尘土进入电子/电器设备分析模型及实验模拟系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尘土污染导致的性能退化是信号连接器的主要失效原因之一。我国由于尘土污染严重,电子/电器设备中的连接器抗污染能力弱,导致故障频发,直接影响设备整体性能及可靠性。但是目前在国际范围内尚无有效的测试评估方法,其中合理的尘土进入电子/电器设备的分析模型及实验模拟方法的建立是重要的环节。本论文从系统研究的角度,对此进行了分析和研究。
     论文在分析研究的基础上,提出了评估电子/电器设备中的连接器抗尘土污染能力的思路:将尘土进入、尘土聚集到接触区域的实验和尘土颗粒在接触区域造成故障的模拟实验相结合,即随机实验、概率分析与确定性的故障实验结合。建立评估体系,将长期依赖于经验和现象分析的尘土影响测试上升为有理论指导测试。该评估体系及模拟系统的建立依赖于两方面的研究:尘土进入电子/电器设备分析模型研究与尘土对接触可靠性的影响研究。本文重点是对前者的研究,同时对后者做了初步的分析。
     论文主要的内容和结论如下:
     1通过有限元分析及实验,对影响尘土进入的因素(外界气流、电子/电器设备密封结构、动态环境因素、电效应、热效应等)进行研究,得到了各自的影响形式、评价指标及参数范围。结果表明:外界气流、密封结构及动态环境是影响尘土进入的主导因素,电及热的影响较弱,在模拟及评估中可忽略。
     2确定了尘土进入电子/电器设备的模式:空气中的尘土颗粒,一部分由于密封结构及外界气流引起的设备内外气压差直接随气流进入,另一部分在其自身重力和气流拖曳力作用下沉积在表面。电子/电器设备在使用过程中受动态环境影响,当外界激励频率达到一定程度,沉积在表面的颗粒惯性力大于摩擦力,颗粒在其初始位置附近做微幅振动,从而逐渐通过密封间隙进入并向内部扩散。其数学表达式为:Qdi=QdKp+QdKgKv。
     3提出了尘土进入实验模拟系统的设计方案,该实验模拟系统具备模拟外界气流及动态环境这两大主导因素综合影响的能力。通过气-固两相流模型计算,分析得到了在水平循环模式下,粒径5μm-200-μm的尘土颗粒在该实验箱内,当气流流速达到15m/s以上,循环效率将超过75%。在垂直循环模式下,底部漏斗形管壁与水平线之间的夹角应大于17度,这样有利于沉积在管壁上的尘土颗粒在重力作用下进入循环管道。对于振动载物台系统,以路面不平度功率谱密度作为激励信号。
     4进行了尘土引起电接触失效的概率实验,结果符合正态分布,但是该模型存在局限性,并不反映尘土存在条件下的主要失效模式。在微动与粘接综合作用下,尘土聚集并附着或嵌入到接触表面,从而造成接触界面脱开是尘土引起电接触故障的主要表现形式之一。从微动聚集的角度,通过理论推导得到尘土堆积物的体积V服从对数正态分布,故电连接器的寿命符合对数正态分布。
     基于失效机理研究结果,将尘土影响分为两大类:直接影响与间接影响,其中共五个子类:断路、接触电阻升高、阻抗变化、加速腐蚀失效、加速微动失效。
It is known that dust contamination is one of the factors causing electric contact failures. However, dust test normally used for the reliability evaluation of electric/electronic devices including connectors could hardly reflect the contact failure due to the complexity of the problem. In this paper, for improving dust test method and evaluating method, the investigation was performed.
     It needs to note that both ingression and contact behavior should be involved in dust test system for evaluating the reliability of electric/electronic devices and connectors. As one part of this test method research, modeling of dust ingression was established. The research works and obtained conclusions are as follows:
     1 Many factors such as air flowing, structure, electro/thermo characteristic of electric/electronic devices, and dynamic environments may affect the dust ingression. Air flowing, structure densification and dynamic environment effects are the leading factors on dust ingression of mobile phone. Thermal and electro effects can be ignored.
     2 The pattern of dust ingression:some dusts in the air are blowed into the electric/electronic devices because of the differential pressure; the other dusts are deposited on the devices surface. Since the frequency of dynamic environment increase, it is able to produce acceleration. Therefore, the dust deposited on the electronic devices surface can be easily moved. The movement between the dust and the electric/electronic device is an attempt to make the dust ingression. The mathematic model of dust ingression is shown as Qdi=QdKp+QdKgKv.
     3 The dust ingression test equipment which these leading factors and their combined effects can be simulated was presented. It divides into four parts:dust injection value, dust circulatory/recycling system, control system and random vibration object stage. The dust distribution in the chamber induced by the air flowing and the transform function of the vibration stage are the two core issues for this research. The discrete phase model was established to compute the dust circulator/recycling efficiency in the chamber. The horizontal circulator/recycling efficiency of dust particles (5μm~200μm) is above 75% when the air velocity is larger than 15m/s. The vertical model shows there is a critical angle which could cause the particle sliding down to the recycling. The criticalθ=170. The effects of random road surface roughness when the mobile phone using in a vehicles is one exterior vibration source example. The power spectral density of road surface roughness can be used in this simulation dust chamber.
     4 Reliability models of dust effects on electric contact were established. The mathematic model of failure rate was got from the curve fitting of experimental results.
     The failure mode was analyzed based on dust effect on the electric contact feature. There are two groups including five parts.
引文
[1]中国质量万里行,2007:65万件投诉大透析,[EB/OL](2008-05-08) [2009-03-15].http://www.chinavalue.net/Media/Article.aspx?ArticleId=25429&Pa geld=3.
    [2]中新网,返修率平均达15%手机为何还不实行“召回制”,[EB/OL] (2004-09-06) [2009-03-18]. http://www.china.com.cn/chinese/EC-c/652643.htm.
    [3]冯萃峰,失效手机电接触故障表面的污染物特性及形成机理[学位论文],北京,北京邮电大学,2010。
    [4]NASA, New map offers a global view of health-sapping air pollution, [EB/OL] [2010-09-26], http://www.nasa.gov/topics/earth/features/health-sapping.html.
    [5]Reagor.B.T., Russel.C.A., A survey of problems in telecommunication equipment resulting from chemical contamination, Proceedings of the 31th IEEE Holm Conference on Electrical Contacts, America,1985, pp.157-162.
    [6]Zhang. J.G., Effect of dust contamination on electrical contact failure, Proceedings of the 53th IEEE Holm Conference on Electric Contacts, America,2007, pp. xx-xxi.
    [7]Zhang. J.G., Xu.L.J., and Feng.C.F., Futher studies of the mechanical behavior of particles on electric contact failure, Proceedings of the 24th International Conference on Electrical Contacts, France,2008, pp.145-151.
    [8]Liang.Y.N., Zhang. J.G., and Liu. J.J., Indentification of inorganic compounds in dust collected in Beijing and their effects on electric contacts, Proceedings of the 43th IEEE Holm Conference on Electrical Contacts, Philadelfia,1997, pp.315-327.
    [9]Zhang J.G., Liang.Y.N., and Wan J.W., Analysis of organic compounds in airborne dust collected in Beijing, Proceedings of the 44th IEEE Holm Conference on Electrical Contacts, Arlington,1998, pp.166-171.
    [10]Zhang. J.G., Gao J.C., and Lin. X.Y, Analysis of connector contact failure, IEICE Tran.on Electronics, Vol.E86-C, No.6,2003, pp.945-952.
    [11]Feng.C.F., Zhang J.G., Luo. G.P., Inspection of the contaminants at failed connector contacts, Proceedings of the 51th IEEE Holm Conference on Electrical Contacts, Chicago,2005, pp.115-120.
    [12]周怡琳,手机中电触点的失效分析,北京邮电大学学报,29(1),2006, 69-72页。
    [13]Gao.J.C., Zhang. J.G., Measurement of electric charges carried by dust particles, Proceedings of the .48th IEEE Holm Conference on Electrical Contacts, Orlando, 2002, pp.191-176.
    [14]高锦春,尘土颗粒的带电特征及其对电接触故障的影响[学位论文],北京,北京邮电大学,2003。
    [15]Zhang. J.G., Wen. X.M., The effect of dust contamination on electric contacts, IEEE Trans.CHMT, Vol.9, No.1,1986, pp.53-58
    [16]Zhang. J.G., Gao. J.C., and Feng. C.F., The "selective" deposition of particles on electric contact and their effects on contact failure, Proceedings of the 51th IEEE Holm Conference on Electrical Contacts, Chicago,2005, pp.127-134
    [17]Zhang. J.G., Gao. J.C. and Feng. C.F., Adhesion and attaching of particles at the failed connector contacts, Proceedings of the 51th IEEE Holm Conference on Electrical Contacts, Chicago,2005, pp.115-120.
    [18]He.Z.P., Xu. L.J., Micro motion at the failed contact interfaces, Proceedings of the 51st IEEE Holm Conference on Electric Contacts, Chicago,2005, pp.180-185.
    [19]贺占平,电接触故障中的微动因素影响与方法研究[学位论文],北京,北京邮电大学,2007。
    [20]李萍,尘土对电触点高电阻形成作用的研究[学位论文],北京,北京邮电大学,2008。
    [21]Zhang. J.G., Zhou.K.D., and Du.C.X., The porosity of gold plating by dust contaminayion, Proceedings of the 34th IEEE Holm Conference on Electrical Contacts, Canada,1988, pp.301-310.
    [22]Zhang.J.G., Mei. C.H., Wen. X.M., Dust effects on various lubricated sliding contacts, IEEE Trans.CHMT, Vol.13, No.1, March 1990, pp.46-51.
    [23]Lin. X.Y., Zhang.J.G., Dust corrosion, Proceedings of the 50th IEEE Holm Conference on Electrical Contacts, WA,2004, pp.255-262.
    [24]Zhou.Y.L., Lin. X.Y., and Zhang. J.G., Island growth of corroded products on various plated surface after long term indoor air exposure in China, Proceedings of the 45th IEEE Holm Conference on Electrical Contacts, Pittsburg,1999, pp.153-161.
    [25]Zhang.J.G., Lin.X.Y., and Zhou.Y.L., Tidal corrosion and concentric rings on gold plated contacts, Proceedings of the 20th International Conference on Electrical Contacts, Sweden,2000, pp.303-311.
    [26]刘云,大气对常见触点金属材料的腐蚀影响[学位论文],北京,北京邮 电大学,2008。
    [27]Xu.L.J., Wang.D., Dust effect on electric contact fretting, The 24th International Conference on Electrical Contacts, Saint-Malo,2008, pp.135-138.
    [28]Zhang.J.G., Yu.P., Electric contact performance:effect of contact surface morphology and the size of dust particles, Proceedings of the 45th IEEE Holm Conference on Electrical Contacts, CA,1990, pp 402-409.
    [29]万永华,微粒对电接触可靠性影响的计算机模拟与研究[学位论文],北京,北京邮电大学,2004。
    [30]Wang.D., Xu. L.J., Modeling of contact surface morphology and dust particles by using finite element method, Journal of Zhejiang University:Science A, Vol.8, No.3, March,2007, pp.403-407.
    [31]Haque.C.A., Richardson.M.D., and Ratliff.E.T., Effects of dust on contact resistance of connector contact materials, Proceedings of the 31th IEEE Holm Conference on Electrical Contacts,1985, pp.42-49.
    [32]Larry.W., Development of a new connector dust test, Proceedings of the 33th IEEE Holm Conference on Electrical Contacts,1987, pp.87-92.
    [33]Douglas.G., Edward S., Dust test results on multicontact circuit board connectors, IEEE Transaction on Components Hybrids and Manufacturing Technology, Vol.14, No.4,1991, pp.802-808.
    [34]Tunca.N., Rose.G., Environmental testing of elastomeric connectors, Proceedings of the 38th IEEE Holm Conference on Electrical Contacts,1992, pp.249-255.
    [35]生建友,电子设备的密封设计,电子工业专用设备, 111(2),2004,46-50页。
    [36]席兰霞,柳继昌,密封性检测方法综述,火工品,9(3),2002,44-49页。
    [37]唐宏基,继电器密封质量的检测,中国计量测试学会真空校准第六届学术年会,2001,21-29页。
    [38]Furtaw.E., Pandian.M.D., Modeling indoor air concentrations near emission sources in imperfectly mixed room, Journal of Air Waste Manage, Vol.46,1996, pp.861-868.
    [39]Johansen.S.T., The deposition of particles on vertical walls, International Journal of Multiphase Flow, Vol.7,1991, pp.355-376.
    [40]Wallace.L.A., Indoor particles:a review, Journal of Air Waste Manage, Vol.46, 1996, pp.98-126.
    [41]Narasimhan.T.R., Trotter.E.H., A practical statistical technique to improve seal integrity and reliability of microelectronic packages, Proceedings of the 1997 IEEE International Integrated Reliability Workshop,1997, pp.126-127.
    [42]Alvin.C., Modeling indoor particle deposition from turbulent flow onto smooth surfaces, Journal of Aerosol Science, Vol.31, No.4,2000, pp.464-476.
    [43]Michal.T., Moisture ingress into nonhermetic enclosure and packages, Proceedings of Electronic Components and Technology Conference,1994, pp.196-209.
    [44]Michal.T., Deposition of aerosol (hygroscopic dust) on electronics-mechanism and risk, Microelectronics Reliability, Vol.48,2008, pp.584-593.
    [45]International Electrotechnical Commission, IEC 60086-2-68-1994 Environmental testing-part2:Dust and sand, Suisse, IEC publication,1994
    [46]中国机械电子工业部,GB 2423.37-1989电工电子产品基本环境实验规程实验L沙尘实验方法,北京,1989。
    [47]中国国家技术监督局,GB 11606.11-1989分析仪器环境实验方法沙尘实验,北京,1990。
    [48]中国国家质量监督检验检疫总局GB/T 2423.37-2006电工电子产品环境实验第2部分:实验方法实验L:沙尘实验(等同于IEC 60086-2-68-1994Environmental testing-part2:Dust and sand),北京,中国国家标准化管理委员会,2006
    [49]中国国家技术监督局,GB/T 4797.6-1995电工电子产品自然环境条件尘、沙、盐雾,北京,1995。
    [50]Michael.T., Improved EN-60529 dust chamber for IP5X or IP6X enclosure testing, IEEE Symposium on Product Compliance Engineering, USA,2007, pp.1-6.
    [51]吕文超,电子设备内部及触点界面尘土特性研究[学位论文],北京,北京邮电大学,2009。
    [1]Anderson.R.S., Sorensen.M. and Willetts.B.B., A review of recent progress in our unders tanding of Aeolian sediment transport, Acta Mech, 1(Supp),1991, pp.1-19.
    [2]钱宁,万兆惠,泥沙运动力学,科学出版社,2003,2-25页。
    [3]葛薇,液态化系统的多尺度计算机模拟[学位论文],哈尔滨,哈尔滨工业大学,1998。
    [4]孙其诚,王光谦,风沙运动的计算机模拟,科学通报,46(3),2001,254-256页。
    [5]孙其诚,模拟气固流态化系统的拟颗粒模型[学位论文],北京,中国科学院化工冶金研究所,2000。
    [6]孙其诚,工光谦,颗粒流动力学及其离散模型评述,力学进展,38(1),2008,88-100页。
    [7]郑晓静,周又和,风沙运动研究中的若干关键力学问题,力学与实践,25(2)2003,1-6页。
    [8]郑晓静,黄宁,周又和,风沙运动的沙粒带电机理及其影响的研究进展,力学进展,34(1),2004,77-86页。
    [9]黄宁,任珊,郑晓静,空中碰撞对风沙跃移运动的影响,中国科学,38(3),2008,1-10页。
    [10]Huang. N., Zheng. X.J., Zhou.Y.H., Simulation of wind-blown sand movement and probability density function of lify-off velocities of sand particles, J Geophys Res,111,2006, pp.201-207.
    [11]Huang.N., Zhang.Y.L., D'Adamo.R., A model of the trajectories and midair collision probabilities of sand particles in a steady state saltation cloud, J Geophys Res,112,2007, pp.206-211..
    [12]Crowe.C.T., Sharma.M.P. and Stock. D.E., Particle-source-in cell model for gas-drop flows, Trans.ASME, J. Fluids Eng,99,1997, pp.325-329.
    [13]Mei.R.W., Ronald.J.A. and Thomas.J.H., Particle Dispersion in Isotropic turbulence under stockes drag and basset force with gravitational setting, J.Fluid Mech,225,1991, pp.481-495.
    [14]Anderson.R.S., Haff. P.K., Wind modification and bed response during saltation of sand in air, Acta Mech, (supp)1,1991, pp.21-25.
    [15]Viollet. P.L., The modelling of turbulent recirculating flows for the purpose of reactor thermal-hydraulic analysis, Nuclear Engineering and Design,99,1987, pp. 365-377.
    [16]Launder. B.E., Spalding. D.B, The numerical computation of turbulent flows, Computer Methods In Applied Mechanics and Engineering, Vol.3,1974, pp. 269-289.
    [17]Rice. J.G., Schnipke. R.J., A monotone streamline upwind finite element method for convection-dominated flows, Computer Methods in Applied Mechanics and Engineering, Vol 48,1985, pp.313-327.
    [18]Harlow. F.H., Amsden. A.A., A numerical fluid dynamics calculation method for all flow speeds, Journal of Computational Physics, Vol 8,1971, pp.16-27.
    [19]White. F.M., Viscous fluid flow, Second Edition, McGraw-Hill,1991, New York, pp.13-25.
    [20]Patankar.S.V., Numerical heat transfer and Fluid Flow, Hemisphere,1980, New York, pp.32-37.
    [1]邱成悌,电子设备结构设计原理,东南大学出版社,2005,1-130页。
    [2]He. Z.P., Xu. L.J., Micro motion at the failed contact interfaces. Proceedings of the 51st IEEE Holm Conference on Electric Contacts, Chicago, IL,2005, pp. 180-185.
    [3]Xu. L.J., Dynamic influence on contact failure, IEICE Trans. on Electronics, Vol.E86-C, No.6,2003, Japan, pp.963-967
    [4]吴三灵,实用振动试验技术,兵器工业出版社,1993,5-12页。
    [5]曹昱,吕善伟,冯克明,正弦振动条件下原子钟的频率稳定度分析,北京航空航天大学学报,32(4),2006,407-411页。
    [6]孙明,沈润杰,郭吉丰,基于系统辨识的宽频大尺寸振动台正弦扫频控制,机电工程,25(6),2008,96-107页。
    [7]杨志东,丛大成,韩俊伟,正弦扫频振动控制中的信号综合与信号分析,振动工程学报,21(3),2008,309-317页。
    [8]Niu. B.J., A fft-based variety sampling rate sine swept vibration controller, IEEE Conference of Neural Networks & Signal Processing, Nanjing, China,2003, pp. 14-17.
    [9]Patrick. T.J., Sweep sine wave simulation of random vibration and its effect on design with particular reference to space rockets, Journal of Sound and Vibration, Vol.5, No.1,1967, pp.37-41.
    [10]Amir. S., Joseph. M., Yves. G., Damage monitoring in sandwich beams by modal parameter shifts:A comparative study of burst random and sine dwell vibration testing, Journal of Sound and Vibration, Vol.329, No.5,2010, pp.566-584.
    [11]于旭东,龙兴武,汤建勋,机械抖动激光陀螺的随机振动响应分析,光学精密工程,15(11),2007,1760-1765页。
    [12]陈颖,朱长春,李春枝,周桐,典型结构在单、多轴随机振动下的动力学特性对比研究,振动工程学报,22(13),2009,386-390页。
    [1]Walch.B., Robertson.S. and Horanyi.M., Measurement of the charging of individual dust grains in a plasma. IEEE Transaction on Plasma Science, Vol.22, No.2,1994, pp.97-102.
    [2]Johnston.A.M., A semi-automatic method for the assessment of electric charge carried by airborne dust, Journal of Aerosol Science, Vol.14, No.5,1983, pp.643-645.
    [3]Tuziuti.T., Ito.T., Nakamura.Y., On charging of dust particles in a plasma, Proceedings 1994 International Conference on Plasma Physics, Vol.2,1994, pp.282-295.
    [4]黄久生,刘尚合,李春萍,一种准确测量电荷量的仪器,静电,10(3)1991,42-45页。
    [5]许德玄,李祥生,马祝阳等,密立根油滴仪测量粉尘荷电量的探讨,物理实验,13(2),1992,134-135页。
    [6]Gao.J.C., Zhang.J.G., Measurement of electric charges carried by dust particles, Proceedings of the .48th IEEE Holm Conference on Electrical Contacts, Orlando, FL,2002, pp.191-176.
    [7]黄宁,沙粒带电及风沙电场对风沙跃移运动影响的研究[学位论文],兰州,兰州大学,2002。
    [8]郑晓静,黄宁,周又和,风沙运动的沙粒带电机理及其影响的研究进展,力学进展,34(1),2004,77-86页。
    [9]Qu.J.J., Huang.N., Dong.G., The role and significance of the Gobi Desert pavement in controlling sand movement on the cliff top near the Dunhuang Magao Grottoes, Journal of Arid Environments,48,2001, pp.357-371.
    [10]陈魁,实验设计与分析,清华大学出版社,2005,12-35页。
    [11]王卫国,接触区污染物影响因素的研究与实验室模拟[学位论文],北京,北京邮电大学,2004。
    [1]岑可法,倪明江,严建华,气固分离理论及技术杭州,浙江大学山版社,1996,12-25页。
    [2]倪晋仁,王光谦,张红武,固液两相流基本理论及其最新应用,科学出版社,1991,5-88页。
    [3]田翔,氧化铝浓相输送过程的两相流建模及参数测量问题的研究[学位论文],兰州,兰州理工大学,2007。
    [4]钱付平,不同排尘结构及条件旋风分离器分离特性的研究[学位论文],南京,东南大学,2006。
    [5]孔祥照,颗粒物质动态特性的若干问题研究[学位论文],合肥,中国科学技术大学,2006。
    [6]陈懿,扰动条件下气固两相圆柱绕流的直接数值模拟[学位论文],杭州,浙江大学,2006。
    [7]吴春亮,稠密颗粒两相流的理论与数值模拟[学位论文],广州,中山大学,2004。
    [8]Jacek P., Sourabh.V., Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion, International Journal of Multiphase Flow, Vol.35, No.2,2009, pp.118-128.
    [9]Kannapprakasam.B., Brown.A., Computer predictions of three-dimensional particle trajectories in gas turbines, International Journal of Heat and Fluid Flow, Vol.8, No.3,1987, pp.195-204.
    [10]Wang.Z.B., Chu.L.Y., Chen. W.M., Experimental investigation of the motion trajectory of solid particles inside the hydrocyclone by a Lagrange method, Chemical Engineering Journal, Vol.138, No.1-3,2008, pp.1-9.
    [11]温正,石良辰,任毅如,Fluent流体计算应用教程,清华大学出版社,2009,341-379页。
    [12]江帆,黄鹏,Fluent高级应用与实例分析,清华大学出版社,2008,140-182页。
    [13]王瑞金,张凯,王刚,Fluent技术基础与应用实例,清华大学出版社,2008,134-152页。
    [14]胡满银,赵毅,刘忠,除尘技术,化学工业出版社,2006,5-26页。
    [151陈明绍,除尘技术的基本理论与应用,中国建筑工业出版社,1981,4-15 页。
    [16]金国淼,除尘设备,化学工业出版社,2002,13-158页。
    [17]王岳,高宝桐,声波清灰器在燃煤电厂电除尘器中的应用,华北电力技术,4,2008,12-15页。
    [18]张茂军,臧念思,张家宾,声波清灰器在电除尘器上的应用,电力建设,8,2002,48-50页。
    [19]奚爱军,振动扬声器设计初探,电声器件与电路,第32卷,第6期,2008,19-23页。
    [20]贺占平,许良军,手机中振子连接器的失效分析,机电元件,第26卷,第3期,2006,12-15页。
    [21]Leea.H.J., Chunga.S.U., Development and manufacturing of hexahedral type vibration motor used for mobile phone, Journal of Materials Processing Technology, Vol.130-131,2002, pp.685-690.
    [22]Au.F. T., Cheng.Y.S., and Cheung.Y.K., Effects of random road surface roughness and long-term deflection of prestressed concrete girder and cable-stayed bridges on impact due to moving vehicles, Computers & Structures, Vol.79, No.8,2001, pp.853-872.
    [23]Honda.H., Kajikawa.Y., and Kobori.T., Spectra of road surface roughness on bridges, Journal of Struct Div ASCE,108, ST9,1982, pp.1956-1966.
    [24]金睿臣,宋健,路面不平度的模拟与汽车非线性随机振动的研究,清华大学学报(自然科学版),39(8),1999,76-79页。
    [25]唐光武,贺学锋,颜永福,路面不平度的数学模型及计算机模拟研究,中国公路学报,13(1),2000,114-117页。
    [26]王述成,振动试验实时控制系统的研究[学位论文],杭州,浙江大学,2006。
    [1]杨奋为,航天连接器的失效预防和可靠性检验,质量与可靠性,2003,(02),34-38页
    [2]陈文华、崔杰、樊晓燕、卢献彪、相平,单失效数据的可靠性统计分析,机械工程学报,39(9),2003,44-48页。
    [3]陈文华,吴友义,高亮,陈泽宗,潘骏,电连接器真空环境试验电压加载方式研究,机械工程学报,(07),2009,1-6页
    [4]陈文华,柴新,盛军鑫,魏文,卢献彪,Weibull寿命型产品可靠性定数截尾验证试验方法,浙江大学学报(工学版),(02),2001,12-15页。
    [5]陈文华,航天电连接器可靠性试验和分析的研究,[学位论文],杭州,浙江大学,1997。
    [6]贺建民,机电产品可靠性技术,重庆大学出版社,1998,5-28页。
    [7]杨为民,可靠性、维修性、保障性总论,国防工业出版社,1995,1-10页。
    [8]陆俭国,电工产品可靠性,机械工业出版社,1991,1-45页。
    [9]蒋仁言,可靠性模型与应用,机械工业出版社,1999,3-43页。
    [10]何国伟,可靠性试验技术,国防工业出版社,1995,2-35页。
    [11]李萍,尘土对电触点高电阻形成作用的研究,[学位论文],北京,北京邮电大学大学,2007。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700