extracts [J]. Analytical Chemistry,2000,72(20):5115-5124.
    [246]Zhou, H. C., Wei, S. D., Zeng, Q., Zhang, L. H., Tam, N. F. Y., Lin, Y. M. Nutrient and caloric dynamics in Avicennia marina leaves at different developmental and decay stages in Zhangjiang River Estuary, China [J]. Estuarine, Coastal and Shelf Science,2010,87(1): 21-26.
    [247]Lin, Y. M., Liu, J. W., Xiang, P., Lin, P., Ye, G., Sternberg, L. D. S. L. Tannin dynamics of propagules and leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China [J]. Biogeochemistry,2006,78(3):343-359.
    [248]Barlocher, F., Moulton, V. D. Spartina alterniflora in two New Brunswick salt marshes. I. Growth and decomposition [J]. Bulletin of Marine Science,1999,64(2):299-305.
    [249]Dehairs, F., Rao, R. G., Mohan, P. C., Raman, A. V., Marguillier, S., Hellings, L. Tracing mangrove carbon in suspended matter and aquatic fauna of the Gautami-Godavari Delta, Bay of Bengal (India) [J]. Hydrobiologia,2000,431(2-3):225-241.
    [250]Wooller, M. J., Swain, D. L., Ficken, K. J., Agnew, A., F., S. P., Eglinton, G. Late Quaternary vegetation changes around Lake Rutundu, Mount Kenya, East Africa: evidence from grass cuticles, pollen and stable carbon isotopes [J]. Journal of Quaternary Science,2003,18(1):3-15.
    [251]Werry, J., Lee, S. Y. Grapsid crabs mediate link between mangrove litter production and estuarine planktonic food chains [J]. Marine Ecology Progress Series,2005,293:165-176.
    [252]Asada, T., Warner, B., Aravena, R. Effects of the early stage of decomposition on change in carbon and nitrogen isotopes in Sphagnum litter [J]. Journal of Plant Interactions,2005, 1(4):229-237.
    [253]Benner, R., Fogel, M. L., Sprague, E. K., Hodson, R. E. Depletion of 13C in lignin and its implications for stable carbon isotope studies [J]. Nature,1987,329(6141):708-710.
    [254]Connin, S. L., Feng, X., Virginia, R. A. Isotopic discrimination during long-term decomposition in an arid land ecosystem [J]. Soil Biology and Biochemistry,2001,33(1): 41-51.
    [255]Ehleringer, J. R., Buchmann, N., Flanagan, L. B. Carbon isotope ratios in belowground carbon cycle processes [J]. Ecological Applications,2000,10(2):412-422.
    [256]Fernandez, I., Mahieu, N., Cadisch, G. Carbon isotopic fractionation during decomposition of plant materials of different quality [J]. Global Biogeochemical Cycles, 2003,17(3):12.
    [257]Bostrom, B., Comstedt, D., Ekblad, A. Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter [J]. Oecologia,2007,153(1): 89-98.
    [258]Amundson, R., Austin, A. T., Schuur, E., Yoo, K., Matzek, V., Kendall, C., Uebersax, A., Brenner, D., Baisden, W. T. Global patterns of the isotopic composition of soil and plant nitrogen [J]. Global Biogeochemical Cycles,2003,17(1):1031.
    [259]Craine, J. M., Ballantyne, F., Peel, M., Zambatis, N., Morrow, C., Stock, W. Grazing and landscape controls on nitrogen availability across 330 South African savanna sites [J]. Austral Ecology,2009,34(7):731-740.
    [260]Bragazza, L., Iacumin, P. Seasonal variation in carbon isotopic composition of bog plant litter during 3 years of field decomposition [J]. Biology and Fertility of Soils,2009,46(1): 73-77.
    [261]Hill, J. M., McQuaid, C. D. Variability in the fractionation of stable isotopes during degradation of two intertidal red algae [J]. Estuarine, Coastal and Shelf Science,2009, 82(3):397-405.
    [262]Natelhoffer, K. J., Fry, B. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter [J]. Soil Science Society of America Journal,1988,52(6): 1633-1640.
    [263]Quan, W. M., Huang, D. Q., Chu, T. J., Sheng, Q., Fu, C. Z., Chen, J. K., Wu, J. H. Trophic relationships in the Changjiang River estuarine salt marshes:preliminary investigation from δ13C and δ15N analysis [J]. Acta Oceanologica Sinica,2009,28(3): 50-58.
    [264]Spence, K. O., Rosenheim, J. A. Isotopic enrichment in herbivorous insects:a comparative field-based study of variation [J]. Oecologia,2005,146(1):89-97.
    [265]Benner, R, Weliky, K., Hedges, J. I. Early diagenesis of mangrove leaves in a tropical estuary:molecular-level analyses of neutral sugars and lignin-derived phenols [J]. Geochimica et Cosmochimica Acta,1990,54(7):1991-2001.
    [266]Wieder, R. K., Carrel, J. E., Rapp, J. K., Kucera, C. L. Decomposition of tall fescue (Festuca elatior var. arundinacea) and cellulose litter on surface mines and a tall grass prairie in central Missouri, USA [J]. Journal of Applied Ecology,1983,303-321.
    [267]Schonholzer, F., Kohli, L., Hahn, D., Daniel, O., Goez, C., Zeyer, J. Effects of decomposition of leaves on bacterial biomass and on palatability to Lumbricus terrestris L [J]. Soil Biology and Biochemistry,1998,30(13):1805-1813.
    [268]Fauchald, K., Jumars, P. A. The diet of worms:a study of polychaete feeding guilds [J]. Oceanography and Marine Biology,1979,17:193-284.
    [269]Lee, K. E. Earthworms:their ecology and relationships with soils and land use [M]. Sydney Academic Press,1985.
    [270]Curry, J. P., Schmidt, O. The feeding ecology of earthworms-a review [J]. Pedobiologia, 2007,50(6):463-477.
    [271]陈昕韡,蔡立哲,吴辰,彭欣,曹婧,许鹏,刘莎,傅素晶.福建漳江口红树林和盐沼湿地的多毛类动物群落[J].应用生态学报,2012,23(4):931-938.
    [272]Kourtev, P. S., Ehrenfeld, J. G., Haggblom, M. Exotic plant species alter the microbial community structure and function in the soil [J]. Ecology,2002,83(11):3152-3166.
    [273]Demopoulos, A. W. J., Fry, B., Smith, C. R. Food web structure in exotic and native mangroves:a Hawaii-Puerto Rico comparison [J]. Oecologia,2007,153(3):675-686.
    [274]Brusati, E. D., Grosholz, E. D. Does invasion of hybrid cordgrass change estuarine food webs? [J]. Biological Invasions,2009,11(4):917-926.
    [275]Grassle, J. F., Grassle, J. P. Opportunistic life histories and genetic systems in marine benthic polychaetes [J]. Journal of Marine Research,1974,32(2):253-284.
    [276]Gee, J., Somerfield, P. Do mangrove diversity and leaf litter decay promote meiofaunal diversity? [J]. Journal of Experimental Marine Biology and Ecology,1997,218(1): 13-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700