窜气对循环流化床锅炉旋风分离器性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋风分离器是循环流化床锅炉的重要部件之一,它的性能直接影响着循环流化床锅炉的运行,旋风分离器阻力和分离效率是评价旋风分离器性能的主要指标。从连接旋风分离器底部排灰口的立管反窜入旋风分离器的烟气称为窜气。窜气对旋风分离器性能的影响是不利的,窜气影响旋风分离器内的流场,从而影响分离性能。但是,国内外的公开文献中有关窜气对循环流化床锅炉旋风分离器性能的影响规律的研究非常少。
     本论文采用冷态实验和数值模拟相结合的方法,在不同入口风速和入口固气比下,研究窜气对旋风分离器阻力、分离效率等的影响规律。
     冷态实验采用筒体直径200 mm的旋风分离器、立管直径分别为56 mm和80mm的实验台。实验结果表明:在单相气流下,旋风分离器阻力随窜气速度的增大而降低。在气固两相流下,旋风分离器阻力随窜气速度的增大先降低而后升高;分离效率随窜气速度的增大而降低;影响分离效率的是立管内的窜气速度,而不是窜气率;窜气会削弱立管和旋风分离器内的旋流。
     通过数值模拟软件FLUENT,采用雷诺应力湍流模型和离散相气固两相流模型,模拟在相同的实验条件下旋风分离器内压力、各向速度和浓度的分布规律,分析了窜气对旋风分离器阻力、分离效率等的影响规律。模拟结果表明:在单相气流下,窜气会削弱立管内气体的旋流;旋风分离器阻力随窜气速度的增大而降低。在气固两相流下,旋风分离器阻力随窜气速度的增大先降低而后升高;分离效率随窜气速度的增大而降低;窜气会使旋风分离器圆锥段内的颗粒浓度增大。
     实验结果和数值模拟结果基本一致。
A cyclone separator is one of the most important components in a circulating fluidized bed (CFB) boiler. Its performance affects the operation of the CFB boiler directly. The pressure drop and the separation efficiency of a cyclone are the criterions to evaluate the performance of the cyclone. The effect of air leakage from a standpipe connecting to the bottom of the cyclone on the performance of the cyclone is remarkable. But reference papers on the influence of air leakage on performance of a cyclone are very few.
     This thesis is on cold experiments and numerical simulation of a cyclone. The effects of air leakage on the pressure drop and the separation efficiency of the cyclone were investigated in different inlet velocities and inlet solid loadings.
     The body diameter of the cyclone is 200 mm. The diameters of the standpipes are 56 mm and 80 mm, respectively. Experiment results show that in air flow, the pressure drop decreases with increasing the velocity of air leakage in the standpipe. In air-solid flow, the separation efficiency decreases, the pressure drop decreases and then increases with increasing the velocity of air leakage in the standpipe. Air leakage influences the flow pattern of particles in the standpipe and at the cone of the cyclone.
     The effect of air leakage on the performance of the cyclone was simulated with FLUENT in the same conditions of the experiments. The flow models are the Reynolds stress model (RSM) and the discrete phase model (DPM). Simulation results show that: In air flow, the pressure drop decreases with increasing the velocity of air leakage in the standpipe, air leakage weakens the air whirl in the standpipes. In air-solid flows, the separation efficiency decreases, the pressure drop decreases and then increases, with increasing the velocity of air leakage in the standpipe. Air leakage increases the concentration of particles at the cone of the cyclone.
     The numerical simulation results are comparable with the experiment results.
引文
[1]国家发展与改革委员会宏观经济研究院2004年12月报告.www.amr.gov.cn.
    [2]冯俊凯,岳光溪等.循环流化床燃烧锅炉[M].北京:中国电力出版社,2003.
    [3]岑可法,骆仲泱,严建华等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1999.
    [4]沈滨,张文宏,许晋源.对循环流化床锅炉异常工况下立管内燃烧结焦可能性的研究[J].动力工程.1998,18(3):34-37.
    [5]A.C.霍夫曼,L.E.斯坦因.旋风分离器——原理、设计和工程应用[M].北京:化学工业出版社,2004年.
    [6]岑可法,骆仲泱,严建华等.气固分离理论及技术[M].浙江大学出版社.1996.
    [7]杨成禹.大型CFB锅炉旋风分离器的冷模试验研究[D].重庆大学硕士学位论文.2006.
    [8]张艳辉,刘有智,霍红等.旋风除尘器的研究进展[J].华北工学院学报.1998,18(3):324-328.
    [9]刘金红.旋风分离器的发展与理论研究现状[J].化工装备技术.1998,19(5):49-51.
    [10]Chen,Jianyi,Shi,Mingxian.A universal model to calculate cyclone pressure drop[J].Powder Technology,2007,171(3):184-191.
    [11]Barth,W.Calculation and layout of cyclone separators based on recent investigations,with aid of simplified theories of flow conditions in cyclone[J].Brennstoff-Waerme-Kraft,1956,8(1):1-9.
    [12]H.Mothes,Loffler,F.Prediction of particle removal in cyclone separators[J].International Chemical Engineering,1988,28(2):231-240.
    [13]Muschelknautz,E.Brunner.K.Investigation of cyclones[J].Chemie-Ingenieur-Technik,1967,39(9-10):531-538.
    [14]C.B.Shephered,C.E.Lapple.Flow Pattern and Pressure Drop in Cyclone Dust Collectors [J]. Ind. Eng. Chem, 1939, 31 (8): 972-984.
    [15] First, M W. Fundmentals factors in the design of cyclone dust collectors [D]. Harvard University, Cambridge, 1950.
    [16] C.J. Stairmand. Design and performance of cyclone separators [J]. Institution of Chemical Engineers -- Transactions, 1951, 29 (3): 356-373.
    [17] A. Avci, I. Karagoz. Theoretical investigation of pressure losses in cyclone separators [J]. International Communications in Heat and Mass Transfer, 2001, 28 (1): 107-117.
    [18] Muschelknautz, E., Trefz, M. Pressure drop and separation efficiency in cyclones [J]. VDI-Heat Atlas. Lj, 1992: 1-8.
    [19] Yuu, Shinichi, Jotaki, Tomosada, Tomita, Yuji, Yoshida, Koichi. The reduction of pressure drop due to dust loading in a conventional cyclone [J]. Chemical Engineering Science, 1978, 33 (12): 1573-1580.
    [20] K., Kang. S., W., Kwon. T.; D., Kim. S. Hydrodynamic characteristics of cyclone reactors [J]. Powder Technology, 1989, 58 (3): 211-220.
    [21] Hoffmann, A. C, Santen, A. van., Allen, R. W. K., Clift, R. Effects of geometry and solid loading on the performance of gas cyclones [J]. Powder Technology, 1992, 70(1): 83-91.
    [22] Beeckmans, J. M., Morin, B. The effect of particulate solids on pressure drop across a cyclone [J]. Powder Technology, 1987, 52 (3): 227-232.
    [23] Baskakov, A. P., Dolgov, V. N., Goldobin, Yu M. Aerodynamics and heat transfer in cyclones with particle-laden gas flow [J]. Experimental Thermal and Fluid Science, 1990, 3 (6): 597-602.
    [24] Tuzla, Kemal, Chen, John C. Performance of a cyclone under high solid loadings [J]. AIChE Symp Ser, 1992, 88 (289): 130-136.
    [25] Couturier, M. F., Stevens, D. Capture efficiency of an industrial CFB cyclone. In Circulating fluidized bed technology IV, Avidan, A. A., Ed. AIChE: New York, 1994; p540.
    [26] Lewnard, J. J., Herb, B. E. Effect of design and operating parameters on cyclone performance for circulating fluidized bed risers. In Circulating fluidized bed technology Ⅳ,Avidan,A.A.,Ed.AIChE:New York,1994;p 525.
    [27]Cankurt,N.T.,Yerushalmi,J.Some observations on the performance of cyclones in fast fluidized bed system.[J].Journal of Powder & Bulk Solids Technology,1979,3(3):29-35.
    [28]Fassani,Fabio Luis,Goldstein,Leonardo.A study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency[J].Powder Technology,2000,107(1-2):60-65.
    [29]Knowlton,T.M.,Bachovchin,D M.Effect of two variables on cyclone performance[J].Coal Processing Technology,1978,4:122-127.
    [30]Bricout.Hydrodynamics scaling and cyclone performance of pressurized circulating fluidized beds[D].Comell University,New York,2000.
    [31]A.P.Baskakov,V.N.Dolgov,Y.M.Goldobin.Aerodynamics and heat transfer in cyclones with particle-laden gas flow[J].Experimental Thermal and Fluid Science,1990,3:597-602.
    [32]C.B.Shepherd,C.E.Lapple.Flow pattern and pressure drop[J].Industrial and Engineering Chemistry,1939,31:972-984.
    [33]A.C.Hoffmann,H.Mends,H.Sie.An experimental investigation elucidating the nature of the effect of solids loading on cyclone performance[J].Filtration and Separation,May June,1991:188-193.
    [34]T.D.Tawari,E A.Zenz.Evaluating cyclone efficiencies from stream compositions [J].Chemical Engineering,1984,30:69-73.
    [35]Fabio Luis Fassani,Leonardo Goldstein.A study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency[J].Powder Technology,2000,107:60-65.
    [36]吴克明等.旋风除尘器压力损失的试验研究[J].环境科学与技术,2005(28):11-16.
    [37]王怀彬等.循环流化床锅炉高温旋风分离器性能的模化[J].热能动力工程,1991(1):5.
    [38]罗晓兰,陈建义等.固粒相浓度对旋风分离器性能影响的试验研究[J].工 程热物理学报,1992(13):282-285.
    [39]王海刚.旋风分离器中气—固两相流数值计算与实验研究[D].中国科学院博士学位论文,2003.
    [40]Fraser S.M.,Aabdel Raxek A.M.,Abdullah M.Z.Computational and experimental investigations in a cyclone dust separator[J].Proceedings of the Institution of Mechanical Engineers.1997,21:247-257.
    [41]林玮,王乃宁.旋风分离器内三维两相流场的数值模拟[J].动力工程,1999(19):72-80.
    [42]W.D.Griffiths and F.Boysan.Computational Fluid Dynamics and Empirical Modeling of the Performance of A Numerical of Cyclone Samplers[J].J.Aerosol.Sci.1996,27:281-304.
    [43]A.P.Baskakov,V.N.Dolgov,Y.M.Goldobin.Aerodynamics and heat transfer in cyclones with particle-laden gas flow[J].Experimental Thermal and Fluid Science,1990,3:597-602.
    [44]K Tuzla,JC Chen.Performance of a cyclone under high solid loadings.
    [45]吴伟,王树根.旋风除尘器排尘阀漏风及其对除尘效率的影响初探[J].环境科学丛刊,6(13):94-98.
    [46]何廷树,郑茂盛等.卸料方式对旋风筒分离效率的影响[J].西安交通大学学报,1998(32):61-64.
    [47]何廷树,嵇鹰等.下料管处漏风导致旋风筒分离效率降低幅度的影响因素研究[J].水泥,1998(6):9-11.
    [48]P.Meissner,F.Loffler.Zur Berechnung des Stromungsfeldes im Zyklonabscheider[J].Chemie-Ing.-Techn.,1978,50:471.
    [49]毛羽,庞磊,王小伟,吴德飞.旋风分离器内三维紊流场的数值模拟.石油炼制与化工[J]2003(3):1-6.
    [50]彭雷,李军,王国鸿.排气管偏置对CFB锅炉旋风分离器性能的影响[J].热能动力工程,2004,19(2):153-156.
    [51]Jihui Chen,Xiaofeng Lu,Hanzhou Liu,Chengyu Yan.Effect of the bottom-contracted and edge-sloped vent-pipe on the cyclone separator performance Chemical Engineering Journal 129(2007)85-90
    [52]Erich Hugi,Lothar Reh.Focus on solids strand formation improves separation performance of highly loaded circulating fuidized bed recycle cyclones Chemical Engineering and Processing 39(2000):263-273
    [53]彭雷.循环流化床锅炉旋风分离器试验研究及数值模拟[D].西安交通大学硕士学位论文,2003.
    [54]祝传于.内部结构变形对旋风分离器性能影响的数值仿真研究[D].大连理工大学硕士学位论文,2006.
    [55]陈红.旋风分离器性能分析模型及应用[D].东北电力学院硕士学位论文,2003.
    [56]P.巴苏,S.A.弗雷泽.循环流化床锅炉的设计与运行[M].科学出版社,1994.
    [57]王勤辉,骆仲泱,方梦祥等.循环流化床锅炉旋风分离及回送的热态试验研究[J].1998(18)1:动力工程48-53.
    [58]周韬.旋风分离器的气固两相特性研究与数值模拟[D].上海交通大学硕士学位论文,2007.
    [59]龚安龙.旋风分离器减阻杆减阻机理的实验和数值研究[D].清华大学硕士学位论文,2004.
    [60]钱付平.不同排尘结构及操作条件旋风分离器分离特性的研究[D].东南大学博士学位论文,2006.
    [61]FLUENT 6.2 help.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700