新型循环流化床锅炉结构布置及气固流动特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床(CFB)燃烧技术以其广泛的燃料适应性、较低的氮氧化物排放、较高的脱硫效率、良好的负荷调节性能等优点成为新一代洁净煤燃烧技术。随着CFB燃烧技术的不断发展,CFB锅炉容量也在快速增大。国外已建成CFB锅炉最大容量已达460MW,并已完成了600MW及800MW的超临界大型CFB锅炉设计工作。我国也在积极开展600MW循环流化床锅炉的研制工作。但CFB锅炉的大型化也带来了许多问题:分离器数量不断增多,使得分离器布置困难,进入各个分离器的烟气量相差较大;炉膛容积增大,导致二次风穿透性不佳,布风均匀性差;CFB锅炉尺寸继续放大的风险也越来越大。此外,现有的几种大型CFB锅炉结构布置方案,国外均已申请了相关专利。为解决我国CFB锅炉大型化所面临的技术问题及知识产权问题,迫切需要研究CFB锅炉大型化时采用新的、具有自主知识产权的结构布置方案。
     在总结和分析大型CFB锅炉结构形式的基础上,重庆大学首次提出了一种“炉膛包围分离器”的新型CFB锅炉布置方案。即在两个炉膛中间布置一个双侧进风的方形旋风分离器,同时分离器下面还布置有与返料机构相联合的一体化外置式换热器(EHE)。与传统CFB锅炉布置相比,此新型布置方案具有对二次风射程要求低,布置紧凑等优点。锅炉放大时,采用多模块组合方式,每个模块可独立运行,其给煤和排渣可单独控制,大大降低了锅炉放大的风险。为了验证此新型CFB锅炉布置方案的可行性,对其循环系统的气固流动进行了研究,其主要包括:①新的CFB锅炉系统运行的气固流动特性及其运行稳定性的研究;②新型外置式换热器内气固流动特性的研究;③双进口方形分离器性能的研究。
     新的CFB锅炉系统运行的气固流动特性及其运行稳定性的试验结果表明,双炉膛运行时,两个炉膛流化特性相近,相互干扰小,整个系统运行稳定。双进口方形分离器能高效地将物料分离下来。一体化外置式换热器返料均匀,排料调节灵活可靠,基本能顺利地将立管中的循环物料排入任一炉膛。整个锅炉具有良好的压力平衡系统,自平衡特性良好。
     新型CFB锅炉布置方案中采用了一种全新的非机械阀式外置式换热器。通过控制流入各个换热仓室的固体物料流量,从而达到对各换热仓室中布置的受热面的换热情况进行单独调节。同时把外置床和返料机构(loop seal)结合在一起,保证向两个炉膛的返料。对这种一体化外置式换热器及其返料机构中的物料流动特性进行了冷态试验研究。试验结果表明这种外置式换热器有很好的物料分流和流量控制特性。可以通过调节运行参数和结构参数来控制两个换热室、EHE和loopseal以及两个返料口之间的物料流量和比例。这主要是由于流化风速的改变而引起颗粒夹带速率及各仓室压力分布的变化所致。同时还建立了孔口两侧压差与通过孔口处固体流率之间的经验关系式,定义了孔口流量系数新的关系式。
     双进口方形分离器的性能是新型CFB锅炉成功的关键因素。在截面尺寸为400mm×400mm的冷态试验台上对分离器性能及分离器内的气固流动进行了研究。当入口风速为22.4m/s、入口颗粒浓度为4.9g/m3时,双进口方形分离器的切割粒径为15μm,临界粒径为75μm,阻力系数为1.7。同时,分离器的性能还受到入口风速及入口颗粒浓度的影响。分离器边角处的即时分离现象对于提高CFB锅炉中高入口颗粒浓度下分离器效率是有利的。
     在试验研究的基础上,对分离器内的气固流动进行了数值模拟,数值计算的分离器效率和压降与试验结果基本吻合。同时采用数值模拟的方法对分离器结构进行了优化。双进口方形分离器内的流场与圆形分离器相似,具有Rankine涡的特点,在边角处出现局部小漩涡。研究了中心筒插入深度、入口尺寸、直筒段长度、锥体长度对分离效率的影响,通过结构优化,分离器的切割粒径可在6μm左右。方形分离器内旋流较弱,压降较小,可以认为不是分离器性能的主要考虑因素。
     冷态试验及数值模拟结果表明一体化外置式换热器的流量控制特性及双进口方形分离器的性能能够满足新型CFB锅炉布置方案的运行要求,但仍需锅炉放大后的检验。应用上述研究成果,对一台35t/h工业循环流化床锅炉的结构布置方案进行了研究,并完成了相关设计。以期将此新型CFB锅炉放大到工业锅炉规模,在工业锅炉上进行一系列的测试,积累经验和关键数据,为此新型CFB锅炉的进一步放大打下坚实的基础。
The circulating fluidized bed (CFB) combustion technology with the advantages of extensive fuel flexibility, low NOx emission, high desulfuring efficiency and good load adjustable capability and so on, has become the new generation clean coal combustion technology. With the development of CFB combustion technology, the capacity of a CFB boiler has become larger and larger. Until now, the largest 460MW CFB boiler was built and the design of 600-800MW super-critical CFB boilers had been complete in overseas. In China, the development work of 600MW CFB boiler is carried out. Current large CFB boiler usually uses the structural arrangement that several separators are laid around one or two furnaces. So the main problems we faced are as the number of separators of a large CFB boiler increases more and more, the arrangement of separators becomes more difficult. And the flow rate of flue gas to each separator is very different. Also, larger furnace can result in bad penetration of the Second Air. Therefore, the risk of scale-up of CFB boiler becomes higher. The existing arrangement schemes of foreign large-scale CFB boiler are granted patents. So a new domestic CFB boiler’s scaled up scheme which has independent intellectual property is needed to solve those problems.
     By summarizing and analyzing the structure forms of CFB boiler, a new type of CFB boiler arrangement scheme called“furnaces around separator”was put forward by Chongqing University. The largest difference with other schemes is identified that a square cyclone separator with double inlets is laid between two furnaces, and a new integrated external heat exchanger (EHE) is used under the separator. Thus, this scheme has many advantages comparing with traditional arrangement schemes such as low request for the penetration of the Second Air. The risk of scale-up can be effectually reduced by adopting module combination. And every module can be independently controlled such as the coal supply. In order to verify the feasibility of this new CFB boiler arrangement scheme, gas-solid flow in the solid circulation system of this boiler is investigated. The main research works include the gas-solid flow characteristics of system operation and operation stability of this new boiler, gas-solid flow characteristics of the EHE and the performance of the square separator with double inlets.
     Experimental study on the gas-solid flow characteristics of system operation and operation stability of this new boiler was conducted. Preliminary results indicated that the fluidization characteristics of the two furnaces were quite adjacent. The disturbance between the two furnaces was small and the whole solid circulation system could run steadily. The square separator separated solids efficiently and the integrated external heat exchanger could successfully discharge the solids from the standpipe into both of the furnaces. The solid circulation system had excellent characteristics of pressure balance.
     A new type of pneumatically controlled EHE was developed and used in this new CFB boiler scheme. The major feature of this EHE was that the solids flowed to two heat transfer chambers could be controlled. Thereby the distribution of the quantity of heat transfer could be easily adjusted. Simultaneously, the EHE and recycle device were connected in order to recycle the solids back to two furnaces steadily. Experiments completed in the visible cold EHE test rig showed that the solid mass flow rate to the EHE or the loop seal, to two heat transfer chambers, to two exports of solids could be controlled by the aeration airflow into each chamber and geometrical dimensions like the height of partitions. That was because the change of fluidizing velocity of each chamber led to the change of particle entrainment rate and pressure distribution in the EHE. In addition, an empirical correlation between the solid mass flow rate and pressure drop across an orifice was proposed and a new orifice discharging coefficient was defined according to the experimental data and theoretical analysis.
     The performance of the square separator with double inlets is a key factor of the success of this new CFB boiler arrangement scheme. Experiments on the performance and gas-solid flow of the square separator have been conducted in a cold test rig with a separator cross section 400mm×400mm. Experimental results indicated that with the inlet velocity of 22.4m/s and the inlet solid concentration of 4.9g/m3, the cut size was 15μm, the critical size was 75μm, and the pressure drop coefficient was 1.7. The performance was also affected by the inlet velocity and solid concentration. Especially, the instantaneous separation occurred at the corner was very significant for the improvement of the collection efficiency with high inlet solid concentration for CFB boiler.
     On the basis of experimental study, the gas-solid flow in the square separator was numerically simulated. The calculated grade collection efficiency and pressure drop have reasonable agreement with the experimental data. And numerical simulation was used to optimize the configuration and dimension of the square separator. The flow field in square separator shows a feature of Rankine eddy and local vortex exits at the corners. By optimization of the configuration and dimension, the cut size is about 6μm. The pressure drop of the square separator is small and is not considered to be the main factor of the performance.
     Experimental and numerical results indicated that the control characteristics of solid flow rate in EHE and the performance of square separator with double inlets met the operation requirements of this new CFB boiler arrangement scheme well, but it will be verified when this new CFB boiler is scaled up. A new 35t/h industrial boiler was designed according to the above results. First, the laboratory bench scale CFB boiler arrangement scheme will be scaled up to industrial boiler. Some test will be conducted on the industrial boiler. Those tested data and experience will be used to scale up the new CFB boiler to a larger commercial boiler.
引文
[1]卢啸风.大型循环流化床锅炉设备与运行[M].北京:中国电力出版社,2006:5-10,10,11,96-99,55-57,94.
    [2]朱皑强,芮新红.循环流化床锅炉设备及系统[M].北京:中国电力出版社,2004:11-13,10,162-163.
    [3]骆仲泱,何宏周,王勤辉等.循环流化床锅炉技术的现状及发展前景[J].动力工程,2004,24(6):761-767.
    [4] Stephen J. Goidich, Timo Hypp?nen. Foster Wheeler Compact CFB Boilers For Utility Scale[C]. Proceedings of 16th International Conference on Fluidized Bed Combustion. Reno, Nevada. 2001. USA: ASME, 2001.
    [5] M.M. Marchetti, T.S. Czarnecki, J.C. Semedard et al. ALSTOM’S LARGE CFBS AND RESULTS[C]. Proceedings of 17th International Conference on Fluidized Bed Combustion. Jacksonville, Florida. 2003. USA: ASME, 2003.
    [6] Ireneusz Lalak, Joachim Seeber, Frank Kluger et al. OPERATIONAL EXPERIENCE WITH HIGH EFFICIENCY CYCLONES: COMPARISON BETWEEN BOILER A AND B IN THE ZERAN POWER PLANT-WARSAW, POLAND[C]. Proceedings of 17th International Conference on Fluidized Bed Combustion. Jacksonville, Florida. 2003. USA: ASME, 2003.
    [7] F. Belin, M. Maryamchik, D.J. Walker et al. Babcock & Wilcox CFB Boilers-Design & Experience[C]. Proceedings of 16th International Conference on Fluidized Bed Combustion. Reno, Nevada. 2001. USA: ASME, 2001.
    [8] Thierry LE GUEVEL, Philippe THOMAS. FUEL FLEXIBILITY AND PETROLEUM COKE COMBUSTION AT PROVENCE 250 MW CFB[C]. Proceedings of 17th International Conference on Fluidized Bed Combustion. Jacksonville, Florida. 2003. USA: ASME, 2003.
    [9]程永新,彭岚,王琰等.循环流化床锅炉的发展现状及运行中若干问题的探讨[J].江西电力,2006,30(3):38-40,45.
    [10]刘德昌,吴正舜,张世红等.我国循环流化床锅炉的发展现状和建议[J].动力工程,2003,23(3):2376-2379.
    [11] Lu Junfu, Zhang Jiansheng, Zhang Hai et al. Performance evaluation of a 220t/h CFB boiler with water-cooled square cyclones[J]. Fuel Processing Technology, 2007, 88: 129-135.
    [12]顾亚平,光昕,牛长山等.循环流化床锅炉循环系统的设计[J].锅炉技术,1999,30(12): 4-8.
    [13]王擎,骆仲泱,岑可法等.循环流化床锅炉循环回路压力平衡理论的分析[J].动力工程,2001,21(1):1022-1025.
    [14]顾亚平,光昕,牛长山等.循环流化床锅炉循环系统的工作原理与设计[J].发电设备,2000,4:8-11,42.
    [15]朱国桢,徐洋.循环流化床锅炉设计与计算[M].北京:清华大学出版社,2004:17-19,21.
    [16]路春美,程世庆,韩奎华等.循环流化床锅炉设备与运行[M].北京:中国电力出版社,2003:69-73.
    [17]张昌建,袁文山,赵辉等.循环流化床锅炉的发展及前景[J].河北建筑科技学院学报,2004,21(1):81-83.
    [18]前付平,章名耀.不同排尘结构旋风分离器的分离性能[J].燃烧科学与技术,2006,12(2): 171-174.
    [19] Atakan Avci, Irfan Karagoz. Effects of flow and geometrical parameters on the collection efficiency in cyclone separators[J]. Aerosol Science, 2003, 34: 937-955.
    [20] Jin W. Lee, Hoe J. Yang, Dong Y. Lee. Effect of the cylinder shape of a long-coned cyclone on the stable flow-field establishment[J]. Powder Technology, 2006, 165: 30-38.
    [21] Fuping Qian, Jiguang Zhang, Mingyao Zhang. Effects of the prolonged vertical tube on the separation performance of a cyclone[J]. Journal of Hazardous Materials B, 2006, 136: 822-829.
    [22] Jolius Gimbun, T.G. Chuah, A. Fakhru’l-Razi et al. The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study[J]. Chemical Engineering and Processing, 2005, 44: 7-12.
    [23] K.S. Lim, H.S. Kim, K.W. Lee. Characteristics of the collection efficiency for a cyclone with different vortex finder shapes[J]. Aerosol Science, 2004, 35: 743-754.
    [24] Rongbiao Xiang, S.H. Park, K.W. Lee. Effects of cone dimension on cyclone performance[J]. Aerosol Science, 2001, 32: 749-761.
    [25]岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1998:501,583-587,593-597.
    [26]苏亚欣,周劲松,骆仲泱等.方形旋风分离器内部两相流场的PDA实验研究[J].中国电机工程学报,2001,21(2):42-45,55.
    [27]苏亚欣,岑可法,骆仲泱等.方形旋风分离器内气固两相流湍流特性的研究[J].热能动力工程,2002,17(98):147-150.
    [28]廖艳芬,王树荣,骆仲泱等.方形分离器的试验研究与分析[J].电站系统工程,2003,19(3):12-14.
    [29] Yaxin Su, Yuru Mao. Experimental study on the gas-solid suspension flow in a square cycloneseparator[J]. Chemical Engineering Journal, 2006, 121: 51-58.
    [30] Shurong Wang, Mengxiang Fang, Zhongyang Luo et al. Instantaneous separation model of a square cyclone[J]. Powder Technology, 1999, 102: 65-70.
    [31] Arman Raoufi, Mehrzad Shams, Homayoon Kanani. CFD analysis of flow field in square cyclones[J]. Powder Technology, 2009, 191: 349-357.
    [32]余战英,魏铜生,陈晓宇等.不同结构因素下方形旋风分离器分离性能的试验研究[J].动力工程,2004,24(1):147-151.
    [33]由长福,岳光溪,叶大均等.方形分离器三位流场的测定及数值模拟[J].动力工程,1995,15(5):1-6.
    [34]吕俊复,白玉刚,岳光溪等.方形分离器入口加速段宽度[J].清华大学学报,2000,40(4):66-69.
    [35]王玉召,王启民,吕俊复等.带入口加速段的方形分离器内气固两相流动数值模拟[J].中国电机工程学报,2007,27(11):45-49.
    [36]白玉刚,吕俊复,岳光溪等.方形分离器筒体形式对其性能的影响[J].动力工程,1999,19:567-570.
    [37]吕俊复,金晓钟,陆肖马等.入口带有加速段方形分离器性能研究[J].粉体技术,1998,3(4):6-11.
    [38] A. C.霍夫曼,L. E.斯坦因.彭维明,姬忠礼.旋风分离器—原理、设计和工程应用[M].北京:化学工业出版社,2004,103-112.
    [39] A.J. Hoekstra, J.J. Derksen, H.E.A. Van Den Akker. An experimental and numerical study of turbulent swirling flow in gas cyclone[J]. Chemical Engineering Science, 1999, 54: 2055-2065.
    [40] Li Xiaodong, Yan Jianhua, Cao Yuchun et al. Numerical simulation of the effects of turbulence intensity and boundary layer on separation efficiency in a cyclone separator[J]. Chemical Engineering Journal, 2003, 95: 235-240.
    [41]王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J].热能动力工程.2003,18(4):337-342.
    [42] B. Wang, D.L. Xu, K.W. Chu et al. Numerical study of gas-solid flow in a cyclone separator[J]. Applied Mathematical Modeling, 2006, 30: 1326-1342.
    [43] H.F. Meier, M. Mori. Gas-solid flow in cyclones: the Eulerian- Eulerian approach[J]. Computers chem, 1998, 22: 641-644.
    [44] L.S. Leung, Y.O. Chong. Operation of V-Valve for Gas-Solid Flow[J]. Powder Technology, 1987, 49: 271-276.
    [45] Y.O. Chong, D.P.O. Dea, L.S. Leung et al. Design of Standpipe and Non-Mechanical V-Valvefor a Circulating Fluidized Bed[M]. Circulating Fluidized Bed Technology 2 ed. by P. Basu and J. F. Large. Oxford: Pergamon Press, 1988: 493-500.
    [46]王擎,孙键等,李绚天等.循环流化床锅炉Loop Seal型返料装置的试验研究[J].化工机械,1999,26(24):187-191,210.
    [47]王擎,骆仲泱,李绚天等.循环流化床流动密封阀型返料装置的设计方法探讨[J].动力工程,1999,19(2):24-28.
    [48]王擎,孙东红,秦裕琨等.有侧吹风Loop Seal型返料装置的试验研究[J].化工机械,1999,27(2):63-67.
    [49]王擎,孙东红,孙键等.有侧吹风环流料封阀水平孔口流动阻力特性[J].化工学报,2000, 51(5):703-707.
    [50]周一工.关于循环流化床锅炉外置式热交换器的发展及动向[J].黑龙江电力技术,1998,20(6):342-349.
    [51]周一工.国内循环流化床锅炉运行中的问题及原因探讨[J].煤炭转化,1998,21(1):84-86.
    [52]周一工.循环流化床锅炉再热器调温方式探讨[J].锅炉技术,2001,32(10):1-3.
    [53]肖峰,陈干锦,倪晓辉等.外置床(FBHE)对床温、汽温调节特性的研究[J].锅炉技术,2003,34(4):4-7,10.
    [54]骆仲泱,张彦军,王勤辉等.循环流化床锅炉外置式换热器设计方法的探讨[J].动力工程,1999,19(3):1-6.
    [55]王勤辉,施正伦,程乐鸣等.非机械阀控制外置式换热器的试验研究[J].动力工程,2001, 21(4):1324-1331.
    [56] Qinhui Wang, Zhongyang Luo, Mengxiang Fang et al. Development of a new external heat exchanger for a circulating fluidized bed boiler[J]. Chemical Engineering and Processing. 2003, 42: 327-335.
    [57]孙献斌,黄中.大型循环流化床锅炉技术与工程应用[M].北京:中国电力出版社,2009:108-109.
    [58]金涌,祝京旭,汪展文等.流态化工程原理[M].北京:清华大学出版社,2001:55-72,68,87-90.
    [59]周力行,杨玟,廉春英等.鼓泡床内气泡-液体两相湍流代数应力模型的数值模拟[J].化工学报,2002,53(8):780-786.
    [60] J. Wiman, A.E. Almstedt. Influence of pressure, fluidization velocity and particle size on the hydrodynamics of a freely bubbling fluidized bed[J]. Chemical Engineering Science, 1998, 53: 2167-2176.
    [61] Yao Wang, Yi Cheng, Yong Jin et al. On imparts of solid properties and operating conditionson the performance of gas-solid fluidization systems[J]. Powder Technology, 2007, 172: 169-178.
    [62]林志杰,刘德昌.燃煤沸腾床埋管穿热系数的试验研究[J].华中工学院学报,1983,11(3):111-116.
    [63]孙献斌,李志伟,时正海等.循环流化床锅炉紧凑式分流回灰换热器的试验研究[J].中国电力,2006,39(39):27~30.
    [64] Y. Ma, J.X. Zhu. Heat transfer between gas-solid suspension and immersed surface in an upflow fluidized bed (riser)[J]. Chemical Engineering Science, 2000, 55: 981-989.
    [65] John C. Chen, John R. Grace, Mohammad R. Golriz et al. Heat transfer in fluidized beds: design methods[J]. Powder Technology, 2005, 150: 123-132.
    [66] H.J. Bock, J. Schweiner. Heat transfer to horizontal tube banks in a pressurized gas\solid fluidized bed[J]. German Chem. Eng, 1986, 9 (1): 16-23.
    [67] S. Rasouli, M.R. Golriz, A.A. Hamidic et al. Effect of annular fins on heat transfer of a horizontal immersed tube in bubbling fluidized beds[J]. Powder Technology, 2005, 154: 9-13.
    [68] A. Jacob, G.L. Osberg. Effect of gas thermal conductivity on local heat transfer in a fluidized bed[J]. Canadian J. of Chem. Eng, 1957, 35 (6): 5-9.
    [69] Ziegle E.N., Koppel L.B., Brazelon W.T. et al. Effects of solid thermal properties on heat transfer to gas fluidized bed[J]. I&ec fundamentals, 1964, 3 (4): 324-328.
    [70] Wen-Ching Yang. Fluidization, solids handling, and processing/Industrial Applications[M]. New Jersey, USA: NOYES PUBLICATIONS, 1998: 155-163.
    [71] B.–A. Andersson. Effects of bed particle size on heat transfer in circulating fluidized bed boilers[J]. Powder Technology, 1996, 87: 239-248.
    [72]成玉琪,杜铭华,余洁等.中国洁净煤技术发展述评[J].洁净煤技术,1999,5(1):8-9.
    [73]汪播.法国循环流化床技术大型化最新发展[J].山东电力技术,2003(4):81.
    [74]孙献斌.国外循环流化床锅炉的大型化技术[J].热力发电,1996(6):48.
    [75]何宏舟.我国循环流化床锅炉的发展趋势及若干影响因素分析[J].能源与环境,2005(3):23-26.
    [76]林宗虎,魏敦崧,安恩科等.循环流化床锅炉[M].北京:化学工业出版社,2004:129-155.
    [77]卢春喜,徐亦方,时铭显等. FCC循环湍流流化床TDH计算的新模型[J].石油学报,2000,16(1):76-80.
    [78] Hamdullahpur F, Mackay G D M. Two-phase flow behavior in the freeboard of a gas-fluidized bed[J]. AIChE J, 1986, 12: 2047-2055.
    [79] Cai P., Schiavetti M., Demichele G. et al. Quantitative estimation of bubble size in PFBC[J]. Powder Technology. 1994, 80: 141-147.
    [80]牛长山,齐勇,光昕等.循环床沸腾炉物料循环技术的试验研究[J].动力工程,1991,11(4):31-37.
    [81]李希光,刘大陆,刘菊花等.气控流化锥形溢流管[J].化学工程,1982,10(4):31-37.
    [82]王擎,孙键,骆仲泱等.环流料封阀水平孔口流动阻力特性[J].化工学报,1999,50(5):598-605.
    [83] Kuramoto M., Kunil D., Furusawa T. et al. Flow of dense fluidized particles through an opening in a circulation system[J]. Powder Technology, 1986, 47: 141-149.
    [84] R.D. Lanauze. A circulating fluidized bed[J]. Powder Technology, 1976, 15: 117-127.
    [85] J.F. DAVIDSON, R. CLIFT, D. HARRISON et al. FLUIDIZATION. 2nd edition[M]. London: ACADEMIC PRESS, 1985, 308-312.
    [86]刁永发,金巍巍,沈恒根等.轴对称进口回转通道对旋风分离器分离特性影响的研究[J].化工机械,1999,26(3):129,130-132.
    [87]刁永发,沈恒根,金巍巍等.单、双进口旋风分离器分离特性比较对照的研究[J].动力工程,1999,19:563-566.
    [88] Bingtao Zhao, Henggen Shen, Yanming Kang. Development of a symmetrical spiral inlet to improve cyclone separator performance[J]. Powder Technology, 2004, 145: 47-50.
    [89] D.R.M. Jones, J.F. Davidson. The flow of particles from a fluidized bed through orifice[J]. Rheologica Acta, 1965, 4: 180-192.
    [90] J.A.H. De Jone. Vertical air-controlled particle flow from a bunker through circular orifices[J]. Powder Technology, 1969, 3: 279-286.
    [91] Korbee R., Snip O.C., Schouten J.C. et al. Rate of solids and gas transfer via an orifice between partially and completely fluidized beds[J]. Chemical Engineering Science, 1994, 49: 5819-5832.
    [92]王树荣,方梦祥,骆仲泱等.高浓度方形分离器器的分离机理研究[J].动力工程,1998,18(3):48,49-54.
    [93]吕俊复,白玉刚,刘青等.入口带有加速段方形分离器放大性能预测[J].应用基础与工程科学学报,2000,8(2):207-211.
    [94] Moore M.E., Mcfarland, A.R.. Design methodology for multiple inlet cyclones[J]. J. Environmental Sci. Technol., 1990, 12: 1055-1066.
    [95] Lim K. S., Kwon S. B., Lee, K. W.. Characteristic of the collection efficiency for a double inlet cyclone with clean air[J]. J. Aerosol Sci., 2003, 34: 1085-1095.
    [96]沈恒根,党义荣,刁永发等.双进口旋风器内流场的试验研究[J].西安建筑科技大学学报,1997,29(3):275-277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700