超高台阶排土场散体介质力学特性及边坡稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高台阶排土场的建设能大幅度减少矿业占地,达到资源开发与环境效益双丰收的目的。然而,超高台阶排土场边坡不同于一般的土质边坡,其具有一个突出特点:排土场堆积散体具有“明显的粒径分级”。本文采用现场试验、室内试验、数值模拟相结合的综合性研究方法,针对排土场堆积散体的分布规律及其力学特性进行深入系统的研究,并以江西德兴铜矿西源岭413m台阶排土场为工程实例,开展了超高台阶排土场边坡稳定性计算分析,取得了如下一些成果:
     1)本文基于现场的颗分试验结果,分析了排土场堆积散体的粒径分布规律。同时,修正了Rosin-Ramuler模型,并利用现场粒径调查结果验证了此修正模型。然后,对修正的Rosin-Ramuler模型中的“分布参数d值”进行了重新定义,并分析了d值与排土场高度之间的关系。从而建立了排土场坡面散体某粒径的筛下相对含量与排土场高度之间的函数关系式。
     2)利用改装的大型直剪试验仪,进行了不同垂直压力、不同粗粒含量下的颗粒破碎试验研究,分析了垂直压力和粗粒含量与颗粒破碎率之间的变化关系,并在此基础上建立了粗粒土的应力-破碎描述模型。同时,开展了饱和与非饱和样、浸泡土样的颗粒破碎试验研究,分析了不同含水量以及长期浸泡对粗粒土颗粒破碎的影响。
     3)借助大型直剪仪进行了粗粒土的剪切强度特性试验研究,分析了不同粗粒含量和不同垂直压力下的剪应力-应变曲线变化规律。并结合粗粒土的颗粒破碎研究成果,分析了粗粒含量、垂直压力和颗粒破碎对粗粒土内摩擦角值的影响。
     4)本文基于元胞自动机方法开发了能模拟三种元胞状态随机分布的“HHC-CA模型”。从而为虚拟三轴试验室和表征“明显粒径分级”的超高台阶排土场边坡计算模型的建立奠定基础。
     5)完整地提供了一套粗粒土三轴数值模拟试验方法。基于开发的“HHC-CA模型”,利用衍生出的“HHC-Soil模型”制备不同“试样颗粒初始架构”的粗粒土试样,以表征粗粒土各粒组分布的不均匀性和随机性。然后,借助FLAC-3D进行粗粒土三轴数值模拟试验,并利用“室内三轴试验”结果验证了粗粒土三轴数值模拟试验的可行性。分析了“试样剪切带内的砾石含量”和“试样砾石含量”对粗粒土内摩擦角的影响。
     6)提出了一种崭新的考虑“明显粒径分级“的超高台阶排土场边坡稳定性分析方法。本文针对西源岭413m台阶排土场,结合衍生的“HHC-Granular模型”和现场粒径调查结果建立了表征“明显粒径分级”的排土场边坡计算模型,并对超高台阶排土场边坡进行了稳定性分析研究,探讨了采用“单台阶全段高排土”和“全覆盖式多台阶排土”的排土场边坡安全稳定性。
The construction of super-high bench dumping site can decrease substantially mining space and attain the goal of both resource exploitation and environmental benefit. Nevertheless, the super-high bench dumping site which is characterized by the particle size grading is different from the usual soil slope. This thesis studies the grading rules and mechanical characteristics of granular coarse-grained materials in dumping site by using the following methods: the on-site investigation of grain size, laboratory test and numerical simulation. Baesed on the research pobjec of Xiyuanling 413m step dumping site of the Dexing copper mine in Jiangxi province, the slope stability of the super-high bench dumping site with the obvious particle size grading is fully researched. The main achievements of this dissertation are as follows:
     1)The article analysed the particle size distribution of dumping site according to the on-site experiment of particle size. Meanwhile, the Rosin-Ramuler model was revised and the revised model was verified by use of the result of on-site particle size . The distributed parameter d value of the revised Rosin-Ramuler model was redefined and the relationship beween the d value and the dumping site height was established. This thesis established the function equation beween the undersize relative content at a certain particle size with the slope of dumping site and the height of dumping site.
     2)With the refitted large-scale direct shear apparatus, the particle breakage experiment of different vertical pressure and different coarse-grained contents had been completed, and the relationship between upright stress and coarse-grained content and the particle breakage index was analysed. and based on that, The stress-broken description model was established. Meanwhile, the particle breakage of saturation samples and unsaturated samples and soaked samples was studied by experiments, and the effect of different moisture contents and long-term soaked to the particle breakage index was analyzed.
     3)The mechanical characteristics of coarse-grained soil was studied through the large-scale direct shear apparatus, The thesis analyzed the changing regularity of shear stress and strain curve in the different vertical pressure and different coarse-grained contents. the effect of coarse-grained contents and vertical pressure and particle breakage to the internal friction angles of coarse-grained soil was analyzed combining the research results of particle breakage with coarse-grained soil.
     4)According to cellular automata method, the HHC-CA model which could randomly simulated three cellular states was developed. And it laid a foundation for the building of virtual triaxial lab with coarse-grained soil and slope computation model of super-high bench dumping site with characterizing the obvious particle size grading.
     5)This thesis fully provided a new test method for the triaxial numerical simulation test of coarse-grained soil. Based on the HHC-Soil model which derived from the developed the HHC-Soil model, we generated the coarse-grained soil samples of different initial fabric of grain to characterize the heterogeneous and random distribution of coarse-grained soil grain group.Then by means of FLAC-3D,the triaxial numerical simulation tests were completed and the feasibility of virtual triaxial test with coarse-grained soil was verified by use of the indoor triaxial test results. The effect of the gravel contents of samples shear band and samples on the internal friction angle was discussed.
     6)A new method of slope stability analysis with the super-high bench dumping site which was considered the obvious particle size grading was presented. On the basis of the derivative HHC-Granular model and on-site survey of granular size distribution,the slope model, which was used to carry through the slope stability analysis, was established according to the Xiyuanling 413m step dumping site considering the features of particle size grading. Through the slope stability analysis, The slope security and stability of dumping site with adopting the piling up pattern of“whole section height dump of single-step”and“full overlay dump of multi-step”were discussed.
引文
[1]向远俊.兰尖矿肖家湾排土场防滑坡疏水治理的探讨[J].攀钢技术,2000,23(2): 19~21.
    [2]段喜明,王治国,宋震勇等.安太堡露天煤矿南排土场滑坡体稳定性及治理[J].土壤侵蚀与水土保持学报,1999,5(1): 86~91.
    [3]辛明印,孟昭禹.歪头山铁矿188西站西侧排土场滑坡综合治理研究[J].金属矿山,1998,(12): 10~14.
    [4]邓世学.太和铁矿排土场滑坡分析及治理措施[J].有色矿冶,2002,18(4): 79.
    [5]朱小同.排土场位移监控系统在安全生产中的应用[J].安全与健康,第二期.
    [6]杜炜平,颜荣贵.高台阶排土场技术及其发展趋势[J].矿冶工程,1993,18(1): 18~22.
    [7]贺健.大格高台阶排土场岩土流失规律研究[J].金属矿山,2001, 11: 14~16.
    [8]徐鼎平.基于三维数值模拟的边坡稳定性分析的整合方法研究[D].马鞍山矿山研究院,2007.
    [9]李林,马庆利.兰尖铁矿尖山排土场岩土块度组成分析及分布规律的研究[J].四川冶金,1990,3: 1~8.
    [10]罗仁美.印子峪排土场安息角与岩石块度分布规律研究[J].矿冶工程,1995,l5(4): l6~9.
    [11]曹文贵,方祖烈,唐学军.破碎岩石物理力学性质的分形度量[J].中国矿业,1998,7(3): 27~30.
    [12]黄广龙,周建,龚晓南.矿山排土场散体岩土的强度变形特性[J].浙江大学学报(工学版),2000,34(1):54~58.
    [13]史良贵.新桥矿业有限公司二期排土场稳定性及排土工艺优化研究[D].中南大学,2005.
    [14] Mandelbrot .B .B. The Fractal Geometry of Nature [M]. New York: W H Freman,1982 .
    [15] Turcotte .D. L. Fractals and Fragmentation J. Geophy Ros. 1986,91(132): 1921~1926.
    [16]谢学斌,潘长良.排土场散体岩石粒度分布与剪切强度的分形特征[J].岩土力学,2004,25(2); 287~291 .
    [17]高峰,谢和平,赵鹏.岩石块度分布的分形性质及细观结构效应[J].岩石力学与工程学报,1994,13(3): 240~246.
    [18]王谦源,张清.不等概率分形破碎及有限尺度破碎体分形[J].岩石力学与工程学报,1994,13(2): 109~117.
    [19]齐金铎.岩石破碎块度特性及计算方法[J].中国矿业,1995,4(1) : 34~36.
    [20]赵斌.岩石破碎块度分布分形预测[J].矿业研究与开发,1997,17(3) : 14~16.
    [21]王谦源,姜玉顺,胡京爽.岩石破碎体的粒度分布与分形[J].中国矿业,1997,6(3): 50~55.
    [22]盛建龙,刘新波,朱瑞赓.分形理论及岩石破碎的分形特征[J].武汉冶金科技大学学报(自然科学版) ,1999,22(1): 6~8.
    [23]徐永福,张庆华.压应力对岩石破碎的分维的影响[J].岩石力学与工程学报,1999,15(3): 250~254.
    [24]潘兆科,刘志河.矸石破碎块度的分形性质及计算方法[J].太原理工大学学报,2004,35(2): 115~117.
    [25]涂新斌,王思敬,岳中琦.风化岩石的破碎分形及其工程地质意义[J].岩石力学与工程学报,2005,24(4) : 587~595.
    [26]土工试验规程(SL237-1999)[S].北京:中国水利水电出,1999.
    [27] Lee. K. L. Seed .H. B. Drained strength characteristies of sands[J].ASCE J.Soil Mech.Found.Engng.1967,93(SM6):117~141.
    [28]郦能惠.高混凝土面板堆石坝新技术[M].北京:中国水利水电出版社,2007.
    [29] Marsal R J. Large scale testing of rockfill materials[J]. Jourmal of the Soil Mechanics and Foundations Division,1967,93(SM2): 27~43.
    [30] Marsal R J.土石坝工程[M].江苏:水利出版社,1979.
    [31] Vesic A S, Clough G W. Behaviour of granular material under high stresses[J]. ASCEJ.Soil Meeh.Found.Engng.1968,94(SM3): 661~688.
    [32] Miura N, YamamotoT. Effect of Particle~crushing on the shear characteristics of a sand[C].Japanese: 1977.
    [33] Miura N,O~hara. Particle crushing of decomposed granite soil under shear stresses[J]. soils and Foundations.1979,19(3): l~14.
    [34]郭庆国.关于粗粒土抗剪强度特性的试验研究[J].水利学报[J],1987,(5):59~65.
    [35]郭熙灵,胡辉,包承纲.堆石料颗粒破碎对剪胀性及抗剪强度的影响[J].岩土工程学报,1997,19(3): 83~88.
    [36]吴京平,褚瑶,楼志刚.颗粒破碎对钙质砂变形强度特性的影响[J].岩土工程学报,1997,19(5): 49~55.
    [37]梁军,刘汉龙,高玉峰.堆石蠕变机理分析与颗粒破碎特性研究[J].岩土力学,2003,24(3): 479~483.
    [38]刘汉龙,秦红玉,高玉峰等.堆石粗粒料颗粒破碎试验研究[J].岩土力学,2005,26(4): 562~566.
    [39]张家铭,张凌,蒋国盛等.剪切作用下钙质砂颗粒破碎试验研究[J].岩土力学,2008,29(10): 2789~2793.
    [40]赵光思,周国庆,朱锋盼等.颗粒破碎影响砂直剪强度的试验研究[J].中国矿业大学学报,2008,37(3): 291~294.
    [41]高玉峰,张兵,刘伟等.堆石料颗粒破碎特征的大型三轴试验研究[J].岩土力学,2009,30(5): 1237~1246.
    [42]孔德志,张其光,张丙印等.人工堆石料的颗粒破碎率[J].清华大学学报(自然科学版),2009,49(6).
    [43]李世海,汪远年.三维离散元土石混合体随机计算模型及单向加载试验数值模拟[J].岩土工程学报2004,26(4): 172~177.
    [44] Williams J R, Rege N. The development of circulation cell structures in granular materials undergoing compression[ J]. Powder Technology, 1997,90: 187~194.
    [45] Zhang L, Thomton C. Numerical simulation of the direct shear test[A]. In: The 4th World Congress of particle Technology[C]. No 473,2002,Sydeney.
    [46] Barry.M.Lehane,BrianSimPson. Modelling glaeialtill under triaxial conditions using a BRICK soil model[J]。Canadian geotechnical journal,2000,37(5):1078~1088.
    [47] Karim.U.F.A. Simulation and video software development for soil consolidation testing. Advengsoftw,34(11-12): 721~728 nov-dec 2003.
    [48] Arul M Britto. 1 Dimensional Consolidation. 1999.
    [49]刘斯宏,徐永福.粒状体直剪试验的数值模拟与微观考察[J].岩石力学与工程学报,2001,20(3): 288~292.
    [50] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique,1979,29(1): 47~65.
    [51]董建军,邵龙潭.非饱和土三轴压缩应力路径试验的数值模拟研究[J].岩土力学,2006,27(增): 95~98.
    [52]史旦达,周健,贾敏才等.考虑颗粒破碎的砂土高应力一维压缩特性颗粒流模拟[J].岩土工程学报,2007,29(5): 736~742.
    [53]周健,史旦达,贾敏才.砂土单调剪切力学性状的颗粒流模拟[J].同济大学学报(自然科学版),2007,35(10): 1299~1304.
    [54]刘洋,周健,吴顺川.循环荷载下砂土变形的细观数值模拟I:松砂试验结果[J].岩土工程学报,2007,29(7): 1035~1041.
    [55]郭红伟,高政国.散体材料直剪试验数值模拟研究[J].岩土工程界,2008,12(7): 13~15.
    [56]曹培,蔡正银.砂土应力路径试验的数值模拟[J].岩土工程学报,2008,30(1): 133~137.
    [57]吴剑,冯夏庭.高速剪切条件下土的颗粒流模拟[J].岩石力学与工程学报,2008,27(增): 3064~3069.
    [58]胡黎明,马杰,张丙印.散粒体间接触面单剪试验及数值模拟[J].岩土力学,2008,29(9): 2319~2322.
    [59]胡黎明,马杰,张丙印.直剪试验中接触面渐进破坏的数值模拟[J].清华大学学报(自然科学版),2008,48(6): 943~946.
    [60]徐鼎平,朱大鹏.太和铁矿西端帮冰碛土边坡稳定性分析方法研究[J].岩石力学与工程学报,2008,27(增): 3335~3340.
    [61]徐鼎平,汪斌,江龙剑等.冰碛土三轴数值模拟试验方法探讨[J].岩土力学,2008,29(12): 3466~3470.
    [62]徐鼎平,汪斌,江龙剑等.模拟冰碛土结构的元胞自动机模型[J].金属矿山,2007,(1): 60~62.
    [63]李大勇,潘军刚.土的直接剪切试验三维数值模拟研究[J].山东科技大学学报(自然科学版),2008,27(6): 16~20.
    [64]王琨,董秀坤,杜占军.风积沙路基边坡静力荷载破坏室内试验模拟研究[J].工程勘察,2009(8): 19~24.
    [65] W.费兰纽斯.土体稳定的静力计算[M].北京:水利出版社,1957.
    [66] Bishop A W. The use of the Slip Circle in the Stability Analysis of Slopes. Geotechnique, Vol.5,1955.
    [67] Bishop A W. Principles of Design and Stability Analyses. Hydro Electric Engineering Practice,Vol.1,ChapterⅣ,Embankment Dams,Blackie and Son limited,London,1964.
    [68] Engineer Manual. Stability of Earth and Rock fill Dams. EM1110-2-1902,Corps of Engineers,Department of the Army. U.S..Apr. 1970.
    [69] lowe J, Karafiath L. Stability of Earth Dams upon Drawsdown. Proceeding of the 1st pan American Conference on Soil Mechanics and Foundation Engineeriug,YoL2, Mexico City,1960.
    [70] Lowe J. Stability Analysis of Embankments. Journal of the Soil Mechanics and Founda-tions Division, ASCE,Vol, 93,No. SM4,July 1967.
    [71] Spencer E. A method of Analysis of the Stability of Embankments Assuming Parallel inter-Slice Forces. Geotechnique. Vol.7,No.1,1967.
    [72] Spencer E. Thrust Line Criterion in Embankment Stabdity Analysis. Geotechnique,VoL.23. No.1 ,1967.
    [73] Morgenstern N R, Pric V E. The analysis of the Stability of GeneraI Slip Surfaces. Geotechnique,Vol. 15,NO. 1,1955.
    [74] Whitman R V, Bailey W A. Use of Computers for Slope Stability Analysis. Journal of the Soil Mechanics and Foundations Division,ASCE,VoL 98,No. SM4,July 1967.
    [75] Janbu N. Slops Stability Computation. Embankment-Dam Engimeering, The Casagrande Volume, John Wiley and Sons, New York,1972.47.
    [76] Fredlund D G,Krahn J,Pufahl D E.The relationship of limit equilibrium slope stability methods[A]. In:Proc.the 10th Int.Conf. Soil Mech.Found.Eng.[C].Stockholm,Sweden:[s.n.],1981: 409–416.
    [77]邹广电,魏汝龙.土坡稳定分析普遍极限平衡法数值解的理论及方法研究[J].岩石力学与工程学报,2006,25(2):363~370.
    [78]黄传志.地基极限荷载的广义极限平衡法[J].岩土工程学报,2007,29(3): 328~332.
    [79]姚攀峰.基于安全系数比的非饱和土边坡极限平衡法[J].岩石力学与工程学报,2009,28(增1): 3250~3256.
    [80]陈祖煜.土质边坡稳定分析-原理.方法.程序[M].北京:中国水利水电出版社,2003.
    [81]郑榕明,朱禄娟,谷兆祺.非对称旋转破坏的三维Bishop边坡稳定算法[J].岩土工程学报,2002,24(6): 706~709.
    [82]弥宏亮,陈祖煜,张发明等.边坡稳定三维极限分析方法及工程应用[J].岩土力学,2002,23(5): 649~653.
    [83]姜清辉,王笑梅,丰定祥等.三维边坡稳定性极限平衡分析隙系统软件SLOPE3D的设计及应用[J].岩石力学与工程学报,2003,22(7): 1121~1125.
    [84] CHEN Z Y. A generalized solution for tetrahedral rock wedge stability analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(4): 613~628.
    [85]张均锋,王思莹,祈涛.边坡稳定分析的三维Spencer法[J].岩石力学与工程学报,2005,24(19): 3434~3439.
    [86]谢谟文,蔡美峰,江崎哲郎.基于GIS边坡稳定三维极限平衡方法的开发及应用[J].岩土力学,2006,27(1):117~122.
    [87]郑宏.严格三维极限平衡法[J].岩石力学与工程学报,2007,26(8): 1529~1537.
    [88]万林海,金海元,吴伟功等.有限差分强度折减法的应用分析[J].人民黄河,2005,27(9): 43~46.
    [89] Duncan J M. State of the art:Limit equilibrium and finite element analysis of slopes[J]. Journal of the Geotechnical Engineering,ASCE,1996,122(7): 577~596.
    [90] Zienkiewicz O C,Humpheson C,Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Geotechnique,1975,25(4): 671~689.
    [91]郑颖人,赵尚毅,宋雅坤.有限元强度折法究进展[J].后勤工程学院院报,2005(3): 1~6.
    [92] Griffiths D V,Lane P A. Slope stability analysis by finite elements[J]. Geotechnique, 1999,49(3): 387~403.
    [93] Dawson E M,Roth W H,Drescher A. Slope stability analysis by strength reduction[J]. Geotechnique,1999,49(6): 835~840.
    [94]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4): 407~411.
    [95]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3): 343~346.
    [96]赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析[J].岩石力学与工程学报,2003,22(2): 254~260.
    [97]郑颖人,赵尚毅,邓卫东.岩质边坡破坏机制有限元数值模拟分析[J].岩石力学与工程学报,2003,22(12):1 943~1 952.
    [98]张鲁渝,郑颖人,赵尚毅.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,(1): 21~27.
    [99]赵尚毅,郑颖人,肖佑昆.用有限元强度折减法分析具有非贯通结构面岩质边坡稳定性[J].地质与勘探,2003,39(8): 12~16.
    [100]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19): 3381~3388.
    [101]宋雅坤,郑颖人,赵尚毅有限元强度折减法在三维边坡中的应用研究[J].地下空间与工程学报,2006,2(5): 822~827.
    [102]刘明维,郑颖人.基于有限元强度折减法确定滑坡多滑动面方法[J].岩石力学与工程学报,2006,25(8) : 1544~1549.
    [103]唐晓松,赵尚毅,郑颖人等.渗流作用下利用有限元强度折减法的边坡稳定性分析[J]. 2007,24(9): 6~10.
    [104]董诚,郑颖人,唐晓松.利用有限元强度折减法进行渗流条件下的基坑整体稳定性分析[J].土木工程学报,2009,42(3): 105~110.
    [105]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报,2004,26(1) : 42~46.
    [106]韩爱民,李建国,傅国利等.基于有限差分强度折减法的多级边坡破坏模式研究[J].工程地质学报,2007,15(6): 784~788.
    [107]冯磊,韩飞,梁栋.基于有限差分强度折减法的黄延高速公路边坡稳定性分析[J].华北水利水电学院学报,2009,30(3): 86~88.
    [108]王贵荣,韩飞.基于有限差分强度折减法的略阳电厂边坡稳定性分析[J].工程地质学报,2007,15(3): 346~349.
    [109]付敬,丁秀丽,邹从烈等.有限差分强度折减法在猴子石滑坡治理工程中的应用[J].长江科学院院报,2008,25(2) : 58~60.
    [110]刘立鹏,陈奇,张彬.基于FLAC强度折减理论的边坡稳定性研究[J].岩土工程技术,2008,2(1): 6~10.
    [111]郭庆国.粗粒土的工程特性及应用[M].河南:黄河水利出版社,1998.
    [112]魏厚振,汪稔,胡明鉴等.蒋家沟砾石土不同粗粒含量直剪强度特征[J].岩土力学, 2008, 29(1): 48~51.
    [113]闵弘,刘小丽,魏进兵等.现场室内两用大型直剪仪研制(I):结构设计[J].岩土力学,2006,27(1): 168~172.
    [114]周小文,龚壁卫,丁红顺等.砾石垫层-混内土接触面力学特性单剪试验研究[J].岩土工程学报,2005,27(8): 876~880.
    [115] VRDIC A S, CLOUGH G W. Behavior of granular materials under high stresses[J]. Journal of Soils Mechanics and Foundation Division, American Society of Civil Engineers, 1968,94(3): 661~688.
    [116]周成虎,孙战利,谢一春.地理元胞自动机研究[M].北京:科学出版社, 2001.
    [117]姜景山,程展林,姜小兰.粗粒土二维模型试验研究[J].长江科学院院报, 2008, 25(2): 38~41.
    [118]徐文杰,胡瑞林,岳中琦,等.基于数字图像分析及大型直剪试验的土石混合体块石含量与抗剪强度关系研究[J].岩石力学与工程学报, 2008, 27(5): 996~1007.
    [119]南京水利科学研究院. SL237-1999土工试验规程[S].北京:中国水利水电出版社,1999.
    [120]程展林,吴良平,丁红顺.粗粒土组构之颗粒运动研究[J].岩土力学, 2007, 28(增刊): 29~33.
    [121]周健,贾敏才等.土工细观模型试验与数值模拟[M].北京:科学出版社, 2008.
    [122] HAN C, DRESCHER A. Shear bands in biaxial tests on dry course sand[J]. Soils and Foundations, 1991, 33(1): 118~132.
    [123] FINNO R J, HARRIS W W, MOONEY M A, et al. Shear bands in plane strain compression of loose sand[J]. Geotechnique, 1998, 47(1): 149~165.
    [124]鲁晓兵,王义华,王淑云,等.饱和土中剪切带宽度的研究[J].力学学报, 2005, 37(1): 87~91.
    [125]颜荣贵,曹文贵,刘文献,等.庙儿沟排土场边坡稳定性研究[J].矿冶工程, 1997, 17(1) :15~19.
    [126]徐志清.尾矿库内山坡型高台阶排土场的稳定性[J].采矿技术, 2002, 2(3): 52~54.
    [127]马庆军,李志峰.月明山排土场边坡稳定性研究[J].矿业工程, 2006, 4(1) :15~17.
    [128]黄敏,李夕兵,付玉华,等.某矿山排土场边坡稳定性分析[J].矿冶工程,2007,27(5) :12~17.
    [129]翁厚洋,朱俊高,余挺,等.粗粒料缩尺效应研究现状与趋势[J].河海大学学报(自然科学版), 2009, 37(4): 425~429.
    [130]姜景山,程展林,刘汉龙,等.粗粒土二维模型试验的组构分析[J].岩土工程学报, 2009, 31(5): 811~816.
    [131]程展林,丁红顺,吴良平.粗粒土试验研究[J].岩土工程学报, 2007, 29(8): 1152~1158.
    [132]吴良平.粗粒土组构试验研究[硕士学位论文D].武汉:长江科学院, 2007.
    [133] Wu Ai-xiang, Sun Ye-zhi, Liu Xiang-ping . Granular dynamic theory and its application[M]. Beijing: Metallurgy Industry Press, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700