水沙过程与河流生态环境作用初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流是社会发展之源,是地貌演变和生态系统中最具活力的部分。河流系统中的水沙、河床边界、河流水环境、生态系统是一个有机整体,各要素间存在着作用和制约的关系。对河流系统的整体性尤其是水沙过程与河流生态环境间的作用认识不深入,引起了开发利用的“短视”效应,导致河流健康的损害。因此,无论是解决水资源开发利用与河流生态环境之间的矛盾,实现流域持续开发,还是实践当前流域治理的新思路,维护河流健康,对河流生态环境问题开展深入的研究都具有重要的理论和实践意义。
     河流生态环境是河流系统中重要的组成部分,也是人们对河流健康最为关注的内容。长期以来水环境学家和生态学家对此开展了广泛而深入的研究。但这些研究多数是从学科自身的角度出发,对河流系统间各要素间的相互作用,尤其是河流生态环境与水沙运动、河床演变间的作用缺乏深入的认识,在一定程度上制约了河流生态环境的研究。
     本文以水沙过程及其变异为主线,以水沙输移和河床演变规律为基础,从微观方面探讨河流污染物迁移转化规律,从宏观方面总结河流生态系统及其调整响应特点,建立了水沙过程——河床演变——河流生态环境响应之间的联系,并对水沙变异下河流生态环境变化进行预测,提出了河流健康的评价方法和维护对策。
     文中主要讨论了以下几个方面的问题:
     (1)对开发治理下河流生态环境问题产生的原因进行了分析,阐明了研究的目的和意义;在总结河流水环境、生态系统研究现状的基础上,指出对河流生态环境的研究必须强调河流系统的整体性和内在联系性,开展多学科交叉研究。
     (2)总结了河流水沙输移及河床演变的特点,指出自然河流的径流、洪水呈现出一定的规律,水沙搭配关系能够综合反映水沙过程对河段冲淤的长期作用;分析水库调节的特点,认为水文特征及水沙搭配关系的变化将对水库下游产生普遍的影响;根据水库下游冲刷和含沙量恢复的特点,提出了冲刷距离的确定方法,指出冲刷将降低枯水期水位,加大河道滩槽高差;总结水库下游河床演变的特点。
     (3)由于河流水体中的污染物迁移与水流、泥沙之间相互作用的复杂性,已有的研究对泥沙和泥沙运动的影响考虑不足。文中深入分析了污染物与泥沙作用关系,确定了泥沙沉淀和再悬浮过程中污染物迁移量,建立了反映底泥动态释放的计算模式。根据污染物的特性,分别建立了难降解的重金属污染物迁移转化一维水质模型和一般可降解污染物迁移的二维水质模型,两个模型较好的克服了已有水质模型对泥沙和泥沙运动的影响考虑不足的缺点;分析表明模型能够反映污染物在泥沙上的各种迁移过程,同时具有较好的模拟精度。对水沙变异后河流水环境分析认为:水库下泄含沙量的减少和泥沙粒径的粗化,不利于污染物的吸附和
River, as the source of the social development, is the most active part of the topographic process and ecosystem. Flow & sediment process, river boundary, water environment and river ecosystem constitute the whole river system, and they interact and constraint each other. As to the incomprehensive understanding of the integrity of the river system, especially lack of acquaintance of the interaction between flow & sediment process and riverine environment, the river resources have been used without long-time consideration, which leads to the degradation of the river health. Whether aims to release the contradiction between river development and riverine environment or to maintain the sustainable development of river health, it is necessary and significant to carry out the deeply researches on riverine environment.Riverine environment is an important part of the river system, and also it is the most interested part of river health. For a long time, aquatic environmentalist and ecologist have done comprehensive and intensive researches on it, but most of them were specialized in a single field. The deeply researches on the interaction of the various aspects of the whole river system and specially the interaction between riverine environment, sediment movement and river evolution are deficit, which, in a certain extent, constraints the development of the researches on it.Based on the low of the sediment transportation and river bed deformation, the flow & sediment process and its variation are taken as the main clue in this paper. Several aspects are considered: The low of river pollutant transportation and transform are discussed for micro-scale; The characters of the river ecosystem and its adjustments are summarized for macro-scale; The relationship between flow & sediment process, river evolution and riverine environment are built up; Predict the trend of riverine environment adjustment and bring forward the corresponding assessment method and protect countermeasure.The key issues discussed in this paper are shown as follows:(l)Analyze the causes that lead to the disease of river environment and illustrate the significance of the researches on the riverine environment. Summarize the previous researches on it and suggest that the integrity and intrinsic relationship of the river system must be emphasized and the multi-subject method must be used.(2)Based on the summarizing and analyzing on the characters of sediment transportation and river evolution, it is concluded that flow and flood of Nature River show a certain regulation, and the combination of water and sediment can reflect the longtime effect of river bed erosion and sediment deposition under the action of flow & sediment. Analyze the low of reservoir operation, and get the result that the variation of hydrology process and water & sediment combination will generally impact the downstream bed form and river environment.Analyze the characteristic of downstream river bed erosion and sediment concentration recover, put forward the method that calculate the scour distance and conclude that the scour will decrease the water level in the low water period and increase the elevation difference of floodplain and channel. Summarize the characteristic of downstream river evolution, and point out the evolution characters: the
    winding reaches will decantation the bend and cut the beach; the straight reaches will increase its stability; channel bar change to side-bar; small bar change to big bar and so on.(3)Due to the complex interaction between pollutant transportation and flow and sediment transportation in the river, previous researches have lack of considering on the influence of the sediment and its transportation.In this article, the interaction of pollutant and sediment is deeply studied. The amount of pollutant transportation during the course of sediment deposition and re-suspension are confirmed, and the computed pattern, which can reflect the dynamic course of bed mud release, is established.According to the characteristic of the pollutant, two models are established ,and compared with previous models these two models can do better to offset the deficiencies in considering the influence of sediment. By structure and case analysis on the models, the result shows that the established models can reflect all kind of processes of pollutant transportation on the sediment, and have a good simulation precision.Analyzing the water quality response to flow and sediment regime variation, it is concluded that the decrease of sediment concentration and the coarseness of grain size are disadvantageous to the pollutant adsorption and degradation, river bed form change leads to the decrease of flow velocity and weaken of the ability of river auto purification, and at the same time, scour in the pollutants deposition regions do harm to the water quality.(4)The river ecosystem is closely related to the fluvial dynamics and river morphology, but this was insufficiently recognized in previous researches. Based on the low of sediment transportation and river evolution, the research on river ecosystem is conducted. It is concluded that natural variations of flow & sediment process are significant whether to maintain the successive of the river or to constitute the diversity of function process, and protect the habitat succession and biodiversity.The ecological response of flow & sediment process can be simply divided into two kinds: short-time response and long-time response. Previous studies are mostly carried on the short-time responses that always are obvious. But these long-time responses are deeply impact but lack of study, which are the disturbance of flow & sediment process, the diversity and natural succession of long-time formed habitats.By analyzing the rive ecosystem response to flow and sediment regime variation, put forward the probably adverse impacts token by hydrological variation, sediment trapping and downstream channel erosion.Based on the relationship between ecosystem response downstream reservoir and hydrological variation and bed erosion, we build up the relational graph about the reservoir operation, water and sediment arrangement and ecosystem response, which is the base of predicting river ecosystem response and ecology health regulation.(5)Based on the analysis on the interaction between the river aquatic environment and ecosystem, the secondary environment effects by water and sediment variety are shown as:The variety of water quality of reservoir may lead to the ecosystem deteriorate phenomena, such as water body eutrophication and algal bloom. And the decrease of the
    wetland area, water amount entering in the wetland, and the broken of wetland function and succession, will weaken the eco- and environment function of wetland.And the feedbacks of river ecosystem are shown as:Riparian vegetation affects on flow structure and riverbed roughness; impacts the riverbed deformation by changing the trapping efficiency and the ability of bank anti-scour. The riparian vegetation variation will increase band stability and at the same time, increase the flow resistance of flood flow.(6)Presently, the definition of river health is not unified, the assessment formwork of river health lacks of its integrity and predictable, and the countermeasure of maintain river health are searching for. This paper points out the dualism functions in the nature river and exploited river. Base on this understanding, the river health is defined and the connotation of healthy river put forward as: the flow and sediment varies at their limit range.In this paper the elementarily river health index system and assessment method are put forward. The method generally reflects the healthy condition of river environment and rives service function, and at the same time, it emphasizes the unification of exterior embodiment and internal factors and is satisfied with its predictability.It is concluded that the primarily principle to maintain the sustainable development of rive health is to maintain a certain water and sediment process in order to satisfy the requirements of river environment and service function. And the special countermeasures are brought forward to maintain the river health: control the river resources exploit, realize the reasonable and orderly exploitation, as well as build up the regulation of reservoir operation which gives attention to river environment.
引文
[1] 钟钢,陈雯.从世界大河流域开发实践构想长江开发模式.长江流域资源与环境,1997(2):122-126
    [2] 黄勇.江河流域开发模式与澜沧江可持续发展研究.地理学报,1999,54:119~126
    [3] Evans, BJ; Attia, K, Changes to the Properties of the River Nile Channel After High Aswan Dam, Physical Responses of the River Nile to Interventions. Canadian International Development Agency, Hull, Quebec, Canada, 1991. p 277-290, 4 fig, 11 tab, 12 ref.
    [4] 黄真理.阿斯旺高坝的生态环境问题.长江流域资源与环境,2001(1):82-88
    [5] W.H.麦克纳里[美].密西西比河防止海水入侵的措施.水利水电快报.1997(24):18-23
    [6] 倪晋仁,钱征寒.论黄河功能性断流,中国科学E辑.2002(4):496-502
    [7] 落实科学发展观当好长江代言人——为维护健康长江而努力奋斗,蔡其华在长江委2005年工作会议上的报告
    [8] 陶希东,石培基,巨天珍等,西北干旱区水资源利用与生态环境重建研究,干旱区资源与环境,2001,15(1):18~22
    [9] 孙景亮,论对天然河流水资源开发中的水环境问题,南水北调与水利科技,2003,1(6):33~35
    [10] 白康斌,江河流域综合开发刍议,长江流域资源与环境,1995,4(1):86~89
    [11] 陈宁,邴颂东,水能资源开发利用与区域可持续发展研究,水电能源科学,1998,16(4):36~40
    [12] 毛战坡,彭文启,周怀东,大坝的河流生态效应及对策研究,中国水利,2004,15:43~45
    [13] 汪恕诚,论大坝与生态,水力发电,2004,30(4):1~4
    [14] Sparks RE, Risks of alerting the hydroregime of large revisers, Owos DR, eds, 1992: 119-152.
    [15] Busch DE, smith SD, mechanisms with decline of woody species in reparian ecosysytems of southwestern, Ecological Monographs, 1992, 65:347-370.
    [16] 赵惠君,张乐,关注大坝对流域环境的影响,长江职工大学学报,2002,19(1):4~8
    [17] 汪恕诚,再谈人与自然和谐相处——兼论大坝与生态,中国水利,2004,8:6~13
    [18] 李国英,黄河治理的终极目标是“维持黄河健康生命”,中国水利,2004,1:6~7
    [19] 谢永明,环境水质模型概论,中国科技大学出版社,1996
    [20] 黄岁樑、Onyx W. H.Wa,水环境污染物迁移转化研究与泥沙运动,水科学进展,1998年9月:205-211.
    [21] 叶常明,多介质环境污染研究,北京:科学出版社,1997:62-178.
    [22] 黄岁棵.万兆惠.王兰香.泥沙吸附重金属污染物室内静态试验研究,水科学进展,1994(12):271-279
    [23] 黄岁樑.万兆惠.王兰香.泥沙浓度和水相初始浓度对泥沙吸附重金属的影响研究,环境科学学报,1995(1):66-76.
    [24] 黄岁樑.万兆惠.张朝阳等,泥沙粒径对重金属污染物吸附影响的研究,水利学报 1994(10):53-60.
    [25] 叶常明.雷志芳.王宏等,颗粒物与天然水体痕量有机物相互作用的动态模型,水科学进展,1995(9):171-175
    [26] 黄国兰.陈志琼.戴树桂,丁基锡化合物在水体悬浮颗粒物上的吸附行为研究,环境科学学报,1998(3):137-143
    [27] 李铁.叶常明.雷志芳,沉积物与水间相互作用的研究进展,环境科学进展,1998(10),29-39
    [28] Deane G, Chroneer z, Lick W. Diffusion and sorption of hexachlorobenzene in sediments and sand satuated soils.Journal of Environmental Engineering, 1999, 125(8): 689-696.
    [29] 叶常明,多介质环境污染研究,北京:科学出版社,1997:62-178.
    [30] 李炜,环境水力学进展,武汉水利电力大学出版社,1999年
    [31] 朱广伟,陈英旭,沉积物中有机质的环境行为研究进展,湖泊科学,2001(3),272-279.
    [32] 李剑超.褚君达.丰华丽,河流底泥冲刷悬浮对水质影响途径的实验研究[J],长江流域资源与环境,2002(3):137-140
    [33] 李文红.陈英旭.孙建平.不同溶解氧水平对控制底泥向上覆水体释放污染物的影响研究,农业环17、境科学学报,2003,22(2):170-173
    [34] 汪家权.孙亚敏.巢湖底泥磷的释放模拟实验研究,环境科学学报,2002(11):738-742
    [35] 秦伯强.范成新,大型浅水湖泊内源营养盐释放的概念性模式探讨,中国环境科学 2002,22(2):150-153
    [36] 李勇.王超,城市浅水型湖泊底泥磷释放特性实验研究,环境科学与技术,2003(1):29-28
    [37] 于世繁,张国锋,白洋淀底质磷的释放及与水体中磷的关系,环境科学,16卷增刊:30-34
    [38] 由文辉,沉积物中磷负荷及其释放对水质的影响,上海环境科学,1997(12):23-25
    [39] 朱广伟.陈英旭,运河(杭州段)沉积物磷释放的模拟试验,湖泊科学,2002(12):343-349.
    [40] 范成新.张路.杨龙元.等,湖泊沉积物氮磷内源负荷模拟,海洋与湖沼,2002(7):370-378.
    [41] Roboert Portielje and Lambertus Lijklema, Estimation of sediment-water exchange of solutes in lake veluwe[J], the Netherlands, Wat. Res. Vol. 33, No. 1, pp. 279+285, 1999.
    [42] Hong Wanga,*, Adhityan Appanb, John S. Gulliverc, Modeling of phosphorus dynamics in aquatic sediments:l—model development[J], water research(37), 2003: 3928-3938.
    [43] Smits JGC, van der Molen DT. Application of SWITCH, a model for sediment-water exchange of nutrients, to Lake Veluwe in The Netherlands. Hydrobiologia 1993; 253(2):281-300
    [44] Di Toro DM. Sediment flux modeling. New York: Wiley; 2001.
    [45] 叶常明等,水体有机污染的原理研究方法及应用.北京:海洋出版社,1990
    [46] 黄岁樑.万兆惠,河流重金属迁移转化数学模型研究综述,泥沙研究,1995年12月,2-49.
    [47] 黄岁樑、万兆惠等,冲积河流重金属污染物迁移转化数学模型研究,水利学报,1995(1):47~56
    [48] 诸君达.徐惠慈,河流底泥冲刷沉降对水质影响的研究,水利学报,1999(11):42-47
    [49] 长江水利委员会.三峡工程生态环境影响研究,武汉:湖北科学技术出版社,1997
    [50] 李锦秀,廖文根,黄真理,三峡工程对库区水流水质影响预测,水利水电技术 2002,33(10):22~25
    [51] 蔡庆华.唐涛.刘建康,河流生态学研究中的几个热点问题,应用生态学报,2003(9):1573~1577
    [52] Vannote RL, Minshall GW, Cummins KW, et al, The river continuum concept, Can J Fish Aqua Science, 1980, 37: 130~137
    [53] Junk WJ, Bayley PB, SParks R E. the flood Pulse concept in river/floodplain system. Can spec Publ Fish Acquit sci, 1989, 106: 110-127.
    [54] Ward J. V. (1989) The four-dimensional nature of lotic ecosystems Journal of the North American Benthological Society, 8,2~8.
    [55] Ward J. V, Stanfold J. A, Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation, Regul Rivers, 1995, 11: 105-119.
    [56] Petts G, Amoros, Fluvial Hydrosystem, london Chapman and Hall, 1996, 1-30.
    [57] 王成,徐化成,郑均宝,河谷土地利用格局与洪水干扰的关系,地理研究,1999,18(3):327~335
    [58] Ward; Tockner. Biodiversity: towards a unifying theme for river ecology. Freshwater Biology, Jun2001, Vol. 46 Issue 6, p807, 13p; DOI: 10.1046/j. 1365-2427.2001.
    [59] 夏铭,生物多样性研究进展,东北农业大学学报,1999,30(1):94~100
    [60] Li H, Reynolds J F. On definition and quantification of heterogeneity, Oikos, 1995, 73:280-284.
    [61] 董哲仁,河流形态多样性与生物群落多样性,水利学报,2003,11:1~6
    [62] R.Forman,肖笃宁译,景观生态学,北京:中国科学技术出版社,1990
    [63] Tony Prato, Multiple-attribute evaluation of ecosystem management for the Missouri River system, Ecological Economics 45(2003) 297~/309.
    [64] Kingsford, R. T. 2000. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecology 25: 109-127.
    [65] Graf, W. L. 2001. Damage Control: Restoring the Physical Integrity of America's Rivers. Annals of the Association of American Geographers, 91(1), pages 1-27.
    [66] J. F. Craig, Large Dams and Freshwater Fish Biodiversity, Prepared for Thematic Review Ⅱ. 1: Dams, ecosystem functions and environmental restoration, http://www.dams.org.
    [67] Levine C. M.; Stromberg J. C., Effects of flooding on native and exotic plant seedlings: implications for restoring south-western riparian forests by manipulating water and sediment flows, Journal of Arid nvironments, September 2001, vol. 49, no. 1, pp. 111-131(21).
    [68] Carothers, S. W. and Dolan, R. 1982. Dam changes on the Colorado River. Natural History 91: 74-84
    [69] M. E. JOHANSSON and C. NILSSON, Responses of riparian plants to flooding in free-flowing and regulated boreal rivers: an experimental study Journal of Applied Ecology, 2002, 39, 971-986
    [70] Stuart E. Bunn, Angela H. Arthington. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environmental Management Vol. 30, No 4, 492-507
    [71] Petts. G. E. Long term consequences of upstream impoundment, Environmental Conservation. 1980, 7(4). 325-332
    [72] Berkamp, G., McCartney, M., Dugan, R, McNeely, J., Acreman, M. 2000. Dams, ecosystem functions and environmental restoration, Thematic Review Ⅱ. 1 prepared as an input to the World Commission on Dams, Cape Town, www.dams.org
    [73] Harris JH, Silveira R. 1999. large-scale assessments of river health using an index of biotic integrity with low-diversity fish communities. Freshwater biol. 41: 235-252
    [74] Ladson AR, White LJ, Doolan JA, et al 1999. Development and testing of an index of stream condition for waterway management in Australia. Freshwater biol, 41: 453-468
    [75] J. King, D. Louw. Instream flow assessments for regulated rivers in South Africa using the Building Block Methodology. Aquatic Ecosystem Health and Management 1(1998) 109-124
    [76] Angela H. Arthington, Johan L. Rall, Mark J. Kennard, et al. Environmental flow requirements of fish in Lesotho rivers using the DRIFT methodology. River Research and Application, 2003, 19: 641-666
    [77] Michael J. Stewardson, Charistopher J. Gippel. Incorporating flow variability into environmental flow regimes using the flow events method, River Research and Application, 19: 459-472(2003)
    [78] 陈静生,夏星辉,我国河流水化学研究进展,地理科学,1999,19(4):290~294
    [79] 王兆印,泥沙研究的发展趋势和新课题,地理学报,1998,53(3):245~255
    [1] 汤奇成 熊怡等,中国河流水文,1998
    [2] Richard E. Sparks, Need for ecosystem management of large rivers and their floodplains, Bioscience, Mar 1995; 45, 3: 168-182.
    [3] 许炯心,水沙条件对黄河下游河道输沙功能的影响,地理科学,2004,24(3):275~280
    [4] 张耀先,焦爱萍,弯曲型河道挟沙水流运动规律研究进展,泥沙研究,2002,2:53~58
    [5] 钱宁,张仁,周志德,河床演变学,北京:科学出版社,1987
    [6] 潘久根,金沙江流域的河流泥沙输移特性,泥沙研究,1999,2:46~49
    [7] 李香萍,杨吉山,陈中原,长江流域水沙输移特性,华东师范大学学报(自然科学版),2002,4:88~95
    [8] 邓金运.流域水沙输移模型及其在长江上中游的应用.武汉大学博士学位论文,2003
    [9] 李义天,孙昭华,邓金运,张为,泥沙输移变化与长江中游水患,泥沙研究,2004,2:33~39
    [10] 许炯心,流域因素与人类活动对黄河下游河道输沙功能的影响,中国科学D辑,地球科学,2004,34(8):775—781
    [11] 尹学良等,黄河下游的河性,地理学报,1992,47(3)
    [12] 陈立,吴门伍,张俊勇,三峡工程蓄水运用对长江口径流来沙的影响,长江流域资源与环境,2003,12(1)50~54
    [13] 齐璞,孙赞盈,北洛河下游河槽形成与输沙特性,地理学报,1995,50(2):168~177
    [14] 申冠卿,李勇,岳德军,李小平,艾利河段泥沙输移特性及不淤临界含沙量探讨,人民黄河,2004,26(11):19~22
    [15] 赵文林,渭河下游河道输沙特性与形成窄深河槽的原因,人民黄河,1994,(3)
    [16] 申冠卿,曲少军,张原锋,等,黄河下游洪水期断面调整对过洪能力的影响,泥沙研究,2001,6:33~38
    [17] 梁志勇,刘继祥,张厚军,从水沙条件探讨黄河下游上下河段冲淤调整关系,泥沙研究,2004,8:15~19
    [18] 陈孝田,陈明非,宋晓景,黄河下游不同含沙量洪水对河道冲淤的影响,人民黄河,2000,22(11):13~14
    [19] 梁志勇,李文学,张翠萍,渭河下游冲淤临界流量研究,泥沙研究,2003,12:13~17
    [20] 陈界仁,夏爱平,黄河下游河槽萎缩与水沙条件关系初步分析,水文,2002,22(6):19~21
    [21] 石国钰,许全喜,陈泽方,长江中下游河道冲淤与河床自动调整作用分析,山地学报,2002,20(3):257~265
    [22] 曹文洪,黄河下游水沙复杂变化与河床调整的关系,水利学报,2004,11,1~6
    [23] “九五”三峡工程泥沙问题研究,专题1三峡水库拦沙泄水对下游河道冲淤影响及对策研究,子题3长江螺山至汉口沙量平衡分析,长江水利委员会水文局,2000,9
    [24] 权宝增,河流地质地貌,北京:水利电力出版社
    [25] 王平义,兰峰,天然冲积河湾成因及形态规律,重庆交通学院学报,2001,20(3):97~101
    [26] Leopold L B, Wolman M G River channel patterns: braided, meandering and straight. U S Geol Surv Prof Pap 282-B, 1957
    [27] 孙昭华,水沙变异条件下河流系统调整机理及其功能维持初步研究,武汉大学博士学位论文,2004年
    [28] 赵业安,潘贤娣,李勇,黄河水沙变化与下游河道发展趋势,人民黄河,1994,2:31~34
    [29] M. M. Grasser and F. EI-Gamal, Aswan High Dam: Lesson learnt and on-going research. Water Power & Dam Construction. Jun. 1994, 35-39
    [30] David J. Topping, David M. Rubin, L. E. Vierra Jr., Colorado River sediment transport 1. Nature sediment supply limitation and influence of Glen Canyon Dam, Water Resources Research, Vol36. No2. Pages515-542, Feb. 2000
    [31] 刘国炳,黄大学,水库下游河流水情变化及河床地貌演变,川北教育学院学报,2001,11(3):43~46
    [32] 陆永军,袁美琦,贾锐敏等,三峡工程对下游河道的影响及治理措施的初步研究,水道港口,1997,2:11~29
    [33] 周志德,水库下游河床冲刷下切问题的探讨,泥沙研究,2003,5:28~31
    [34] 陆永军,袁美琦,贾锐敏等,三峡工程对下游河道的影响及治理措施的初步研究,水道港口,1997,2:11~29
    [35] 王荣新,章厚玉,易志平等,丹江口水库坝下游沿程Z~Q关系变化分析,人民长江,2001,32(2):25~27
    [36] 汉江丹江口水库水文泥沙实验文集,长江流域规划办公室水文局,1983
    [37] 韩其为,何明民,三峡水库修建后下游长江冲刷及对防洪的影响,水力发电学报,1995,3:34~46
    [38] 丹江口水库下游河道演变分析,长江水利委员会水文局,长江三峡工程泥沙问题研究,(第七卷),长江三峡工程坝下游泥沙问题(二),知识产权出版社,2002年
    [39] 水电部第十一工程局勘测设计研究院,三门峡水库对黄河下游冲淤输沙的影响,黄河泥沙研究报告选编,第1卷,下册
    [40] 水利水电科学研究院河渠研究所.官厅水库修建后永定河下游的河床演变.北京:水利水电出版社,1960,82~83
    [41] 赵业安,等.黄河下游河道演变基本规律.河南:黄河水利出版社,1998,16~17
    [42] S. Anders Brandt, Classification of geomorphological effects downstream of dams. Catena 40(2000) 375-401
    [43] 曹耀华,长江中游边滩类型及几何特征,江汉石油学院学报,1994,16(4):22~27
    [44] 长江科学院,湖北省潜江市汉江兴隆闸整治工程河工模型试验研究报告,1996.9
    [45] 中国水利水电科学研究院,三峡建坝后下荆江河型变化趋势初步研究,见:长江三峡工程泥沙问题研究第7卷,北京:知识产权出版社
    [46] 韩其为,童中均.丹江口水库下游分汊河道河床演变特点及机理,人民长江
    [47] 潘庆燊,曾静贤,欧阳履泰.丹江口水库下游河道演变及其对航道的影响,水利学报.1982(8):54-63
    [1] 谢永明,环境水质模型概论,中国科技大学出版社,1996
    [2] 李炜,环境水力学进展,武汉水利电力大学出版社,1999
    [3] 叶常明,多介质环境污染研究,北京:科学出版社,1997
    [4] 叶常明.雷志芳.王宏等,颗粒物与天然水体痕量有机物相互作用的动态模型,水科学进展,1995(9):171-175.
    [5] 黄国兰.陈志琼.戴树桂,丁基锡化合物在水体悬浮颗粒物上的吸附行为研究[J],环境科学学报,1998(3):137-143.
    [6] 李铁.叶常明.雷志芳,沉积物与水间相互作用的研究进展[J],环境科学进展,1998(10),29-39.
    [7] Deane G, Chroneer z, Lick W. Diffusion and sorption of hexachlorobenzene in sediments and sand satuated soil. Journal of Environmental Engineering, 1999, 125(8): 689-696.
    [8] 方涛等,水体悬移质对重金属吸附规律研究——以长江宜昌段为例[J],长江流域资源与环境,2001(3):185~192
    [9] 潘纲,亚稳平衡态吸附(MEA)理论—传统吸附热力学理论面临的挑战与发展,环境科学学报,2003年3月,156-173.
    [10] 汤鸿霄,钱易,文湘华等著,水体颗粒物和难降解有机物的特性与控制技术原理(上)[M],北京:中国环境科学出版社,2000
    [11] 金相灿,徐燕妮,吴淑岱.湘江水体系中悬浮沉积物对镉、铜、砷和汞的吸附特征的研究[J].环境科学与技术,1986,(2):2~6
    [12] 王晓蓉,章慧珠,周爱和,等.金沙江颗粒物对重金属的吸附[J].环境化学,1983,2(1):23~32.
    [13] 李改枝,刘颖,李景峰,等.黄河水中悬浮离子对镉离子的交换吸附等温线[J].中国环境科学,1999,19(4):330~332.
    [14] Sinclar P, Beckett R, Hart BT. Trace elements in suspended particulate matter from the Yarra River, Australia[J]. Hydrobiology, 1989, 176/177: 239~251
    [15] 黄岁棵.万兆惠.王兰香.泥沙吸附重金属污染物室内静态试验研究[J],水科学进展,1994(12):271-279.
    [16] 黄岁樑.万兆惠.王兰香.泥沙浓度和水相初始浓度对泥沙吸附重金属的影响研究[J],环境科学学报,1995(1):66-76.
    [17] 黄岁樑.万兆惠.张朝阳等,泥沙粒径对重金属污染物吸附影响的研究[J],水利学报 1994(10):53-60.
    [18] 赵沛伦,中献辰,夏军等,泥沙对黄河水质影响及重点河段水污染控制的研究,1998,黄河水利出版社
    [19] 李绪谦,张建伟,王奇杰,江水浊度在污染河段水质净化中的作用分析及建议,地理科学,2004,第24卷第2期:245~249
    [20] 王宝贞,水污染控制工程,1990年04月 第1版
    [21] 金相灿等著,中国湖泊环境(第一册),1995,北京:海洋出版社
    [22] Gale PM, Reddy KR. Carbon flux between sediment and water column of a shallow, subtropical, hydroeutrophic lake. Environ Qual, 1994, 23(5): 965~972.
    [23] Reddy KR, Fisher MM, Ivanoff D. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. Journal of Environmental Quality, 1996, 25: 363-371.
    [24] 谭炳卿,杨智,沈哲松,王成,南水北调东线工程底泥污染物对水质的影响评价,环境科学研究,第16卷第4期,1~4
    [25] 李剑超.褚君达.丰华丽,河流底泥冲刷悬浮对水质影响途径的实验研究[J],长江流域资源与环境,2002(3):137-140
    [26] 谢鉴衡主编,河流模拟[M],水利电力出版社,1988年
    [27] 唐孟成,贾之慎等,西湖沉积物磷释放影响因子的研究[J],浙江农业大学学报23(3):289~292,1997
    [28] 韩伟明,张国励,杭州西湖底泥释磷的模拟研究,1990,西湖环境研究论文集,83~89
    [29] 吴根福,吴雪昌,金承涛(1998)杭州西湖底泥释磷的研究.中国环境科学,18(2):107~110
    [30] 田升平,滇池湖泊磷负荷及其对水环境的影响[J],化工矿产地质,2002(3):11-16
    [31] 郑曦,刘登义,镜湖富营养化污染及其治理的初步研究——底泥氮磷及入湖污水对富营养化的影响[J],徐州师范大学学报(自然科学版),1999(6):54-56
    [32] Hong Wanga,*, Adhityan Appanb, John S. Gulliverc, Modeling of phosphorus dynamics in aquatic sediments: Ⅰ—model development[J], water research(37), 2003: 3928-3938.
    [33] 汪家权.孙亚敏.巢湖底泥磷的释放模拟实验研究[J],环境科学学报,2002(11):738-742.李文红
    [34] 李勇.王超,城市浅水型湖泊底泥磷释放特性实验研究[J],环境科学与技术,2003(1):29-28
    [35] 王庭健.苏睿.城市富营养湖泊沉积物中磷负荷及其释放对水质的影响[J],环境科学研究,1994(4):12-19
    [36] 秦伯强.范成新,大型浅水湖泊内源营养盐释放的概念性模式探讨[J],中国环境科学 2002,22(2):150-153
    [37] 于世繁.张国锋,白洋淀底质磷的释放及与水体中磷的关系[J],环境科学,16卷增刊:30-34
    [38] 由文辉,沉积物中磷负荷及其释放对水质的影响[J],上海环境科学,1997(12):23-25
    [39] 朱广伟.陈英旭,运河(杭州段)沉积物磷释放的模拟试验[J],湖泊科学,2002(12):343-349
    [40] 范成新.张路.杨龙元.等,湖泊沉积物氮磷内源负荷模拟[J],海洋与湖沼,2002(7):370-378.
    [41] Smits JGC, van der Molen DT. Application of SWITCH, a model for sediment-water exchange of nutrients, to Lake Veluwe in The Netherlands. Hydrobiologia 1993; 253(2): 281-300
    [42] Di Toro DM., Sediment flux modeling. New York: Wiley; 2001.
    [43] Hong Wanga,*, Adhityan Appanb, John S. Gulliverc, Modeling of phosphorus dynamics in aquatic sediments: Ⅰ—model development[J], water research(37), 2003: 3928-3938.
    [44] Roboert Portielje and Lambertus Lijklema, Estimation of sediment-water exchange of solutes in lake veluwe[J], the Netherlands, Wat. Res. Vol. 33, No. 1, pp. 279±285, 1999.
    [45] 陈敏,阮晓蕾,陈邦林等,界面化学研究河口颗粒物对氮迁移、转化的影响,华东师范大学学报(自然科学版),1994(3):61~65
    [46] 夏星辉,周劲松,余晖,杨志峰,黄河水体颗粒物对石油类污染物生物降解过程的影响研究,环境科学学报,2003年,第23卷第5期:603~607
    [47] 王宏.叶常明,邻苯二甲酸二丁醋在天然水中的生物降解及其颗粒物界面效应[J],环境科学学报,1995(15):393-398
    [48] 黄岁樑、Onyx W.H.Wa,水环境污染物迁移转化研究与泥沙运动,水科学进展,1998年9月:205-211.
    [49] 黄岁樑、万兆惠等,冲积河流重金属污染物迁移转化数学模型研究[J],水利学报,1995(1):47~56
    [50] 林玉环,汞河流底质迁移模式研究[J],环境科学学报,1985(3):276~285
    [51] 杨官仁,三峡库区重金属污染分析及防治对策探讨,环境与开发,1995,10(2):23~26
    [52] 长江水利委员会.三峡工程生态环境影响研究,武汉:湖北科学技术出版社,1997
    [53] 李锦秀,廖文根,黄真理,三峡工程对库区水流水质影响预测,水利水电技术2002,33(10):22~25
    [54] 李锦秀,廖文根,水流条件巨大变化对有机污染物降解速率影响研究,环境科学研究,2002,15(3):45~48
    [55] 金腊华,石秀清,大型水利枢纽对河流水质的影响分析,环境与开发,1995,10(4):43~45
    [56] 杨延聪,孙东坡,吴卫平,水利工程与河流水环境,河南科学,1998,16(2):233~238
    [57] 陈国阶,徐跃,杜镕恒等著,三峡工程对生态与环境的影响及对策研究,北京:科学出版社出版.1995
    [58] 黄真理,三峡工程中的几个环境水力学问题,中国三峡建设,1999,9:36~39
    [59] 郭玲,天然水体中颗粒悬浮物对有机污染水体系净化的实验模拟,蒙自师专学报(自然科学版),1997,14(4):20~23
    [60] 李绪谦,张建伟,王奇杰,等,江水浊度在污染河段水质净化中的作用分析及建议,地理科学,2004,24(2):245~249
    [61] 朱圣清,减小平,长江主要城市江段重金属污染状况及特征,人民长江,2001,32(7):23~25
    [1] 王蔽,李传奇,景观生态学在河流生态修复中的应用,中国水土保持,2003(6):36~37
    [2] 蔡晓明编著,生态系统生态学,北京:科学出版社,2000.
    [3] 赵坤云,沈华中编译,美国洪泛区管理,黄河水利出版社,2002
    [4] 安树青,湿地生态工程—显地资源利用与保护的优化模式,北京,化学工业出版社,2002
    [5] Robert c. Wissmar, Restoration and management of riparian ecosystems: a catchment perspective, Freshwater biology(1998) 40, 571-585.
    [6] 董哲仁,河流形态多样性与生物群落多样性,水利学报,2003,11:1~6
    [7] Geoffrey C, Fluvial landscape ecology: addressing uniqueness within the river discontinuum, Freshwater Biology, 2002, 47(4): 641~655.
    [8] 蔡庆华.唐涛.刘建康,河流生态学研究中的几个热点问题,应用生态学报,2003(9):1573~1577
    [9] Vannote RL, Minshall GW, Cummins KW, et al, The river continuum concept, Can J Fish Aqua Science, 1980, 37: 130~137
    [10] 唐涛,黎道丰,潘文斌等,香溪河河流连续统特征研究,应用生态学报 2004,15(1):141~144
    [11] G. Bretschko, Running water ecosystems-a bare field for modeling. Ecological Modelling 78(1995): 77-81.
    [12] Bretschko G. 1995. Running water ecosystem-A bare field for modelling? Ecological Mode, 78: 77~81
    [13] Ward J. V. (1989) The four-dimensional nature of lotic ecosystems Journal of the North American Benthological Society, 8, 2~8.
    [14] 董哲仁,保护和恢复河流形态多样性,中国水利,2003.6A刊,53~54
    [15] Petersen, R. C., Madsen, B.L., 1987 "Stream management: emerging global similarities", Ambio, 16, 166-179.
    [16] 许炯心.师长兴,河漫滩地生态系统影响下的河型转化—以红山水库上游河道为例,地理学报,1995(7):335~343
    [17] 栾建国,陈文祥,河流生态系统的典型特征和服务功能,人民长江,2004年9月,41~43
    [18] 谭炳卿,孔令金,尚化庄,河流保护与管理综述,水资源保护,2002年第3期,53~57
    [19] Weigelhofer, G. & J. A. Waringer, 1994. Allochthonous input of coarse particulate organic matter(CPOM) in a first to fourth order Austrian forest stream. Int. Rev. Hydrobiol. 79: 461-471.
    [20] Schiemer F. Fish as indicators for the assessment of the ecological integrity of large rivers. Hydrobiologia, 2000, 47, 271-278.
    [21] Junk, W. J., P. B. Bayley and R. E. Sparks. 1989. The flood pulse concept in river floodplain systems, p. 110-127. In D. P. Dodge(editor) Proceedings of the International Large River Symposium. Canadian Special Publications in Fisheries and Aquatic Sciences. 106.
    [22] Ward; Tockner. Biodiversity: towards a unifying theme for river ecology. Freshwater Biology, Jun2001, Vol. 46 Issue 6, p807, 13p; DOI: 10. 1046/j. 1365-2427. 2001.
    [23] 阳含熙.李飞,生态系统浅说,清华大学出版社,2002年
    [24] 董哲仁,试论生态水利工程的基本设计原则,水利学报,2004,10:1~6
    [25] 邬建国,景观生态学—格局、过程、尺度与等级,高等教育出版社,2000
    [26] J. V. Ward, Reverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation, Biological Conservation Vol. 83, NO. 3, pp. 269~278, 1998.
    [27] Odum, W. E., Odum, E. P., Odum, H. T., 1995. Nature's pulsing paradigm. Estuaries 18, 547-555.
    [28] Tockner K. & Ward J. V. (2000) Physicochemical heterogeneity in a glacial riverscape. Landscape Ecology, 15, 679-695.
    [29] Tamiji Yamamoto, Gen Hatta, Pulsed nutrient supply as a factor inducing phytoplankton diversity, Ecological Modelling 171(2004) 247-270.
    [30] Dimitry van der Nat, Klement Tockne, et al, Habitat change in braided flood plains(Tagliamento, NE-Italy), Freshwater Biology, Volume 48 Issue 10 Page 1799-October 2003.
    [31] Junk, WJ and MTF Piedade. 1994. Species diversity and distribution of herbaceous plants in. the floodplain of the middle Amazon. Verh. Internat. Verein. Limnol. 25: 1862-1865
    [32] K. TOCKNER,*, F. SCHIEMER, C. BAUMGARTNER, G. KUMC, E. WEIGAND, I. ZWEIMU LLER AND J. V. WARD, The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system, REGULATED RIVERS: RESEARCH & MANAGEMENT, 15: 245-258(1999) 7
    [33] 丰华丽,河流生态环境需水理论方法及应用研究,河海大学博士论文,2002
    [34] 姜跃良,王美敬,李然,等生态水力学原理在城市河流保护及修复中的应用,水利学报,2003(8):75~78
    [35] 杨海龙,影响水生维管束植物生长与分布的主要生态因子分析,韩山师范学院学报,2000(2):76~79
    [36] 李大鹏,庄平,张征等,涛史氏鲟南移驯养及生物学的研究:Ⅵ水流刺激对稚鱼生长的影响,淡水渔业,2000,30(3):42~45
    [37] 温海深,林浩然,环境因子对硬骨鱼类性腺发育成熟及其排卵和产卵的调控,应用生态学报,2001,12(1):151~155
    [38] Hart R C. zooplankon abundance community structure and dynamics in relation to inorganic turbidity and their implications for a potential fishery in subtropic Lake Le Roux, South Africa. Freshwater Biology, 1986, 16: 351-371
    [39] 白雪梅,徐兆礼,底泥悬浮物对水生生物的影响,上海水产大学学报,2000,9(1):65~68
    [40] 范逢源,环境水利学,中国农业出版社,1994年11月第1版
    [41] 杨海龙,影响水生维管束植物生长与分布的主要生态因子分析,韩山师范学院学报,2000(2):76~79
    [42] 李义天,孙昭华,邓金运等,河流泥沙的资源化与开发利用,科技导报,2002(2):57~61
    [43] 毛文永著,生态环境影响评价概论,北京:中国环境科学出版社,1998.5
    [44] Moyle PB, Light T, Fish invasions in California do abiotic factors determines success?[J], Ecology 1996, 77: 1666~1669.
    [45] Poff, L. N., J. D. Allan, M. B. Bain, J. R. Karr, and et al. The natural flow regime: a paradigm for river conservation and restoration. Bioscience 47: 769-784.
    [46] 法,A.普瓦雷尔,几座高山水库冲沙管理经验回顾,水利水电快报,2003,24(21):10~13
    [47] 柳劲松,王丽华,宋秀娟编,环境生态学基础,化学工业出版社,北京,2003
    [48] Amoros, C. G. Bornette and C. R Henry. 2000. A vegetation-based method for ecological diagnosis of riverine wetlands. Environment Management 25: 211-227.
    [49] The Missouri River Ecosystem, Exploring the Prospects for Recovery, NATIONAL ACADEMY PRESS, Washington, D. C.
    [50] Eric Tabacchi, David L Correll, et al, Development, maintenance and role of riparian vegetation in the river landscape, Freshwater Biology, Volume 40 Issue 3 Page 497 November 1998, 1365-2427.
    [51] Julie K. Guimond, The effects of river connectivity on floodplain wetland ecology in Jasper National Park, Alberta, Canada, 2001
    [52] 徐江,王兆印,阶梯-深潭的形成及作用机理,清华大学,水利学报,2004年10月,48~55
    [53] Brian D. Richter and Holly E. Richter, Prescribing Flood Regimes to Sustain Riparian Ecosystems along Meandering Rivers, Conservation Biology 14: 1467-1478.
    [54] Shankman D. Channel migration and vegetation patterns in the southeastern coastal plain[J]. Conservation Biolo-gy, 1993, 7(1): 176~183.
    [55] Goran Englund, Bengt-Gunnar Jonsson and Bjorn Malmqvist, Effects of flow regulation on bryophytes in north Swedish river, Biological conservation, 79(1997): 79~86.
    [56] Stuart E. Bunn, Angela H. Arthington. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environmental Management Vol. 30, No 4, 492-507
    [57] Kingsford, R. T., Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia, Austral ecology, 2000, Item No. 2004, Pages, 19
    [58] 吴保生,等,美国基西米河渠化工程对河流生态环境的影响,水利水电技术,2004,35-42
    [59] Chien N. Change in river regime after the construction of upstream reserois[J]. Earth Surface Processes and Landform, 1985, 10: 143~159.
    [60] 吴果团,梁云贞,关于大坝对流域生态系统的影响及对漓江水资源管理的思考,南宁师范高等专科学校学报,2003,20(4):76~80
    [61] Gore JA, Nestler JM, Layzer JB. 1989. Instream flow predictions and management options for biota affected by peaking-power hydroelectric operations. Regul. Rivers: Res. Mgmt. 3: 35-48.
    [62] 瑞典,A.哈尔比,等,水电站调峰对河流生态的影响,水利水电快报,2002(1):3~5
    [63] J. STEIGER, M. JAMES AND E GAZELLE, Channelization and consequences on floodplain system functioning on the Garonne river, SW France, regulated rivers: research and management, 1998, 14: 13-23.
    [64] M. M. Grasser and F. El-Gamal. Aswan high dam: lessons learnt and on-going research, Water Power & Dam construction. 1994(1): 35-39
    [65] Sparks, Richard E. Need for ecosystem management of large rivers and their floodplains. Bioscience, 1995, Vol. 45, No. 3: 168-182
    [66] Robert c. Wissmar, Restoration and management of riparian ecosystems: a catchment perspective, Freshwater biology(1998) 40, 571-585.
    [67] Gudrn Bornette, Claude Amoros, Herve Piegay and et al, Ecological complexity of wetlands within a river landscape, Biological conservation 85(1998) 35-45
    [68] Richard A. Marston, Jacky Girel, and et al, Channel metamorphosis, floodplain disturbance, and vegtation development: Ain river, France, Geomorphology, 13(1995) 121~131.
    [69] 高宗强,洪水对生态环境的影响,山西水土保持科技,2002,(2):25~26
    [70] 长江科学院.三峡水库下游宜昌至大通河段冲淤一维数模计算分析(二),长江三峡工程泥沙问题研究(第七卷).北京:知识产权出版社,2002:258
    [1] 杨海龙,影响水生维管束植物生长与分布的主要生态因子分析,韩山师范学院学报,2000(2):76~79
    [2] 万丽华,黄浦江上游底栖动物的指示生物生态研究,上海环境科学,1995,14(1):11~14
    [3] 许木启,水体污染对水生生物多祥性的影响,科学对社会的影响,1995(4):5~14
    [4] 许木启,黄玉瑶,受损水域生态系统恢复与重建研究,生态学报,1998,18(5):547~558
    [5] 王焕校主编,污染生态学,北京:高等教育出版社,2002
    [6] 侯立军等,长江河口近岸水体自然净化作用及其初步评价,长江流域资源与环境,第11卷第3期,245~249
    [7] 柳劲松,王丽华,宋秀娟编,环境生态学基础,化学工业出版社,北京,2003
    [8] 李辛夫,陈宜瑜,内陆水体生物学研究与淡水渔业的可持续发展,水生生物学报,1998年02期:174~180
    [9] 沈耀良,王宝贞.人工湿地系统除污机理[J].江苏环境科技,1997(3):1~6
    [10] 尹澄清,兰智文,晏维金,白洋淀水陆交错带对陆源营养物质的截留作用初步研究,应用生态学报,1995.6(1):76—80
    [11] 尹发能,张中旺,胡茂永,论洞庭湖湿地对污染物的净化作用,温州师范学院学院(自然科学版),2003 24(2):75~79
    [12] 王超.王沛芳.唐劲松.杨敏,河道沿岸芦苇带对氨氮的削减特性研究,水科学进展,2003(5):311~317
    [13] 刘培桐,环境学导论,北京:高等教育出版社,1985
    [14] 国家环保总局科技标准司编,中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社,2001,23~28,98~103
    [15] 孔祥海,水华发生与危害机理及其防治措施的研究,龙岩师专学报,2003,21(3):85~88
    [16] 谢平,夏军,窦明等,南水北调中线工程对汉江中下游水华的影响及对策研究—汉江水华发生的关键因子分析,自然资源学报,2004,19(4):418~423
    [17] Straskraba M, Dostalkova l, et. al The effects of reservoir onphosphorus concentration. Int. RevueGes Hydrobiol, 1995, 80: 403—413
    [18] Osmi Kawara, Eisaku Yura, et al. A study on the role of hydraulic retention time in eutrophication of the Asahi River Damreservoir[J]. Wat Sci Tech, 1998, 37: 245-252
    [19] 贾海峰,程声通,丁建华等,水库调度和营养物消减关系的探讨,环境科学,2001,22(4):104~107
    [20] 刘新平,高昌海,刘明等,长江中游湿地生态替代产业开发模式与对策研究,资源科学,2002,24(3):65~70
    [21] 张艳红,邓伟,河流洪泛湿地的功能特征及综合开发利用——以向海湿地为例,国土与自然资源研究,2002,1:51~53
    [22] 崔丽娟,湿地价值评价研究[M],北京:科学出版社,2001
    [23] VENTERINK H O. Impact of drying and rewetting on N, P and Kdynamics in a wetland soil. Plant and Soil, 2002, 243: 119-130.
    [24] 童潜明,三峡水库运行后对洞庭湖防洪和生态的思考,国土资源科技管理,2002,19(3) 1~6
    [25] 王国平,余国营,水利工程对霍林河下游湿地的影响,农业环境保护,2001,20(6):459~461
    [26] 张瑞瑾,河流泥沙动力学,中国水利水电出版社,1989
    [27] 黄岁樑,泥沙运动引起的环境问题及环境泥沙学,水科学进展,1998,9(4):313~318
    [28] 熊治平,我国江河洪灾成因与减灾对策探讨,中国水利,2004,7:41~42
    [29] 李荣敖等编译,土地资源的评价和管理,北京:中国环境科学出版社,1992
    [30] [俄]H.中.卡拉谢夫等,河道泄水能力与水草河道径流计算,水利水电快报,2001,22(19) 25~28
    [31] 李义天,孙昭华,邓金运等,河流泥沙的资源化与开发利用,科技导报,2002(2):57~61
    [32] 许炯心,师长兴,河漫滩地生态系统影响下的河型转化—以红山水库上游河道为例,地理学报,1995,50(4):335~343
    [33] 夏军强,河岸冲刷机理研究及数值模拟,清华大学博士学位论文,2002
    [34] Fukuoka Shoji.运用河流植物自然功能的防洪措施(从容译).人民长江,1994(7):56~60
    [35] 拾兵,植物治沙力学机理及河宽动力调整研究,四川联合大学水利工程系博士学位论文,1998
    [36] Charton F G, Brown P M and Benson K W. The Hydraulic Geometry of some Gravel Rivers in Britain. Rep. INT-180, WallingFord Hydraulic Research Station, 1978
    [1] 崔承章,詹义正,邰淑彩.防洪是长江中下游长期的战略任务,武汉水利电力大学学报(社会科 学版),1999,19(4):46~49
    [2] 陈永柏.三峡工程对长江流域可持续发展的影响.长江流域资源与环境,2004,13(2):109~113
    [3] 黄真理.阿斯旺高坝的生态环境问题.长江流域资源与环境,2001(1):82-88
    [4] 王兆印.泥沙研究的发展趋势和新课题.地理学报,1998(3):245-255
    [5] W.H.麦克纳里[美].密西西比河防止海水入侵的措施.水利水电快报,1997(24):18-23
    [6] Rapport DJ, Gaudet C, Karr J R., et al. Evaluation landscape health: integrating societal goals and biophysical process. Journal of environmental Management, 1998. 53: 2-14.
    [7] Schaeff, D. F. Ecosystem health: Ⅰ. measuring ecosystem health, 1988: 1-10
    [8] 唐涛,蔡庆华,刘建康.河流生态系统健康及其评价.应用生态学报,2002,13(9):1191-1194.
    [9] 邓金运.流域水沙输移模型及其在长江上中游的应用.武汉大学博士学位论文,2003
    [10] 廖文根,彭静,何少苓.水环境承载力及其评价体系探讨.水资源及水环境承载能力—学术研讨会论文集.中国水利水电水电出版社,2002
    [11] 王韩民.生态安全系统评价与预警研究.环境保护,2003,11:30~34
    [12] 维护健康长江研究提要(讨论稿).水利部长江水利委员会,2005.1
    [13] 师彦武.旱区流域水资源开发的水土环境效应分析及综合评估研究.西北农林科技大学硕士学位论文,2003
    [14] 张翔,夏军,王富永.基于压力-状态-响应概念框架的可持续水资源管理指标体系研究.城市环境与城市生态,1999,12(5):23~25
    [15] 曾畅云,李贵宝,傅桦.水环境安全及其指标体系研究—以北京市为例.南水北调与水利科技,2004,2(4):31~35
    [16] 曹利军.区域可持续发展及其评价研究.北京师范大学博士论文,1996
    [17] 刘恒,耿雷华,陈晓燕.区域水资源可持续利用评价指标体系的建立.水科学进展,2003,14(3):265~270
    [18] 李丽娟,郑红星.海滦河流域河流系统生态环境需水量计算.地理学报,2000(4):495-500
    [19] 程根伟,麻泽龙,范继辉.西南江河梯级水电开发对河流水环境的影响及对策.中国科学院院刊,2004,19(6):433-437
    [20] 王好芳.水资源可持续开发与社会经济协调发展研究.河海大学博士学位论文,2003
    [21] 何少苓,彭静.论提高水域纳污能力与自净能力的水动力潜力.水资源及水环境承载能力—学术研讨会论文集.中国水利水电水电出版社,2002
    [22] 杨志峰,张远.河道生态环境需水研究方法比较.水动力学研究与进展,2003,18(3):294-301
    [23] 孙昭华,水沙变异条件下河流系统调整机理及其功能维持初步研究.武汉大学博士学位论文,2004年
    [24] Petts, G. E. 1996, water allocation to Protect river ecosystems, Regulated Rivers: Res. Management. 12: 353-365.
    [25] 张欧阳,许炯心,张红武等.洪水的灾害与资源效应及其转化模式.自然灾害学报,2003,12(1):25~30
    [26] Richard Daivid Beilfuss, Hydrological degradation, vegetation change, and restoration potential, the story of African floodplain, University of Wisconsin-Madison, 2002.
    [27] 沃罗帕耶夫等.伏尔加河下游有利于生态的春季放水可行性研究.水利水电快报,1994,5:4~8
    [28] 方子云.试用科学发展观研究水库和水资源调度问题.水利水电快报,1994,25(11):1-4
    [29] E Huggenberger and E. Hoehn et al, Abiotic aspects of channels and floodplains in riparian ecology Freshwater Biology , Volume 40 Issue 3 Page 407 November 1998 doi: 10. 1046/j. 1365-2427. 1998.
    [30] M. E. JOHANSSON and C. NILSSON, Responses of riparian plants to flooding in free-flowing and regulated boreal rivers: an experimental study Journal of Applied Ecology, 2002, 39, 971-986
    [31] 吴保生等.格伦峡大坝人造洪水试验,人民黄河 2004,26(7):12~14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700